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The manipulation of spin current is a promising solution for low-power devices beyond CMOS.
However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel
junctions, suffer from large power consumption due to frequent spin-charge conversions. An important
challenge is, thus, to realize long-distance transport of pure spin current, together with efficient
manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a
mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion
length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing
operation, which enables gate-controllable distribution of the pure spin current into graphene branches.
Compared with the Elliott-Yafet spin-relaxation mechanism, the D’yakonov-Perel spin-relaxation
mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current
demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge
conversions and open a route for future ultra-low-power devices.
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I. INTRODUCTION

The manipulation of spin current is considered a
promising solution to build up low-power devices beyond
CMOS (complementary metal-oxide semiconductor)
technology for nonvolatile memory and logic computa-
tion [1–4]. The development in magnetic-tunnel-junction
(MTJ) devices for small magnetic field sensing through
the tunneling magnetoresistance effect has led to the
rapid progress of hard-drive capacity and the emergence
of magnetic random-access memory in the past 20 years
[1,5]. For nanoscale MTJ devices, spin current can be
utilized as efficient switching methods through the
spin-transfer-torque or spin-orbit-torque effect, allowing
low-power memory operations without magnetic fields
[6–10]. However, further integrations of these spintronic
devices with CMOS transistors for logic applications
consume much higher power due to the fact that frequent
spin-charge conversions are required to cascade the logic
gates [11], as limited by the short spin-current transport
distance.
In recent years, graphene has attracted considerable

attention for logic applications. However, the semimetal
property (i.e., the lack of an energy gap) of graphene
becomes a vital impediment for graphene-based transistors

[12,13]. Thanks to its superior features like high electronic
mobility, weak spin-orbit coupling, and weak hyperfine
interactions [14–16], graphene shows the longest spin-
diffusion length (SDL) at room temperature [17–21] and
becomes the best spin-current transport channel to realize
spin logic [3,4]. A number of graphene-based spintronic
devices have been proposed, such as spin transistors [22],
magnetologic devices [23], and all-spin-logic devices
[24,25]. However, these devices often suffer from high-
power issues due to frequent conversions between spin
signals and charge signals limited by the poor ability to
manipulate spin current [3]. Thereby, the realization of
both long-distance spin transport and efficient spin-current
manipulation is the key issue for ultra-low-power spin logic
[1–4].
Here, we describe the mechanism of gate-driven pure

spin current in graphene to fill in this gap. Such a
mechanism can be adopted to construct a graphene
spin-current demultiplexer (GSDM), which can realize
the demultiplexing operation to build up a fundamental
block of spin logic. It is important to mention that spin
current can be pure spin current or spin-polarized charge
current; here, we use only pure spin current to retain the
Joule-heat-free and ultra-low-power features. In a GSDM
with a Y-shaped graphene channel, we demonstrate that
such a mechanism relies on electrical gating of carrier-
density-dependent conductivity and SDL in graphene.*weisheng.zhao@buaa.edu.cn
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Depending on the type of spin relaxation in graphene, e.g.,
the Elliott-Yafet (EY) mechanism [26] and D’yakonov-
Perel (DP) mechanism [27,28], different performance of
the demultiplexing operation can be achieved. Two typical
cases are discussed in this paper, i.e., single-layer
graphene (SLG) with the EY mechanism and bilayer
graphene (BLG) with the DP mechanism. In particular,
BLG with the DP mechanism is found to achieve a more
appreciable gate-driven performance, which also implies
the possibility to figure out spin-relaxation mechanisms
in graphene using a structure similar to our GSDM.
The unique feature of the pure spin-current demultiplex-
ing operation allows a number of logic functions to be
cascaded without spin-charge conversions and opens a
route for the future low-power devices.

II. CONCEPT AND CALCULATION METHOD

A. Gate-driven pure spin current for demultiplexing
operation in graphene

The Y-shaped GSDM with gate voltages (VG;1 and VG;2)
applied on both branches of the graphene channel is

schematically illustrated in Figs. 1(a) and 1(b) (top gates
and/or back gates can be designed for practical applica-
tions). Pure spin currents are injected into these two
branches through diffusion of the spin accumulation
Δμsðx ¼ 0Þ at the bifurcation. This spin accumulation
can be created by different spin-injection methods, e.g.,
electrical injection [14,29,30] or spin pumping [31,32], etc.
The spin current density in branch i at a distance x from the
bifurcation can be expressed as [33–35]

js;iðx; VG;iÞ ¼
σi
eλs;i

Δμsðx ¼ 0Þe−x=λs;i ; ð1Þ

where σi is the conductivity, and λs;i is the SDL of branch
i. The ratio λs;i=σi behaving like a “spin resistance,” thus,
dominates the distribution of pure spin current js;iðx ¼
0; VG;iÞ at the bifurcation (x ¼ 0) into the left and/or right
branches, and the SDL λs;i describes the propagation of
the pure spin current in each branch (with a form of
exponential decay e−x=λs;i). Both σi and λs;i can be
controlled using the gate voltage VG;i via the correspond-
ing carrier density ni. As a result, the gate-voltage control

FIG. 1. Schematics of a GSDM for a reconfigurable spin-logic circuit. (a) A Y-shaped GSDM with gate voltages VG;i for voltage
control of pure spin currents. (b) Top view of the Y-shaped GSDM with voltage control. Significant parameters are labeled in the figure,
such as material characteristics [conductivity σi, spin-diffusion length λs;i, spin chemical potential μsðx ¼ 0Þ, and spin current density
js;iðx; VG;iÞ] and geometrical parameters (widthWi and distance x). A symmetric structure is considered, that is, L1 ¼ L2 andW1 ¼ W2.
(c) Reconfigurable spin-logic circuit based on gate-driven pure spin current in graphene, with inputs (outputs) by spin injectors
(detectors) and pure spin-current signal processing by voltage gates.

XIAOYANG LIN et al. PHYS. REV. APPLIED 8, 034006 (2017)

034006-2



of the carrier density ni, conductivity σiðniÞ, and SDL
λs;iðniÞ can be adopted to realize the demultiplexing
operation, i.e., redirection or distribution of the pure spin
current into specific branch(es). Notably, such a demulti-
plexing operation can realize magnetic-field-free pure
spin-current reconfigurations for logic applications
[Fig. 1(c)]. The input states of the spin injectors [denoted
as “INPUT” in Fig. 1(c)] and the voltages of gates
[denoted as “PROCESSING” in Fig. 1(c)] determine
how the spin current flows from the INPUT through
the PROCESSING region to the “OUTPUT,” thus, result-
ing in exact output states of the spin detectors [denoted as
OUTPUT in Fig. 1(c)]. As a result, it can work as a spin
majority gate with fixed gate voltages but tunable input
signals [25,35–37]. Through flexible designs of the gate
voltages, it can also be programmable spin-logic circuits
with certain logic functions or even neuromorphic
spin-logic circuits [35–38]. To this end, the gate-driven
demultiplexing operation of pure spin current in graphene
is favorable to low-power spintronic circuits and energy-
efficient architectures.

B. Dependence of conductivity and spin-diffusion
length on carrier density

The conductivity σ can be expressed as σ ¼ σðnÞ þ σmin,
where the first term is proportional to the global carrier
density n and mobility μ, while σmin is the minimum
conductivity induced by inhomogeneous charge distribu-
tion in the small-n limit [39,40]. We consider only the
regime with sufficiently large n (typically n > 1012 cm−2),
in which case, σ can be simplified as

σ ¼ neμ: ð2Þ

In Eq. (2), the mobility μ turns out to be approximately
independent of n for relatively large n in most experiments

[40]. In this work, we use a typical high mobility of
15 000 cm2=Vs for SLG (Ref. [40]) and a smaller mobility
10 000 cm2=Vs for BLG (Refs. [41,42]). The second
parameter in Eq. (1) is the SDL

λs ¼ vFðτsτp=2Þ1=2; ð3Þ

where vF is the Fermi velocity, τp is the momentum-
relaxation time, and τs is the spin-relaxation time.
In graphene, the spin-relaxation mechanism can be the

EY mechanism [21,43,44] or DP mechanism [43,45].
Recent theoretical and experimental results further indicate
that the spin relaxation in SLG and BLG can be driven by
the magnetic impurity [46–50] or the pseudospin [51].
For all types, it has been shown that the gate voltage can
tune the spin-relaxation time. For the spin relaxation by
magnetic impurities, it can be either EY-like [49] or DP-like
[50] depending on the magnetic impurity level. For the spin
relaxation by pseudospin, its behavior is similar to EY-like
[51]. For simplicity, we investigate the gate-driven spin
current in graphene with the EY mechanism or DP
mechanism in this work.

1. Single-layer graphene

Considering the Einstein relation for electrons with
linear dispersion, the conductivity in SLG is proportional
to τp;SLGn1=2, where τp;SLG is the momentum-relaxation
time in SLG. Consequently, the approximate n-independent
mobility obtained in experiments corresponds to τp;SLG ∼
n1=2 [according to Eq. (2); see the complete expression of
τp;SLG and other parameters in Table I]. The variation of
the spin-relaxation time on n depends on the type of spin-
relaxation mechanism.
For the EY mechanism [26], τs;EY ≈ ðE2

F=Δ2
EYÞτp, where

the spin-orbit energy is denoted as ΔEY, and the Fermi

TABLE I. Carrier-density-dependent electronic and spin-relaxation parameters of GSDM.

Single-layer graphene Bilayer graphene

EF EF ¼ ℏνF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4πn=gsgvÞ

p

EF ¼ ð2πℏ2n=m�gsgvÞ
σ σ ¼ σðnÞ þ σmin ¼ neμþ σmin

τp τSLGp ðnÞ ¼ ðσ=e2Þð2πℏ=vF ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gvgsπn
p Þ τBLGp ðnÞ ¼ ðm�σ=e2nÞ

Spin relaxation τs;EY ≈ ðE2
F=Δ2

EYÞτp τs;DP ≈ ðℏ2=4Δ2
DPÞð1=τpÞ τs;EY ≈ ðE2

F=Δ2
EYÞτp τs;DP ≈ ðℏ2=4Δ2

DPÞð1=τpÞ
τs ½8π3=2ℏ3vF

ffiffiffi

n
p

σ�=
½Δ2

EYðgvgsÞ3=2e2�
ðe2ℏvF ffiffiffiffiffiffiffiffiffi

gvgs
p

=8
ffiffiffi

π
p

Δ2
DPÞ

ð ffiffiffi

n
p

=σÞ
½4πℏ4nσ�=½m�Δ2

EYðgvgsÞ2e2� ðℏ2e2=4Δ2
DPm

�Þðn=σÞ

λs ðπvFℏ2
ffiffiffi

8
p

=ΔEYgvgsÞσ ðℏvF=
ffiffiffi

8
p

ΔDPÞ ð2πℏ2vF=ΔEYgvgse2Þσ ðℏvF=
ffiffiffi

8
p

ΔDPÞ
Expressions of the Fermi energy EF, conductivity σ, momentum-relaxation time τp, spin-relaxation time τs, and spin-diffusion length λs
as a function of carrier density n for SLG (left) and BLG (right) dominated by the EYor DP spin-relaxation mechanism are listed. The
calculations in the text are performed with gv ¼ 2 and gs ¼ 2 (the valley and spin degeneracies, respectively), vF ≈ 106 ms−1 for the
Fermi velocity of SLG, and m� ≈ 0.033me for effective mass of carriers in BLG.
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energy is E2
F ∼ k2F ∼ n for Dirac electrons [52]. These

parameters result in τs;EY ∼ n3=2. From Eq. (3) with
τp;SLG ∼ n1=2, we can get

λs;SLG;EY ∼ n; ð4Þ

and, based on Eqs. (2) and (4), the prefactor of Eq. (1)
λs=σ will be independent of n. According to Eq. (1) and the
gate-tunable carrier density in graphene, the features of
λs=σ and λs;SLG;EY, thus, indicate that the pure spin-current
demultiplexing operation can be realized in SLG with
the EY mechanism based on the gate-driven feature: the
distribution of pure spin current into the left and/or right
branch at the bifurcation (x ¼ 0) determined by λs=σ is not
gate tunable; however, the decay of pure spin current in
each branch away from the bifurcation (x > 0) determined
by λs;SLG;EY is gate tunable.
For the DP mechanism [53], τs;DP ≈ ðℏ2=4Δ2

DPÞð1=τpÞ.
As a result, the SDL λs;SLG;DP of Eq. (3) is independent of n.
Whereas, from Eq. (2),

λs;SLG;DP=σ ∼ n-1: ð5Þ

Therefore, a pure spin-current demultiplexing operation
can be realized in SLG with the DP mechanism based on
the gate-driven feature: the distribution of pure spin current
into the left and/or right branch at the bifurcation (x ¼ 0)
determined by λs=σ is gate tunable; however, the decay of
pure spin current in each branch away from the bifurcation
(x > 0) determined by λs;SLG;DP is not gate tunable.

2. Bilayer graphene

For BLG with quadratic dispersion, the mobility inde-
pendent of n indicates a momentum-relaxation time inde-
pendent of n. For the EY mechanism, τs;EY ≈ ðE2

F=Δ2
EYÞτp.

Considering the relationship that EF ∼ n, τs;EY is, thus,
proportional to n2. According to Eq. (3), we can get the
SDL,

λs;BLG;EY ∼ n: ð6Þ

From Eqs. (2) and (6), λs=σ is independent of n. Thus, a
pure spin-current demultiplexing operation can be realized
in BLG with the EY mechanism utilizing the gate-driven
feature: the distribution of pure spin current into the left
and/or right branch at the bifurcation (x ¼ 0) determined by
λs=σ is not gate tunable; however, the decay of pure spin
current in each branch away from the bifurcation (x > 0)
determined by λs;BLG;EY is gate tunable.
Finally, for BLG with the DP mechanism, similarly, τsτp

and λs can be calculated to be independent of n and

λs;BLG;DP=σ ∼ n−1: ð7Þ

Similar to SLG with the DP mechanism, a pure spin-current
demultiplexing operation can be realized in BLG with the
DP mechanism thanks to the gate-driven feature: the
distribution of pure spin current into the left and/or right
branch at the bifurcation (x ¼ 0) determined by λs=σ is
gate-tunable; however, the decay of pure spin current in
each branch away from the bifurcation (x > 0) determined
by λs;BLG;DP is not gate tunable.

C. CALCULATION METHOD

The performance of the pure spin-current demultiplexing
operation is then evaluated quantitatively considering the
gate-voltage-dependent carrier density [35]

niðVG;iÞ ¼ ϵ0ϵGðVG;i − VG;0Þ=ðtGeÞ; ð8Þ

where ni is the carrier density in branch i of the device
with a gate voltage VG;i, ϵ0 is the dielectric constant, ϵG
is the dielectric constant of the gates, tG is the dielectric
thickness, and VG;0 is the voltage required at the charge
neutrality point. We calculate the ratio js;1ðx; VG;1Þ=
js;2ðx; VG;2Þ between the pure spin currents in the two
branches of our device for different values of effective gate
voltages vG;i ¼ VG;i − VG;0. The calculation is performed
for two typical cases, i.e., SLG with the EY mechanism
(demultiplexing operation based on gate-driven propaga-
tions of pure spin current in each branch) and BLG with the
DP mechanism (demultiplexing operation based on gate-
driven distribution of pure spin current at the bifurcation).
More complicated cases, for example, the case of a mixed
EYand DP mechanism observed by Zomer et al. [54] or the
spin relaxation driven by the magnetic impurity [46–50] or
pseudospin [51], can also be processed as a straightforward
extension of our approach.

III. RESULTS AND DISCUSSION

An appreciable demultiplexing operation of pure spin
current should result in low-loss distribution of the input
pure spin current into specific output ends. In this sense,
a strategy based on the DP spin-relaxation mechanism is
preferred, which enables a distinct distribution of pure
spin current at the bifurcation and avoids unnecessary
leakages of the pure spin current. Figures 2 and 3
present the performance of the pure spin-current demulti-
plexing operation of the GSDM based on the aforemen-
tioned mechanism. For the case of SLG with the
EY mechanism, no difference in pure spin-current distri-
bution into the left and/or right branch at the bifurcation
can be found at any applied gate voltages [that is,
js;1=js;2ðx ¼ 0Þ ¼ 1; see Figs. 2(a) and 3(a)–3(d)]; how-
ever, the gate-driven propagation feature can be adopted to
realize the demultiplexing operation of pure spin currents
when x gets closer to or larger than the SDL in the branch
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with shorter SDL [Figs. 2(c) and 3(b)–3(d)]. For example,
by calculating the SDLs from the corresponding expres-
sion in Table I with ΔEY ¼ 10 meV (derived from
Refs. [54,55]), we obtain λs;1 ¼ 3.4 μm for vG;1 ¼ 5 V
in branch 1 and λs;2 ¼ 0.6 μm for vG;2 ¼ 0.5 V in branch
2. As a result, a considerable ratio of pure spin current
dependent on the distance away from the bifurcation
can be achieved [e.g., js;1=js;2 ¼ 4.5 for x ¼ 1 μm; see
Figs. 2(c) and 3(d)]. When x gets closer to or even larger
the SDL in branch 1, js;1=js;2 is even larger, but this is
compensated by a severely decayed spin current in both
branches.
For BLG with the DP mechanism, appreciable demulti-

plexing operations can be achieved: the ratio between the
pure spin currents can be as large as approximately 7, when
the gate voltages are 0.5 and 5 V on the left or right
branches [Fig. 2(b)]. This ratio of pure spin current does not
depend on the distance from the bifurcation [Figs. 2(d) and
3(e)–3(h)] because the distribution of pure spin current at
the bifurcation rather than the decay of pure spin-current
propagation in each branch is gate driven. As shown in
Fig. 3, this gate-driven distribution feature also avoids
unnecessary leakages of pure spin current into the other
branch.
Such a gate-driven strategy enables efficient manipula-

tion of pure spin current. The performance of the demulti-
plexing operation is found to depend on the spin-relaxation
mechanism of the graphene channel (Figs. 2 and 3; also see
Table I). Graphene channels with the EY mechanism
feature a gate-tunable spin-diffusion length, which indi-
cates a gate-driven propagation of pure spin current in the
graphene channel. However, a strategy based on the EY

mechanism may not be applicable for practical demulti-
plexing operations considering the fact that there is always
approximately 50% leakage of the pure spin current into the
other branch at the bifurcation. The channels with the DP
mechanism feature a gate-tunable ratio of conductivity and
spin-diffusion length, which results in gate-driven distri-
bution of pure spin current at the bifurcation of the device.
Compared with the case of SLG with the EY mechanism, a
more appreciable performance of pure spin-current demul-
tiplexing can be achieved in the device with the BLG
channel dominated by the DP mechanism. Such a strategy,
free of unnecessary pure spin-current leakages, can be a
good choice for a pure spin demultiplexing operation. The
difference in the performance also implies the possibility to
distinguish the dominant spin-relaxation mechanism of the
graphene channel using a similar device structure, which is
a primary objective of graphene spintronics [3,4,14].
Utilizing the superior ability of graphene in pure spin-

current transport (with a SDL longer than 10 μm; see
Refs. [17,18]), this gate-driven strategy with the efficient
spin-current manipulation capability can eliminate frequent
spin-charge conversions for the cascade of logic functions,
which paves a way for ultra-low-power logic devices.
To realize corresponding real applications based on this
strategy, there are some limitations and requirements
deserving further attention. For example, (i) a spin-charge
conversion method with high efficiency is highly desired
for the generation and detection of pure spin current [4];
(ii) graphene channels with longer spin-diffusion length
allow more gate modulations to be applied between
spin-charge conversions and are appealing for real device
applications; (iii) the operation speed of the as-developed
spin-logic device may be limited by the spin-diffusion
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process [56]; (iv) spin-relaxation mechanisms other than
the as-considered EY mechanism and DP mechanism may
also be applicable for the gate-driven strategy through the
gate tuning of the spin-relaxation time [47–51].

IV. CONCLUSION

In summary, we show that gate-driven pure spin current
in graphene can be realized utilizing the gate tuning of

the conductivity and spin-diffusion length in graphene.
We further demonstrate the demultiplexing operation of
pure spin current in a Y-shaped graphene spin-current
demultiplexer, which can be a fundamental block of spin
logic. The performance of the gate-tunable demultiplexing
operation is found to depend on the spin-relaxation
mechanism of the graphene channel. More appreciable
performance can be achieved in the device with a bilayer
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graphene channel dominated by a DP spin-relaxation
mechanism compared with the case of single-layer graphene
with an EY spin-relaxation mechanism. Such a gate-driven
strategy enabling efficient spin-current manipulations and
eliminating frequent spin-charge conversions for the cascade
of logic functions, will pave a way for ultra-low-power spin
logic beyond CMOS.
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