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We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet
in the Meissner state without applying any external field. The trapping potential created by such induced-
only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to
tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated
from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magneto-
mechanical readout of its displacement can be performed by using superconducting quantum interference
devices. An analysis using current technology shows that force and acceleration sensitivities on the order of

10−23 N=
ffiffiffiffiffiffi
Hz

p
(for a 100-nm magnet) and 10−14 g=

ffiffiffiffiffiffi
Hz

p
(for a 10-mm magnet) might be within reach in a

cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a
variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g.,
gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of
magnetic origin and gravitational physics.

DOI: 10.1103/PhysRevApplied.8.034002

I. INTRODUCTION

Most modern force and inertial sensors are based on the
response of a mechanical oscillator to an external pertur-
bation. Such sensors find applications in a wide range of
domains: from measuring accelerations in smartphones and
automobiles [1] in present-day technology, to being used
on the cutting edge of research for magnetic resonance
force microscopy [2–4], mass spectroscopy at the single-
molecule level [5], and measuring gravitational and
Casimir physics at short distances [6–10]. Most force
and inertial sensors are based on microfabricated clamped
mechanical oscillators, whose sensitivity is ultimately
limited by mechanical dissipation due to material and
clamping losses [11]. Levitation offers a clear route to
avoiding these loss mechanisms. Indeed, the most precise
commercial accelerometers are based on levitated systems:
the superconducting gravimeter, which levitates a super-
conducting centimeter-sized sphere in the mixed super-
conducting state to achieve acceleration sensitivities of
3.1 × 10−10 g=

ffiffiffiffiffiffi
Hz

p
[12], and the MicroStar accelerometer,

which electrostatically levitates a centimeter-sized cube in
space leading to 10−11 g=

ffiffiffiffiffiffi
Hz

p
[13]. In research, different

levitated systems are being explored to push into unex-
plored levels of sensitivity. This includes the demonstration
of force sensitivities of 10−24 N=

ffiffiffiffiffiffi
Hz

p
with ions [14–16],

the use of optically levitated dielectric nanospheres [17–23]

as novel force sensors with promising sensitivities [24–26]
of 2×10−20N=

ffiffiffiffiffiffi
Hz

p
[27], matter-wave interferometry using

clouds of atoms with a sensitivity of ∼10−9 g=
ffiffiffiffiffiffi
Hz

p
[28,29], and impressive sub-femto-g=

ffiffiffiffiffiffi
Hz

p
sensitivities

obtained in the LISA Pathfinder in-flight experiment by
doing differential acceleration measurements [30].
In this article, we aim at exploiting the exquisite isolation

from the environment provided by magnetic levitation in a
cryogenic environment. In particular, we propose an all-
magnetic passively levitated sensor that can be scaled
over a broad range of sizes and is predicted to reach
ultrahigh force and inertial sensitivities of 10−23 N=

ffiffiffiffiffiffi
Hz

p
and 10−14 g=

ffiffiffiffiffiffi
Hz

p
, respectively. We show that a spherical

particle with a permanent magnetic moment can be stably
trapped on top of a punctured superconducting (SC) plane in
the Meissner state, without the application of external
magnetic fields. The hole in the SC surface introduces an
effective pinning center that, together with the gravitational
force, confines the magnet in three dimensions. Since
diamagnetic levitation due to superconductivity does not
have any associated length scale, as opposed to the light’s
wavelength in optical levitation [31,32], it can be applied to
magnets of any size as long as fields in the SC do not prevent
superconductivity. The SC surface in theMeissner state (i.e.,
without superconducting vortices) provides a general loss-
less levitation mechanism. Furthermore, low-frequency
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magnetic field fluctuations arising from the surface are
predicted to beminimized in theMeissner state [33,34]. The
position of the magnet can be precisely measured by placing
an array of superconducting interference devices (SQUIDs)
in the vicinity of the trap center. The displacement of the
magnet couples inductively to the SQUIDs. We shall argue
below that these features lead to an alternative approach for
ultrasensitive force and inertial sensing.
The article is organized as follows. In Sec. IIwe present our

system and we numerically characterize the mechanical
potential felt by the magnet once is trapped on top of the
punctured SC. We derive the dynamical equations of motion
of themagnet andwebriefly discuss a possible readout system
to determine its position. In Sec. III we present an analysis of
the sensitivity of the system, and discuss the intrinsic sources
of noise that might affect it. Finally, in Sec. IVwe evaluate the
sensitivity of the system as a force and inertial sensor as a
function of the radius of the magnet and we discuss potential
applications. In Sec. V we present some final conclusions.

II. DIAMAGNETIC TRAP

Let us consider an infinite SC thin film with a circular
hole of radius a (whose center defines the origin of
coordinates) and thickness b ≪ a. A spherical magnet
with radius R and magnetic moment

μ≡ μðcos α cos βex þ sin α cos βey þ sin βezÞ ð1Þ
is situated on top, see Fig. 1(a). The SC is described by the
London model, which is valid under the approximation that

the coherence length of the SC, ξ, is much smaller than its
London penetration depth λ (λ ≫ ξ). We assume a thin film
b ≪ λ, and define the two-dimensional Pearl screening
length Λ≡ 2λ2=b [35,36]. The SC is assumed to be in the
complete shielding state, namely Λ=a ≪ 1 [37,38].
Importantly, we consider that the SC has been cooled in
the absence of any external field, namely that no flux is
trapped in the hole. In this case, the SC sheet-current
densityKSC can be calculated from the London equation as

KSC ¼ −
2

μ0Λ
A; ð2Þ

where A is the total magnetic vector potential in the
London gauge. Zero-field cooling imposes that the fluxoid
[39,40]

Φ0 ¼ Φþ μ0Λ
2

I
C
KSCdl; ð3Þ

is zero for any closed path in the SC, including those
enclosing the hole (Φ is the external magnetic flux crossing
the surface defined by the closed path C). KSC is obtained
by making a quasistatic approximation assuming that the
SC responds on a time scale much faster than the motion of
the magnet. This allows us to numerically solve the 3D
magnetostatic problem using a finite-element method with
the COSMOL MULTIPHYSICS software.

A. Mechanical potential

The magnetic potential felt by the magnet is approxi-
mated by Vm ¼ −μ ·BindðrÞ=2, where Bind is the field
generated by KSC and r the center-of-mass position of the
magnet. This assumes Bind to be sufficiently homogeneous
within the volume of the sphere [41]. We remark that the
micromagnetic origin of magnetization depends on the size
of the magnet. Magnets smaller than a characteristic size,
namely the single-domain radius RSD, consist of a single
magnetic domain. Below the so-called blocking temper-
ature, which is the case in a cryogenic environment, the
domain is fixed to a given direction. Magnets bigger than
RSD have numerous domains and while their micromag-
netic description is cumbersome, can be macroscopically
characterized through the hysteresis loop. In that case, the
magnet is assumed to be in remanence. We consider
magnets made of Nd2Fe14B, for which RSD ≈ 110 nm [42].
The total potential in the presence of gravity reads

V ¼ Vm þMgz, where M is the mass of the magnet.
The normalized magnetic potential ~Vm ¼ Vm=V0, with
V0 ≡ μ0μ

2=ð4πa3Þ, is numerically calculated as a function
of the normalized coordinates ~r ¼ r=a. When the magnetic
moment of the magnet is parallel to the SC surface
(α ¼ π=2 and β ¼ 0 such that μ ¼ μey), it gives rise to
a stable trap centered at ~x ¼ ~y ¼ 0, as shown in the inset of
Fig. 2(a). On the z axis, the potential shows a nonmonotonic
dependence with ~z0 [Fig. 2(a)]. In the limit ~z0 ≫ 1 it agrees,

y

z
a

z0

(a)

(b)

µ

2R

x

Iw

b

FIG. 1. (a) Sketch of the proposal (not to scale). (b) Calculated
trapping frequencies ωi (solid lines, left axis) and trapping
distance z0 (dashed line, right axis) as a function of the radius
of the magnet, setting z0=a ¼ 1.8 (where a depends on R) and
using the material parameters of Nd2Fe14B.
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as expected, with the potential created by an infinite ideal
superconductor (SC), whose analytical expression obtained
from the imagemethod is ~V imag

m ¼ 1=ð16~z30Þ. It can be shown
that all second derivatives with respect to crossed spatial
coordinates on the z axis are zero, demonstrating that there is
no coupling between them. Since the magnetic moment is
oriented along the y axis, axial symmetry is broken and
second derivatives with respect to ~x and ~y have different
values [see Fig. 2(b)]. The second derivativewith respect to ~z
is zero at ~z0 ≈ 1.168, determining the closest possible
trapping point above the SC. Alternatively, one could also
trap at ~z0 ≈ 0; in that case gravity would shift the final
trapping position slightly below the SC. Cross derivatives
with respect to β show an interesting property of the system;
while symmetry ensures that ~xβ and ~zβ derivatives are zero
on the z axis, derivatives with respect to ~yβ are large. This is
also related to the symmetry-breaking direction of the
magnetic moment and leads to a coupling between these
two coordinates. The circular hole makes the potential
independent on α. Alternatively, one could use an ellipsoidal

or a polygonal-shaped hole to introduce one or several
values of α where energy is minimized. Furthermore,
one could consider the use of nonspherical magnets,
as recently proposed in the context of magnetometry
[43]. For the spherical case, the total potential around the
trapping position r0 ¼ z0ez and orientation α ¼ π=2, β ¼ 0,
is given by

VðrÞ ≈M
2
ðω2

xx2 þ ω2
yy2 þ ω2

zz2Þ þ
I
2
ω2
ββ

2 þ κβy: ð4Þ

Here, r is the position vector with origin at r0, ω2
i ≡∂2

i Vð0Þ=M (with i ∈ fx; y; zg), ω2
β ≡ ∂2

βVð0Þ=I, κ≡
∂β∂yVð0Þ, and I is the moment of inertia of the magnet.
In Fig. 1(b)we show the trapping position and frequencies as
a function of the radius of the magnet assuming constant
mass density and magnetization. While z0 ∼ R3=4, trapping
frequencies show a slow dependence ∼R−3=8. Trap depths,
defined as the energy (in kelvins) required to escape the
center of the trap, grow as ∼R15=4 and are of T ≈ 14 K for
R ¼ 100 nm. The magnetic field at the SC surface is much
smaller than the first critical field ofNb (taken as a reference)
for all magnet sizes plotted in Fig. 1(b).

B. Dynamical equations

The Euler-Lagrange equations describing the motion of
the magnet in the potential given by Eq. (4) can be obtained
as follows. The Lagrangian of the magnet trapped in the
potential Eq. (4) reads [44]

L ¼ M
2
ð_x2 þ _y2 þ _z2Þ

þ I
2

h
_~α2 þ ð_~γ − ωμÞ2 þ 2ð_~γ − ωμÞ _~α cos ~β þ _~β

2
i

− Vðr; βÞ; ð5Þ
whereV is the trapping potential given in Eq. (4), ~α, ~β, and ~γ
are the Euler angles in the ZYZ convention, and ωμ ¼
ℏμ=ðIgeμBÞ, where ge ≈ 2 is the g factor of the electron. This
Lagrangian assumes an ideal hard magnet with an infinite
magnetic anisotropy energy such that the magnetic moment
is perfectly clamped to the anisotropy axis of the crystal [44].
In order to express it in terms of the angleβ, one canmake the
following change of variables ~α ¼ α, ~β ¼ π=2 − β, and
~γ ¼ γ. The Euler-Lagrange equations are obtained as
dð∂L=∂ _qÞ=dt − ∂L=∂q ¼ 0. After linearizing them around
the trapping position for a nonspinning magnet they read

ẍþ ω2
xx ¼ 0;

ÿþ ω2
yyþ κβ=M ¼ 0;

̈zþ ω2
zz ¼ 0;

α̈ − ωμ
_β ¼ 0;

β̈ þ ω2
ββ þ ωμ _αþ κy=I ¼ 0: ð6Þ

FIG. 2. (a) Numerical calculations of ~Vm for a magnet at
r0 ¼ z0ez. The gray line is the potential calculated with the image
method. The inset shows a surface plot of the magnetic potential
for a fixed ~z ¼ 1.6. (b) Second derivatives of the magnetic
potential with respect to the spatial coordinates and the angular
coordinate β evaluated at r0 ¼ z0ez. All calculations consider the
SC to be in the ideal complete shielding state (Λ=a ≪ 1).
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One can now introduce fluctuating forces (f) and
torques (τ) acting on each coordinate, as well as the
corresponding damping rates (γ) assuming the fluc-
tuation-dissipation theorem in thermal equilibrium.
Rewriting these equations in the frequency domain,
one obtains

Mðω2
x − ω2 − iωγxÞx ¼ fx;

Mðω2
y − ω2 − iωγyÞyþ κβ ¼ fy;

Mðω2
z − ω2 − iωγzÞz ¼ fz;

Ið−ω2 − iωγαÞαþ iωωμIβ ¼ τα;

κy − iωωμIαþ Iðω2
β − ω2 − iωγβÞβ ¼ τβ: ð7Þ

This system of linear equations can then be simply
solved as

XðωÞ ¼ χðωÞFðωÞ; ð8Þ

where X≡ ðx; y; z;α; βÞT , F≡ ðfx; fy; fz; τα; τβÞT , and χ
is the mechanical susceptibility matrix given by the
inverse of the matrix giving the system of linear
equations in Eq. (7).

C. Readout

The position of the magnet can be read out by measuring
the magnetic field it creates through a nearby SQUID.
The flux in the SQUID can be related to the position
of the magnet via magnetomechanical coupling factors
defined as ηi ≡Φ−1

0 ∂iΦðr0Þ (with i ∈ fx; y; zg), where
Φ0 is the quantum of flux, and ΦðrÞ is the flux crossing
the SQUID created by the magnet at position r. ηi
depend on the distance, size, and arrangement of the
SQUID. In order to measure the three coordinates of the
center of mass independently, a suitable arrangement
of SQUID loops is used. We consider four loops arranged
in the same plane, e.g., a plane parallel to XY above the
magnet or a plane parallel to XZ, see Fig. 1(a). The
position of the magnet can be fully determined through
an appropriate linear combination of the flux signals in
each loop, see Appendix A.
From a practical point of view, one needs to devise a way

to load the magnet and a method to reduce the measurement
time of the high-Q oscillator, which is given as a multiple of
its ringdown time. A possible loading mechanism can rely
on guiding the magnet through a conductive cylinder,
whose opening is close to the trapping position. Eddy
currents induced in the cylinder would slow down the
motion of the magnet, which is trapped magnetically upon
leaving the cylindrical guide. A reduction of measurement
time can be conveniently achieved by feedback cooling,
which simultaneously decreases the mechanical quality
factor and the temperature of the oscillator and, hence,
maintains a constant overall sensitivity [7]. In particular,

parametric feedback cooling [21] could be implemented
by applying an external field, such as the one created
by an infinite wire with current Iw, parallel to the x axis,
passing through the z axis at zw > z0, see Fig. 1(a). This
field modifies the vertical trapping position z0, thereby
modulating the trapping frequencies, see Appendix A
and [45].

III. SENSITIVITY ANALYSIS

The power spectral density (PSD) [46] of a force Fi
(i ¼ fx; y; zg) acting on the magnet, defined as

SFi
ðωÞ ¼ 1

2π

Z
∞

−∞
hFiðtÞFiðtþ τÞieiωτdτ; ð9Þ

is lower bounded by

SFi
ðωÞ > S⋆Fi

ðωÞ≡ SSFi
ðωÞ þ SNFi

ðωÞ: ð10Þ

S⋆Fi
ðωÞ is the PSD of the minimal force that can be

measured (i.e., signal-to-noise ratio of 1), which is limited
by contributions due to readout noise (SSFi

), and to noise
forces acting on the magnet (SNFi

). The readout noise is
given by

SSFi
ðωÞ ¼ SΦðωÞ

jχiiðωÞj2ðΦ0ηiÞ2
; ð11Þ

where SΦðωÞ is the PSD describing the flux noise in the
SQUID and χii is the diagonal element of the susceptibility
matrix χ. Recall that by considering that the stable trapping
point of the magnet is r0, the flux in the SQUID when the
magnet is at r0 þ r can be approximated to

Φðr0 þ rÞ ≈ Φðr0Þ þΦ0ηxxþΦ0ηyyþΦ0ηzz. ð12Þ

Noise in the flux leads to noise in the position coordinates,
which via Eq. (8) is transduced into force noise as given by
Eq. (11). The contribution SNFi

contains stochastic forces
due to gas collisions and magnetic losses, as discussed
below. The PSDs of accelerations acting on the magnet can
be simply obtained as Sai ¼ SFi

=M2.

A. Noise sources

We consider the following intrinsic noise sources.
(1) SQUID noise

We assume a low-Tc dc SQUID mainly affected
by white noise [47] with a conservative noise floor
of

ffiffiffiffiffiffi
SΦ

p ¼ 10−6Φ0 Hz−1=2 for micro-SQUIDs [48].
The noise of an optimized SQUID scales with the
self-inductance of the loop, L, as

ffiffiffiffiffiffi
SΦ

p
∝ L [47].

Hence, the noise increases as
ffiffiffiffiffiffi
SΦ

p
∝ s logðsÞ for

bigger SQUIDs, where s is the side length of the
SQUID loop.
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(2) Gas collisions
The magnet experiences random gas collision

events with a rate proportional to the pressure of
the gas P. This gives rise to an effective damping in
all coordinates [49] approximately given by
γg ≈ 15.8R2P=ðMv̄gÞ, where v̄g is the thermal veloc-
ity of the gas molecules. The associated stochastic
force PSD, whose expression can be obtained from
the fluctuation-dissipation theorem [50], is given
by SgFðωÞ ¼ MγgkBT=π.

(3) Magnetic losses
The magnet fluctuates around its trapping position

due to its thermal motion. In the reference frame of
the magnet, a time-dependent magnetic field is
hence applied. This will cause small fluctuations
of the magnetization of the magnet, thereby inducing
magnetic losses leading to mechanical damping and
a corresponding fluctuating force. In general, one
can identify hysteresis losses due to the irreversible
relation between the magnetization and the external
field as well as eddy-current losses due to induced
currents in the magnet. Hysteresis losses can be
estimated as follows. The thermally excited ampli-
tude in each center-of-mass direction is given by
Ai ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðMω2

i Þ
p

. The field created by the SC
currents can be approximated by the one created by
an image of μ at r ¼ −z0ez. The variation of the
external field at a given point inside the magnet r0 is
ΔiHðr0Þ¼Hðr0þr0þAieiÞ−Hðr0þr0Þ. The varia-
tion of magnetization is ΔiMðr0Þ ≈ χmΔiHðr0Þ,
where χm is the magnetic susceptibility of the
magnet in remanence. The magnetic energy lost
per cycle can be estimated as

ΔiWh ≈
Z
V
μ0ΔiMðr0ÞΔiHðr0ÞdV 0

¼ μ0χm

Z
V
ΔiHðr0Þ2dV 0: ð13Þ

This is an overestimation of the hysteresis loss
per cycle, both because the three components of
the magnetization are assumed to change due to the
external field (by using a simple scalar χm) and
because all the energy in the product μ0ΔMΔH is
considered to be irreversibly dissipated [51]. The
damping rate is then given by

γhi ≈
ωiΔiWh

2πkBT
ð14Þ

and, assuming thermal equilibrium, the associated
stochastic force is ShFi

ðωÞ ¼ MγhikBT=π. Eddy-
current losses can be estimated through a similar
procedure. The energy loss per cycle ΔWe is

proportional to the electrical conductivity of the
magnet and the frequency of the field. Considering
the poor conductivity of typical magnets, and, in
particular, of Nd2Fe14B, and the small frequencies
involved (<100 Hz), one can readily show that
ΔWe ≪ ΔWh. In the limit of small magnets with
a single magnetic domain, the only magnetic dis-
sipative process is related to the alignment of the
magnet to a nonparallel external magnetic field,
which involves a minimum time scale related to the
relaxation of the crystal lattice to the equilibrium
orientation (described by the Landau-Lifshitz-
Gilbert equation) [52,53]. This effect is predicted
to be negligible at the low frequencies considered.

IV. DISCUSSION

The previous analysis can now be applied to magnets
with sizes spanning over very different scales, from nano-
meters to millimeters. Small masses provide high force
sensitivities since the mechanical susceptibility scales as
χ ∝ 1=M. Force noise due to gas collisions (∝R) and
magnetic losses are minimized for small masses. On the
other limit, large masses provide high sensitivity on the
acceleration of the magnet. Larger magnets create stronger
magnetic fields leading to bigger couplings to the SQUIDs.
However, losses related to magnetic hysteresis become
relevant as the volume of magnetic material increases.
Figure 3 shows the noise contributions and the final
sensitivity for different sizes of the magnet at the reference
temperature of 1 K for Nd2Fe14B [42], see Appendix C. The
largest force (acceleration) sensitivity at small (large) radii is
limited by the SQUID noise (hysteresis losses). Recall that
hysteresis losses are overestimated, so one could expect
even better acceleration sensitivities. Sensitivities, evaluated
at a fraction of the corresponding resonance frequency,
reach 5 × 10−23 N=

ffiffiffiffiffiffi
Hz

p
at f ∼ 18 Hz for a magnet of R ¼

100 nm (with a resonance frequency f ∼ 180 Hz and
Q∼109) and 7×10−15 g=

ffiffiffiffiffiffi
Hz

p
at f∼1Hz for a magnet of

R ¼ 10 mm (resonance frequency f ∼ 2 Hz and Q ∼ 105).
Such a force sensitivity is comparable to the sensitivities
obtained with ions [14–16]. The predicted acceleration
sensitivity is more than 3 orders of magnitude better than
in commercial devices [12,13] and would, in principle,
approach to the impressive acceleration sensitivities
achieved by the LISA Pathfinder in-flight experiment [30].
Such remarkable sensitivities could be used, among

others, to measure inclinations, vibrations, and magnetic
field fluctuations, seeAppendixB for details. Formagnets of
R¼10mm, inclinations on the order of 7×10−15 rad=

ffiffiffiffiffiffi
Hz

p
and vibrations on the order of 2 × 10−16 m=

ffiffiffiffiffiffi
Hz

p
could be

detected.Magnetic gradients of up to 5 × 10−16 T=ðm ffiffiffiffiffiffi
Hz

p Þ
at f ∼ 1 Hz would also be detectable. The latter could be
used to detectmagnetic fields created by fluctuating currents
in nearby solids, i.e., to detect magnetic Casimir forces [54].
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For a magnet with R ¼ 10 μm close to a silver surface, this
force falls within the detectability threshold for separations
of up to ≈15 μm from the surface, see Appendix B and
Fig. 5. Electric Casimir forces could be detected by coating
the magnet with a nonmagnetic dielectric material and
approach a dielectric surface to it. Further, with appropriate
shielding fromCasimir forces, the device could also be used
to test corrections to the gravitational force at short distances
[6–8]. A more ambitious goal would be to use the extreme
acceleration sensitivity of our device to detect gravitational
forces between small masses and accurately characterize
Newtons’s constantG, see [55] and references therein. Note
that the gravitational interaction between a magnet of
R ≈ 5 mm and another sphere of the same mass separated
by a gap of 3 mm could be in principle detected. Finally,
using our device as an inertial sensor could have relevant
applications in avionics and the space industry. The detec-
tion of small variations of gravitation force could also be
applied to geological exploration or mining, among others.

V. CONCLUSIONS

In conclusion, we present an alternative approach for
force and inertial sensing based on the diamagnetic
levitation of magnets. Remarkably, the concept is rather
general and can be applied to magnets with sizes ranging
from nanometers to millimeters, spanning over 6 orders of
magnitude. The underlying mechanism behind such an
astonishing broad window is the diamagnetic levitation
provided by the superconductor in the Meissner state. The
use of a magnet with a strong magnetic moment gives rise
to a simple passive trapping scheme, and provides direct
ways to read and feedback cool its motion. Our analysis,
including current technologies and realistic assumptions,
indicates very promising sensitivities over a wide range
of scales, which we hope will motivate its experimental
implementation.
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APPENDIX A: SQUID CONFIGURATIONS
FOR READOUT AND FEEDBACK COOLING

For the readout system we consider four identical
adjacent square loops in a XZ plane. We label them
through the position of their centers rc: (1) zc1 > z0 and
xc1 > 0; (2) zc2 < z0 and xc2 > 0; (3) zc3 > z0 and xc3 < 0;
(4) zc4 < z0 and xc4 < 0. Taking into account Eq. (12) we
can now write an equation for each loop

ΔΦ1ðrÞ ¼ Φ0ðþηxx − ηyyþ ηzzÞ;
ΔΦ2ðrÞ ¼ Φ0ðþηxx − ηyy − ηzzÞ;
ΔΦ3ðrÞ ¼ Φ0ð−ηxx − ηyyþ ηzzÞ;
ΔΦ4ðrÞ ¼ Φ0ð−ηxx − ηyy − ηzzÞ; ðA1Þ

where ΔΦðrÞ ¼ Φðr0 þ rÞ −Φðr0Þ corresponds to the
variation of magnetic flux measured by the ith loop.
Notice that the absolute value of the coupling factors is
the same for all the loops due to their symmetric arrange-
ment. Only their signs change. The position of the magnet
can be then determined by solving this system of equations.
Also notice that the signal of the four loops is added up to
determine the position of the magnet. For this reason, the
coupling factors provided in the next section already
contain the contribution of the four loops.
We now show how the trapping position of the magnet

and the trapping frequencies can be modified by feeding
current to a wire parallel to the x axis at a given zw. We

1/2S (N/Hz )F
1/2S (g/Hz )a

x

y

z

x

y

z

gS
hS
SS

S * 

F

F

F

F

gS
hS
SS

S* 

a

a

a

a

FIG. 3. Noise calculations as a function of the radius of the
magnet (symbols, lines are guides for the eye) in terms of force
(left half) and acceleration (right half). The magnet is assumed
to be Nd2Fe14B with magnetization and mass densities ρμ ¼
1.07 × 106 A=m and ρM ¼ 7300 kg=m3, respectively. The pres-
sure of the remaining gas is set to P ¼ 10−10 mbar at a temper-
ature of T ¼ 1 K. The magnet is assumed to be trapped always at
a normalized height z0=a ¼ 1.8 (adapting the size of the hole a
accordingly). For the readout system of SQUIDs, we consider
four identical adjacent square loops whose size and distance to
the magnet depends on the radius of the magnet. Noises are
computed at a fraction of the corresponding resonance frequency,
see Appendix C for all the detailed values.
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consider a particular example with R ¼ 0.1 μm, for which
the magnet is trapped at z0 ≈ 5 μm. The wire is set at zw ¼
8 μm and a given intensity Iw circulates in the direction
defined by −ex. As shown in Fig. 4, both the trapping
position and the frequencies are modified by changing the
intensity in the wire. This modulation could be used to
perform parametric feedback cooling of the levitated
magnet. A thorough analysis on how to perform it in an
optimal way such that the added noise does not compro-
mise the overall sensitivity will be addressed elsewhere.

APPENDIX B: SIGNAL ANALYSIS

Apart from the three noise sources analyzed in Sec. III A,
the system will be affected by other signals such as
inclinations and vibrations of the SC sheet as well as
magnetic fields produced by nearby objects. Depending on
the operating mode of the system, these signals can be
considered as a part of the noise or, on the contrary, they
can be the signals one is interested in measuring. In this
section we analyze the signals produced by inclinations,
vibrations of the SC sheet, and magnetic fields.

1. Inclinations

Inclinations of the SC surface with an angle Δγ around
the y axis result in a force Fx ¼ MgΔγ which Eq. (8)
converts into a position signal as Sinclx ¼ jχxxMgj2SΔγ. This
position signal can also be interpreted as a result of a force
signal such that SinclFx

¼ Sinclx =jχxxj2 so

SinclFx
¼ jMgj2SΔγ: ðB1Þ

Inclinations with an angle Δβ around the x axis result in a
force Fy ¼ ðMgþ κÞΔβ and a torque τβ ¼ Iω2

βΔβ. Using
Eq. (8), we find that they only couple to the y coordinate
of the magnet, so the PSD of the position signal is
Sincly ¼ jχyyðMgþ κÞ þ χyβIω2

βj2SΔβ. The force signal cor-
responding to it is SinclFy

¼ Sincly =jχyyj2, namely

SinclFy
¼

���� χyyðMgþ κÞ þ χyβIω2
β

χyy

����
2

SΔβ: ðB2Þ

2. Vibrations

In general, vibrations of the SC surface result in forces
and torques acting on the magnet, which are converted
into position signals through Eq. (8). The PSDs of
position signals read Svibx ¼ jχxxMω2

x þ 1j2SΔx, Sviby ¼
jχyyMω2

y þ χyβκ þ 1j2SΔy, and Svibz ¼ jχzzMω2
z þ 1j2SΔz.

The last term in these expressions accounts for the change
of distance between the readout system and the magnet as a
result of the vibration. The corresponding force signals are

SvibFx
¼

���� χxxMω2
x þ 1

χxx

����
2

SΔx; ðB3Þ

SvibFy
¼

���� χyyMω2
y þ χyβκ þ 1

χyy

����
2

SΔy; ðB4Þ

SvibFz
¼

���� χzzMω2
z þ 1

χzz

����
2

SΔz: ðB5Þ

3. Magnetic fields

Gradients of external magnetic fields result in forces
acting on the magnet. Considering the magnet as a point
particle, with a magnetic moment that points to the y
direction, these forces read Fi ¼ μ∂iBy. The PSD of the
position signal resulting from these forces is SBri ¼
jχiiμj2S∂iBy

and the PSD of the corresponding force is thus

SBFi
¼ jμj2S∂iBy

: ðB6Þ

When the source of magnetic field is near to the magnet, the
point-particle approximation may not be valid. In this case
the total force acting on the magnet can be calculated as an
integral over its surface S

F ¼
Z
S
Kmðr0Þ ×Bðr0ÞdV 0; ðB7Þ

where Km ≡∇ ×M is the magnetization sheet current
density. For the case of magnetic fields arisen from
fluctuating currents in a neutral surface (magnetic
Casimir forces) [54], these magnetic field fluctuations are

BM
i ðd;ωÞ ≈

ffiffiffiffiffiffiffiffiffiffi
CðωÞ
d

r
; ðB8Þ

where d is the distance to the surface, i ¼ fx; y; zg, and
CðωÞ ¼ μ20ω

2ℏε0Im½εðωÞ�=ð16πÞ, where ϵðωÞ is the dielec-
tric constant in the spectral representation of the magnetic
source, and ϵ0 the vacuum permittivity. Consider a surface

FIG. 4. Change in the trapping frequencies (upper half) and
trapping position of the magnet (lower half) as a function of the
intensity in the wire.
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parallel to the plane ZY at x ¼ d. The magnet will
experience a force in the x direction given by the surface
integral of Eq. (B7), namely

Fxðd;ωÞ ¼ R2
μ

V

Z
2π

0

dϕ
Z

π

0

dθBM
y sin2 θ cosϕ; ðB9Þ

with BM
y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CðωÞ=ðd − R sin θ cosϕÞp
. The force is evalu-

ated using the low-frequency limit for the dielectric
function, Im½εðωÞ� ¼ 1=ðε0ωρÞ, being ρ the electric resis-
tance of the surface [54]. For a magnet of R ¼ 10 μm and a
surface made of silver with ρ ¼ 1.6 × 10−8 Ωm the force as
a function of the distance d is shown in Fig. 5 [at a
frequency ω=ð2πÞ ≈ 25 Hz]. Considering that the force
sensitivity for this size of magnet at this same frequency isffiffiffiffiffiffiffi
SFx

p
≈ 3.5 × 10−21 N=

ffiffiffiffiffiffi
Hz

p
, forces fall within the detect-

ability threshold for distances up to d ≈ 25 μm, corre-
sponding to separations of around 15 μm from the magnet.

APPENDIX C: CASE STUDY

Noise results presented in Fig. 3 of the main text have
been calculated assuming the material parameters of
Nd2Fe14B [42]. We use μ ¼ ρμV and M ¼ ρMV, with V
being the volume of the magnet and ρμ ¼ 1.07 × 106 A=m
and ρM ¼ 7300 kg=m3. We also consider a magnetic
susceptibility χm ¼ 0.05 and an electrical conductivity
σ ¼ 6.67 × 105 A=ðVmÞ. For the environment, we con-
sider a pressure of P ¼ 10−10 mbar of a gas with a molar
mass of 28.97 u at a temperature of T ¼ 1 K. For the SC
sheet we assume it to be made of niobium with a critical
temperature Tc ¼ 9.26 K. Below the first critical fieldHc1,
niobium behaves as a superconductor in the Meissner state
provided it is cooled in zero field. The normalized trapping
position of the magnet is always set to z0=a ¼ 1.8 (as in
Fig. 1 of the main text). For the readout system of SQUIDs,
we adapted the distance to the magnet and their size as a

function of the radius of the magnet. For simplicity, we
consider four identical adjacent square loops of side length
s. In order to minimize the number of free parameters, we
do not consider the thickness of the SC wires of the
SQUID, and we simply compute the magnetic flux thread-
ing the SQUID area. They are placed on the same plane,
parallel to the plane XZ at a distance dh and with centers at

FIG. 5. Force acting on the magnet due to magnetic
field fluctuations as a function of the distance to the plane d
evaluated at ω=ð2πÞ ≈ 25 Hz. The force sensitivity thresholdffiffiffiffiffiffiffi

SFx

p
≈ 3.5 × 10−21 N=

ffiffiffiffiffiffi
Hz

p
is indicated with a gray line.

TABLE I. Summary of the parameters for the readout system.

R (μm) dh (μm) s (μm) η (m−1)

0.1 1 0.85 7.3 × 105

1 4 3.5 4.6 × 107

10 20 17 1.8 × 109

102 110 95 6.0 × 1010

103 1100 950 6.0 × 1011

104 11 000 9500 6.0 × 1012

FIG. 6. Plots of the noises (x component of the force) for
different radii of the magnet as a function of the frequency. From
top to bottom, R ¼ 0.1, 10, and 104 μm. The color legend is the

same as in Fig. 3 of the main text;
ffiffiffiffiffiffiffi
SgFx

q
in blue,

ffiffiffiffiffiffiffi
ShFx

q
in orange,ffiffiffiffiffiffiffi

SSFx

q
in green, and total

ffiffiffiffiffiffiffi
S⋆Fx

p
in black. The vertical solid gray

lines indicate the corresponding resonance frequencies (ωx) and
the dashed lines are the frequencies where sensitivities have been
evaluated (0.1ωx for the first two cases and 0.5ωx for the latter).
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positions ð�s=2;−dh; z0 � s=2Þ. The side length of the
loops is chosen such that the three coupling factors
have similar values ηx ≈ ηy ≈ ηz. Table I summarizes the
parameters. Finally, for a radius of the magnet between 0.1
and 100 μm we evaluate the noises at a frequency of
ω ¼ 0.1ωi, being ωi the corresponding resonance fre-
quency. For radii bigger than 100 μm, noises are evaluated
at ω ¼ 0.5ωi. In Fig. 6 force noises (x component) are
plotted for three different radii of the magnet as a function
of the frequency. Vertical dashed lines indicate the fre-
quency at which noises have been evaluated to make Fig. 3.
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