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The success of recently discovered absorber materials for photovoltaic applications has been generating
increasing interest in systematic materials screening over the last years. However, the key for a successful
materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that
determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. In this
work, we develop a selection metric to quantify the potential photovoltaic efficiency of a material.
Our approach is compatible with detailed balance and applicable in computational and experimental
materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency
limits and the respective optimal thickness in the high mobility limit. We compare our model to the widely
applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their
dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the
model is applied to complex refractive indices calculated via electronic structure theory.
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I. INTRODUCTION

Because of the wide variety of potential absorber
materials for photovoltaic applications, including organic
and inorganic materials as well, are organic inorganic
compounds. Like the recently developed perovskite solar
cells, there has been growing interest in recent years to find
new photovoltaic absorber materials via computational but
also experimental materials screening [1–14]. The purpose
of materials screening is to identify promising materials for
more in-depth investigations based on a limited amount of
information on the material. For a given purpose, such as
photovoltaics, it is, therefore, crucial to decide what
information on a material is needed to make well-informed
decisions in a finite amount of time. This requires a suitable
“selection metric” for promising absorber materials for
photovoltaic applications that goes beyond the radiative
efficiency limit as calculated by Shockley and Queisser
(SQ) [15]. The SQ approach describes a solar cell exclu-
sively by an external property: the steplike absorption
AðEÞ ¼ ΘðE − EgÞ. Thus, the radiative efficiency limit
depends on one parameter only: the band-gap energy Eg.
It is apparent that exclusively considering the band-gap

energy of a material is not sufficient to estimate its potential
as an absorber material. Numerous other properties such as
the mobility [16,17], the absorption coefficient [18,19], the
charge-carrier lifetime [18–20], and the luminescence
quantum efficiency [21–27] have an enormous effect on
a solar cell’s performance. Hence, there have been various
studies to calculate a more realistic efficiency limit beyond
the SQ limit for different technologies and assumptions
[18,19,28–36].

One of the first and may be most prominent examples of
such a selection metric proposed for computational materi-
als screening was presented by Yu and Zunger [37] in 2012
and has been widely used to estimate efficiency limits in
the last years [38–49]. In their paper, they proposed a
“spectroscopic limited maximum efficiency” (SLME)
selection metric that aims to calculate efficiency limits
for non-step-like absorption coefficients beyond the radi-
ative limit. They calculated the efficiency in the high
mobility limit using absorption coefficients simulated via
electronic structure theory. While the SLME takes non-
radiative recombination into account, the paper does not
distinguish between internal Qi and external luminescence
yield Qe; i.e., the number of photons generated in the
device via radiative recombination are set equal to the
number of photons that subsequently escape the device, and
it is, therefore, only correct in the limit of perfect light
outcoupling, a limit that does not apply to realistic devices.
The present paper proposes a modified selection metric

based on Ref. [24] that is detailed-balance compatible and
takes the effects of light outcoupling, photon recycling, and
nonradiative recombination into account. As illustrated by
Fig. 1, the complex refractive index, the device thickness,
and the light-trapping structure represent the minimum
parameter set needed for a physically consistent approxi-
mation of the efficiency potential of a photovoltaic absorber
material defined by bulk material properties and not by the
band-gap energy only. This step takes us from a description
of the solar cell as a surface specified by a step-function-
like absorptance in the SQ approach to a solar cell specified
by bulk properties. This minimum parameter set allows us
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to calculate the (nonstep function) absorptance and here-
with the radiative limit; see Fig. 1. We emphasize that there
is no other intermediate step possible, and any sophisti-
cation of the SQ approach needs to consider at least this
parameter set in order to be physically consistent.
The next step towards more detail in this top-down

approach is the inclusion of nonradiative recombination in
terms of an internal luminescence quantum efficiency
leading us to a generic nonradiative case. Notably, we
shift then from optical properties to electronic properties.
Within the present paper, we restrict ourselves to this level
of detail, whereas one might think about the selectivity of
contacts [50] and the influence of carrier mobilities [16] as
the logical next levels of detail, which are still far more
generic than detailed device models.
We note that the procedure proposed here corresponds to

the way, e.g., Tiedje et al. [51] have calculated the efficiency
limit for crystalline silicon solar cells [51], how Marti et al.
[52] have explained the importance of photon recycling, how
Mattheis et al. [16] have calculated the radiative mobility
limits of photovoltaic energy conversion, and how the impact
of a direct or indirect band gap on the efficiency potential of
metal-halide perovskites was evaluated [53]. Thus, the issue
of the present paper is to systematically describe what all

these authors (and many others) have done right and there-
with to establish a canonical, detailed-balance-compatible
top-down approach. This approach serves as a guideline, and
finally, a recipe, on how to conduct and correctly interpret
first-principles calculations for photovoltaic materials.
We demonstrate this method by applying it to different

materials whose complex refractive index is calculated by
first-principles calculations in the so-called GW approxi-
mation [54] (where G is the Greens function and W is the
screened Coulomb potential) in the radiative limit (internal
luminescence quantum efficiency Qi ¼ 1). In addition, we
highlight how sensitive the efficiency limit reacts on
nonradiative recombination, i.e., when Qi is reduced.
The approach proposed here will be useful both for
computational materials screening in photovoltaics and
for experimental materials screening where properties of
absorber layers are used to determine the efficiency
potential of a certain material class [20,55,56].

II. THEORY

A. Shockley-Queisser limit

Shockley and Queisser determined thermodynamic
efficiency limits based on the principle of detailed balance.
The short-circuit current in the SQ limit is written as

JSC ¼ q
Z∞

0

AðEÞϕSunðEÞdE; ð1Þ

where E is the energy, q the elementary charge, and the
absorptance AðEÞ is assumed to be a step function at the
band-gap energy Eg defined as AðEÞ ¼ 0 for E ≤ Eg

and AðEÞ ¼ 1 for E > Eg. Whereas in the original paper
by Shockley and Queisser, the spectrum of the Sun is
approximated by the blackbody spectrum at temperature
T ¼ 6000 K, in this work, we use the AM1.5g [57]
spectrum, as it is common nowadays. The radiative
saturation current can be calculated via

Jrad0 ¼ q
Z∞

0

πAðEÞϕBBðE; T ¼ 300 KÞdE: ð2Þ

The blackbody spectrum at temperature T is given
by ϕBBðE; TÞ ¼ 2E2h−3c−2½expðE=kTÞ − 1�−1, where h
denotes the Planck constant, c the velocity of light in
vacuum, and k the Boltzmann constant. Assuming an
ideality factor of nid ¼ 1, the efficiency limit η (in the
radiative limit ηrad, i.e., internal luminescence quantum
efficiency Qi ¼ 1) is given by

ηðradÞ ¼
maxV

�
V
n
JSC − JðradÞ0

h
exp

�
qV
kT

�
− 1

io�
R
∞
0 EϕSunðEÞdE

; ð3Þ

where V is the voltage of the solar cell.

FIG. 1. The SQ limit is derived using an approximation that is
parametrized by the band-gap energy Eg only. Steps for more
detail must be undertaken in the order of top to bottom. Any
model describing the radiative limit as a function of material
properties must contain the absorption coefficient αðEÞ and the
refractive index nðEÞ as well as assumptions on the device
thickness and an optical model for light trapping. The next step
involves nonradiative recombination, i.e., an internal lumines-
cence quantum efficiency Qi < 1. Generic device models con-
sidering finite mobilities, interface recombination, or contact
selectivity must involve the first two steps in order to be
compatible with the SQ approach. Note that the standard device
simulations for real photovoltaic devices usually involve
hundreds of material-specific parameters.
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Shockley and Queisser consider only one material
property—the band-gap energy Eg—by assuming a step-
like absorption. However, the simplicity achieved by the
step function forces Shockley and Queisser to implicitly
assume that the solar-cell absorber is both infinitely thick
(to achieve the step function) and infinitely thin at the same
time (because perfect charge-carrier collection is another
inherent assumption of Shockley and Queisser) [58].
Therefore, a generalization of the SQ theory [31–33] is
needed to adapt this approach to a realistic scenario and
finally define a suitable selection metric for computational
and experimental materials screening.

B. Extended detailed-balance theory

The original SQ theory is, in general, straightforward to
generalize because Eqs. (1)–(3) are also valid for non-step-
function-like absorptances, thereby allowing for the cal-
culation of the radiative efficiency limit of real materials
[18,19,33,35,55]. For computational materials screening,
however, we have to go one step further by connecting the
internal material properties with external device properties.
This is often not implemented correctly and has led to
confusion and mistakes in the past [37–49]. The internal
and external parameters used in the scope of this work are
listed in Table I as well as the equations that connect an
internal parameter with its external counterpart.
One example of an internal parameter is the complex

refractive index, which describes the optical properties of the
material. The corresponding external parameter is the
absorptance AðEÞ which depends on, e.g., the complex
refractive index (or the absorption coefficient), the thickness,
and the scattering properties of the interfaces (flat or
textured). Another example is the recombination rates
and the recombination currents. Whereas the rates describe
the recombination per volume and time, the currents are the
integrated rates per area and time, and in the case of
the radiative recombination current, they also include the
percentage of photons that are coupled out of the device and
not reabsorbed in the solar cell. Therefore, the recombination
currents and, consequently, the external luminescence quan-
tum efficiency Qe depend on the outcoupling and optical
properties of the device, whereas the internal quantum

efficiency Qi depends primarily on the properties of the
material (electron-photon and electron-phonon coupling).
Note that in case of geometric features on the size of the
wavelength, interference effects can modify the spontaneous
emission rate and thereby Qi (Purcell effect) [59,60].
It is clear that materials screening provides internal

parameters, while efficiency estimates require external
properties. Any sensible selection metric, therefore, has
to find a way to self-consistently and correctly calculate
the external parameters from internal parameters. Figure 2
illustrates the “internal material world” and the “external
device world” where the solar cell is treated as a black box
with optical and electrical input and output. The connection
between the internal and external picture is light incoupling
and outcoupling, i.e., optics, and is described consistently
with the principle of detailed balance in the following.
At first, the external property—the absorptance AðEÞ—

needs to be computed from the absorption coefficient αðEÞ,
a volume-related internal property of the photovoltaic
absorber material. The calculation of AðEÞ requires
assumptions on the thickness d and on the applied light-
trapping scheme [18,61]. In this work, we apply two
different light-trapping schemes. The first model represents
the case of a solar cell with flat front and back surfaces. For
simplicity, the reflectance at the front surface is set to zero,
and the reflectance at the back is assumed to be unity. The
complex refractive indices of the materials are considered
to be homogeneous and isotropic. Moreover, we neglect
any interference effects such as resonator modes. For a
more detailed description and the respective equation, see
the Supplemental Material [61]. The second model is
identical with respect to the assumptions on reflectance,
optical isotropy, and homogeneity, but it assumes a
Lambertian scatterer at the front surface. In this case, we
use the analytical solution via the exponential integral
function introduced by Green [62].
A similar step from volume to surface properties with

careful distinction between internal and external parameters
is required for the description of recombination. Here, the
internal volume parameters are the radiative and non-
radiative recombination rates Rrad and Rnrad defining the
internal luminescence quantum efficiency as follows:

TABLE I. Internal vs external parameters. Note that the radiative and nonradiative recombination rates are defined here as the
recombination rates in thermodynamic equilibrium.

Internal parameter External parameter

Absorption coefficient α 1 − expð−2αdÞ ¼ AðEÞ
(e.g., flat cell, Lambert-Beer

approximation)

Absorptance

Nonradiative recombination rate Rnrad
0 q

R
Rnrad
0 dx ¼ Jnrad0

Nonradiative saturation current density

Radiative recombination rate Rnrad
0 peq

R
Rrad
0 dx ¼ Jrad0

Radiative saturation current density

Internal (luminescence) quantum
efficiency

Qi peQi=½1þ ðpe − 1ÞQi� ¼ Qe External luminescence quantum
efficiency
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Qi ¼
Rrad

Rrad þ Rnrad : ð4Þ

In Secs. III and IV, we assume for simplicity that the
radiative and nonradiative recombination rates show the
same voltage dependence, i.e., Rrad=Rnrad ¼ Rrad

0 =Rnrad
0 .

The external surface property—the saturation current
densities—are related to the recombination rates as follows:

J0 ¼ Jnrad0 þ Jrad0 ¼ q
Z

Rnrad
0 dxþ peq

Z
Rrad
0 dx: ð5Þ

Note that the integral
R
dx through the depth of the

absorber material connects the nonradiative recombination
rate Rnrad

0 in the thermodynamic equilibrium directly with
the nonradiative saturation current Jnrad0 , whereas the
emission probability pe of the generated photon has to
be considered in the case of radiative recombination. As
mentioned before, we consider the refractive index to be
isotropic and position independent and neglect the inter-
ference effects. In this approximation, the van Roosbroeck–
Shockley equation describes the radiative recombination
rate Rrad as a function of n, α, and ϕBB and combine it with
Eq. (2), which yields the quantity pe,

pe∶ ¼ Jrad0 =qR
Rrad
0 dx

¼
R
AðEÞϕBBðEÞdE

4d
R
n2ðEÞαðEÞϕBBðEÞdE

ð6Þ

for nonconcentrating solar cells [24]. The emission prob-
ability pe is the factor that connects the internal description
of a recombination rate Rrad to the external description of a
current density Jrad0 . This factor depends on the refractive
index, i.e., peðnÞ. Therefore, we see that we need to
consider the refractive index nðEÞ in addition to the
absorption coefficient αðEÞ for a consistent description
of the solar-cell behavior from internal to external properties
even if the Lambert-Beer approximation (A ≈ 1 − e−2dα) is
usedwherenðEÞ is not needed to calculate the absorptanceA.
This dependence on the refractive index can be explained
intuitively by the influence of total internal reflection and
subsequent reabsorption ðpe ≤ 1=n2Þ in the absorber
material; see Eq. (6).
However, in thewidely applied selection metric proposed

byYu and Zunger (SLME), the refractive index is neglected.
Here, an external property—the fraction of radiative
electron-hole recombination current fr ¼ Jrad0 =J0—is
approximated by fr ¼ exp½ðEg − EDA

g Þ=kT�, where EDA
g

is the dipole-allowed transition energy that is calculated
by electronic structure theory. Therefore, the authors derive
the external parameters (the ratio of the current densities)
from the internal parameters (the band-gap-energy differ-
ence Eg − EDA

g ) without taking the refractive index into
account (see Ref. [61], Fig. S2). This is in contradiction to
fundamental laws of physics given Qi ≠ 1, as outlined
above. For a more detailed description and discussion of
the SLME, see the Supplemental Material [61]. To show the
implications of the negligence of the refractive index, we
systematically compare ourmodel to SLME in the following
section. For this purpose, we consider SLME not as a
method that determines the efficiency limit for a fixed
thickness and a fixed fr given by the band-gap differences
but rather as a model that describes a way to calculate the
efficiency limit of a device starting from internal material
properties. Also, we do not follow the original SLME
approach of using the band-gap difference as a way of
estimating nonradiative recombination. In reality, the non-
radiative rate does not just depend on the optical properties
of the perfect material but on the presence of imperfections
that act as recombination centers. Therefore, we instead use
the internal (luminescence) quantum efficiency Qi as an
adjustable parameter, which corresponds to taking fr as an
adjustable parameter in the SLME approach.

III. DISCUSSION OF MODELS
AND PARAMETERS

The influence of the internal quantum efficiency Qi, the
refractive index n, and the thickness d on the efficiency
limit is discussed for both models in this section in order
to understand the dependences on these parameters and

External parameters

Rrad, Rnrad

Qe= J0
rad /J0

Efficiency limitMaterial properties

Internal parameters

Material (volume) Solar cell (surface area)

Detailed balance

Light in- or 
outcoupling

A(E) JSCα, n

dependent on 
refractive index n

J0
rad, J0

nrad

Qi= Rrad /R

d

dopt

FIG. 2. Illustration of the internal material description (via
volume-related material properties) and the external device
description (via area-related cell properties) of a solar cell. On
the left, the path of the photons inside the volume of the cell and
their interaction with electron-hole pairs are considered. On the
right side, the light and current are described as input and output
parameters of a solar-cell device. For the calculation of the
efficiency limit of a device from material properties (absorption
coefficient α, refractive index n, radiative recombination rate Rrad,
nonradiative recombination rate Rnrad, internal luminescence
quantum efficiency Qi) towards external variables (short-circuit
current density JSC, radiative saturation current density Jrad0 ,
nonradiative saturation current density Jnrad0 , external lumines-
cence quantum efficiency Qe), these two descriptions have to be
carefully connected. The maximum device efficiency is obtained
by assuming a specific light-trapping scheme and optimizing the
cell thickness d.
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the resulting difference in the calculated efficiency limits.
This systematic study of two exemplarily designed model
absorption coefficients in combination with three freely
adjustable parameters, e.g., d, Qi, and n, motivates the
selection metric that we introduce in Sec. IV.
Up to this point, we have learned that we need to know

(i.e., compute and/or measure) the absorption coefficient
and refractive index of a photovoltaic absorber material as
necessary input for a consistent evaluation of its prospec-
tive photovoltaic efficiency limit. Moreover, the step from
treating a solar cell in terms of a mere surface with the
property of an absorptance towards a material volume-
related model requires taking the thickness into account. In
the first part of this section, we systematically investigate
the influence of the cell’s thickness on the predicted
efficiency potential with the help of model absorption
coefficient curves defined by

α ¼

0
BBB@

0 for E < E0;

α0 exp
�
E−Eg

Ech

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ech

2 expð1ÞkT
q

for E0 ≤ E < Eg þ Ech
2
;

α0

ffiffiffiffiffiffiffiffiffi
E−Eg

kT

q
for E ≥ Eg þ Ech

2
:

1
CCCA

ð7Þ

For photon energies E ≥ Eg þ ðEch=2Þ, the absorption
coefficient follows the square-root law of a direct semi-
conductor [63], for E < Eg þ ðEch=2Þ, we describe the
absorption as an exponential band tail with Urbach energy
[64] Ech, and for all energies below the cutoff energy E0,
the absorption is set to zero. The cutoff energy is motivated
by the unavoidable experimental and computational lim-
itations in the determination of α in reality.
Figure 3 depicts the two model absorption coefficients

that are used in this work as well as the renowned curve of
the SQ efficiency limit over band-gap energy Eg (black
dashed line). We choose one absorption coefficient with a
band-gap energy of Eg ¼ 1.0 eV and a cutoff energy of
E0 ¼ 0.9 eV (red) and another one with Eg ¼ 1.5 eV and
E0 ¼ 1.4 eV (blue). The band-gap energies as well as the
cutoff energies are selected in a way that they are either
both below or above the two local maxima of the SQ limit.
The motivation for this specific choice of energy values
becomes clearer in the following discussion of the optimal
absorber thickness. The tail slope is in both cases equal to
Ech ¼ 0.5kT, a reasonable value for common solar-cell
materials [65]. The scaling factor α0 can vary strongly for
different materials, but the absolute value is of no impor-
tance in the following discussion of our results, as we refer
only to normalized thicknesses α0d in this paper. For the
sake of simplicity, we show the absorption coefficients in
Fig. 3 exemplarily for α0 ¼ 105=cm.
Figure 4(a) shows the efficiency as a function of

normalized thickness α0d for these two sample materials
in the radiative limit (Qi ¼ 1) for flat devices. For devices
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FIG. 4. Efficiency over normalized thickness α0d for the model
systems Eg ¼ 1.0 eV (red) and Eg ¼ 1.5 eV (blue). The corre-
sponding absorption coefficients are introduced in Fig. 3; the
refractive index is set to 3.5. (a) In the radiative limit, Eg ¼
1.0 eV reaches maximum efficiency at an optimal normalized
thickness of α0dopt ≈ 0.7. In contrast, in the case of Eg ¼ 1.5 eV,
the efficiency approaches its maximum at infinite thickness.
(b) For Qi ¼ 10−4, the efficiencies as calculated with SLME
(dashed lines) and our model (solid lines), which takes the
refractive index into account, are seen to deviate from one
another. The difference in the two models lead to differences
in (c) the optimal thickness for all Qi ≠ 1, as well as (d) the
absolute maximal achievable efficiencies ηmax, which are sig-
nificantly overestimated by SLME. Note that in the case of
Eg ¼ 1.0 eV, the SLME does not predict an optimal thickness,
whereas our model always leads to an optimal efficiency for
d ≠ ∞ (given that Qi ≠ 1).
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with a Lambertian scatterer as the front surface, see Fig. S3
in the Supplemental Material [61]. In the case of Eg ¼
1.0 eV (red), the maximum efficiency is reached at a finite
normalized thickness of α0dopt ≈ 0.7. In contrast, in the
case of Eg ¼ 1.5 eV (blue), the efficiency approaches its
maximum at infinite thickness. A monotonic increase in
efficiency with thickness for the latter case can be explained
by the fact that both Eg and E0 are above the energy of the
maxima of the SQ limit. Making the absorber thicker and
thicker leads to an absorption that is closer and closer to a
steplike absorption at E0. As the SQ limit monotonically
decreases from 1.4 to 1.5 eV, the maximum efficiency for
the sample system with Eg ¼ 1.5 eV and E0 ¼ 1.4 eV
increases with increasing thickness. The efficiency asymp-
totically reaches the efficiency of the SQ limit at 1.4 eV,
ηSQðEg ¼ 1.4 eVÞ ¼ ηradðd ¼ ∞ÞjE0¼1.4 eV ≈ 33%. Fol-
lowing this reasoning, all absorption coefficients with a
cutoff energy higher than 1.33 eV—the energy of the
second maximum of the SQ limit—reach their maximum
efficiency at infinite thickness. The gain in short-circuit
current with increasing thickness is, in those cases, higher
than the loss in open-circuit voltage.
The situation is different for band-gap energies below

the energy of the SQ maxima. For the sample absorption
coefficient with Eg ¼ 1.0 eV (red line), the efficiency for
infinite thickness is still equal to the SQ limit of the respective
cutoff energy: ηSQð0.9 eVÞ¼ηradðd¼∞ÞjE0¼0.9 eV. However,
this limit ηSQð0.9 eVÞ is lower than the SQ limit of its
corresponding band-gap energy ηSQð1.0 eVÞ. Therefore,
the ηradðdÞ curve increases until it reaches its maximum of
ηradðdoptÞ ¼ 31.17% and finally decreases asymptotically
towards ηSQð0.9 eVÞ for infinite thickness. This shows that
apparent subtleties of the optical data (namely, the cutoff
energyE0, thephotonenergyof the first datapointwithα > 0)
become quite important when looking for the optimum
thickness in the radiative limit.
The graph drastically changes when we assume an

internal luminescence quantum efficiency of Qi ¼ 10−4;
see Fig. 4(b). In the case Qi < 1, the efficiencies calculated
from our model (solid lines) and the SLMEs (dashed lines)
deviate from one another. In the case of Eg ¼ 1.0 eV (red),
both models predict similar optimal thicknesses. The
absolute maximum efficiency, however, is about 20%
highly overestimated by SLME in comparison to our
model that predicts an efficiency limit of about 16%.
Note that in the case of Eg ¼ 1.5 eV (blue), not only the
maximum efficiencies deviate strongly, but the curves
show a qualitatively different behavior. If one neglects
the refractive index (SLME, dashed blue line), the effi-
ciency-over-thickness curve does not exhibit a global
maximum anymore. To explain the observed differences
between the two approaches, we take a closer look at the
equations introduced in Sec. II.
The short-circuit currents in both models follow directly

from JSC ¼ q
R
AϕSundE and are, therefore, independent

of Qi. The saturation current J0 scales with 1=Qi in the
SLME model, which leads to the same normalized J0ðdÞ
curves for Qi ¼ 1 and Qi ¼ 10−4. Therefore, J0 saturates
for large thicknesses for all Qi ≠ 1, just like it saturates in
the radiative limit. This leads to efficiencies greater than 0%
for infinite thickness for all Qi ≠ 1, which is physically
unreasonable. In our model, on the other hand, the out-
coupling efficiency pe decreases with thickness, which
leads to a linear increase in J0 for sufficiently large
thicknesses due to the nonradiative term. Consequently,
J0 does not saturate for Qi < 1, and our model predicts an
efficiency of 0% for infinite thickness, as one expects.
Figure 4(c) shows the effect of the internal luminescence

quantum efficiency on the optimal normalized thickness.
The optimal thicknesses for Eg ¼ 1.0 eV (red) and Eg ¼
1.5 eV (blue) are of the same order of magnitude. Same
holds for the SLME in the case of Eg ¼ 1.0 eV (dashed
line). Nevertheless, we like to point out that the SLME does
not predict this strong increase in optimal thickness for the
last 10% gain of internal luminescence quantum efficiency
(Qi ¼ 0.9–1) that is visible in our model (solid lines).
As we state above, for the SLME metric, the maximum
efficiency for Eg ¼ 1.5 eV is reached at infinite thickness
and is, therefore, not present in this graph.
To further analyze the impact of the internal lumines-

cence quantum efficiency and the differences between our
model and SLME, we plot the maximum efficiency at
optimal thickness versus the internal luminescence quan-
tum efficiency in Fig. 4(d). The SLME exhibits a linear
decrease in efficiency with decreasing lnðQiÞ for the entire
range ofQi shown in this graph. Our model shows the same
linear decrease only forQi ≪ 1, whereas we see a dramatic
drop in maximum efficiency with decreasingQi close to the
radiative limit of Qi ¼ 1.
As the equations that we use to calculate the maximum

efficiency cannot be solved analytically, we use a different
approach intuitively to explain the observed dependence of
the maximum efficiency on Qi. For this purpose, we write
the efficiency as η ¼ JSCVOCFF=PSun, where PSun is the
power density of the incident sunlight. According to
Eq. (1), JSC is independent of the internal luminescence
quantum efficiency Qi. The fill factor FF can also be
considered as being almost independent of the internal
luminescence quantum efficiency. Therefore, the derivative
of η can be approximately calculated via

dη
d lnðQiÞ

≈
JSCFF
PSun

dVOC

d lnðQiÞ
: ð8Þ

For the SLME metric, J0 scales with 1=Qi, and, con-
sequently, the open-circuit voltage can be written as
VOC ¼ Vrad

OC þ ðkT=qÞ lnðQiÞ, whereVrad
OC is the open-circuit

voltage in the radiative limit. With these considerations,
we can explain the linear increase in efficiency with lnðQiÞ
for the SLMEs (dashed lines) depicted in Fig. 4(d).
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For Qi ¼ 1, the SLME limit reaches a value that is
between the SQ limit of the band-gap energy Eg and the
cutoff energy E0 and is identical to that predicted by our
model (solid lines). However, even small deviations in Qi
away from the radiative limit lead to significant differences
in the predicted efficiencies. Following Eq. (24) in Ref. [24],
the open-circuit voltage in our model can be written as

VOC ¼ Vrad
OC þ kT

q
ln

�
peQi

1þ ðpe − 1ÞQi

�
; ð9Þ

where pe denotes the probability of a photon that has been
generated by radiative recombination to be emitted. Note
that we neglect parasitic absorption here as we do throughout
our study.
For Qi ≪ 1, the denominator is close to 1, and Eq. (9)

simplifies to VOC ¼ Vrad
OC þ ðkT=qÞ lnðpeQiÞ, implying the

same linear increase in efficiency with lnðQiÞ as in the
SLME, whereas the absolute efficiency is overestimated in
the SLME by approximately Δη ¼ JSCFF=PSunðkT=qÞ
lnðpeÞ.
For Qi ≈ 1, we cannot neglect the denominator in Eq. (9)

anymore, and the open-circuit voltage, and as a result, the
efficiency, increase rapidly as Qi approaches the radiative
limit to the same value as predicted by the SLME. Note that
the slope in the linear range (Qi ≪ 1) is the same for
our model and the SLME. The absolute gradient depends on
the band-gap energy Eg, as we discuss in the following
paragraphs.
Figure 5(a) shows the maximum efficiency versus the

internal luminescence quantum efficiency, just like
Fig. 4(d), but for various band-gap energies and calculated
by our model only. Here, we assume again flat surfaces (for
the case of a Lambertian scatterer as the front surface, see
Fig. S4 in the Supplemental Material [61]). All absorption
coefficients used are defined by Eq. (7) with Eg ¼
0.7–1.9 eV in steps of 0.2 eV [red to blue, (i)–(viii)],
the characteristic energy is Ech ¼ 0.5kT, and the cutoff
energies are 0.1 eV below the respective band-gap energies,
E0 ¼ Eg − 0.1 eV. The maximum efficiency in the radia-
tive limit is reached for band gaps of 1.3 and 1.5 eV with
cutoff energies of 1.2 and 1.4 eV, respectively. This is
expected given the band-gap energies of the SQ efficiency
maxima plotted in Fig. 3. All curves show the already
discussed significant drop in efficiency as Qi decreases
from 100% to 60%. For all Qi < 60%, the efficiency
decreases linearly with decreasing lnðQiÞ until it asymp-
totically approaches 0%, as can be surmised for very lowQi
in the case of Eg ¼ 0.7 eV (red line).
We concentrate now on the linear slope of ηðlnQiÞ.

Figure 5(b) presents the derivative ½dη=d lnðQiÞ� as a
function of band-gap energy for Qi ¼ 10−4. This function
is almost independent of the assumed light-trapping scheme
[61].ALambertian light scatterer as the front surface (purple)
only slightly deviates from a flat front surface (green) for very
low band gaps Eg < 0.7 eV. For band-gap energies above

0.7 eV, the gain in efficiency ½dη=d lnðQiÞ� monotonically
decreases from 3% to 1% absolute efficiency per decade of
internal luminescence quantum efficiency. As the gain in
efficiency can be expressed by ½dη=d lnðQiÞ�ðEgÞ ≈ JSCðEgÞ
FFðEgÞðkT=qPSunÞ, the shape of the curve ½dη=d lnðQiÞ�
plotted in Fig. 5(b) can be explained by the dependence of
the product FFJSC on the band-gap energy Eg. Whereas JSC
decreases monotonically with band gap, the fill factor
increases strongly for small band gaps and saturates for
higher band-gap energies, and the product of these two curves
results in the curve of the efficiency gain ½dη=d lnðQiÞ�, as
illustrated in Fig. 5(b).
After discussing the impact of the internal luminescence

quantum efficiency and the thickness on the maximum
efficiency, we want to close this section by analyzing the
effect of the refractive index on the maximal achievable
efficiency. For simplicity, we discuss only this for the case
of Eg ¼ 1.5 eV. The analogous graph for Eg ¼ 1.0 eV is
displayed in Fig. S5 of the Supplemental Material [61].
Figure 6 illustrates the dependence of the efficiency limit

on the refractive index calculated by our model and the
SLMEmodel. ForQi ¼ 1 (solid line), there is no difference
between our model and the SLME, as is pointed out.
The maximum efficiency in the radiative limit is approx-
imately 33.4%, independent of the light-trapping scheme;
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see Fig. 6(a) for a flat front surface and Fig. 6(b) for a
Lambertian scatterer as a front surface. The value reached is
equal to the SQ limit for Eg ¼ 1.4 eV, which corresponds
to the cutoff energy E0 ¼ 1.4 eV of the examined absorp-
tion coefficient. In the SLME, the achievable efficiency is
independent of the refractive index, and the texture of the
front surface is independent of Qi. In contrast, our model
(dash-dotted line) shows a relative decrease in efficiency of
20% as the refractive index varies from 1 to 10 for flat
surfaces. Therefore, the overestimation of the maximum
efficiency by SLME increases with increasing refractive
index.
The decrease in efficiency with the refractive index

in our model is a direct consequence of Eq. (6). The
radiative recombination rate Rrad is proportional to n2, and
because we hold Qi ¼ 10−4 constant, the nonradiative
recombination rate Rnrad has to have the same dependence
on n as Rrad according to Eq. (4). Note that Qi ¼ 10−4
implies Rrad ≪ Rnrad. Consequently, the saturation current
J0 increases with n2, and the efficiency η decreases linearly
with lnðnÞ, as seen in Fig. 6(a) in the case of flat devices.
For devices with a Lambertian scatterer as the front surface,
the absorption AðEÞ and, therefore, the short-circuit current
JSC are increasing with n. This increase in JSC compensates
the increase of J0 to some extent, and the loss in efficiency
with n for fixed Qi ¼ 10−4 is smaller; see dashed-dotted
line in Fig. 6(b).

IV. RECIPE TO CALCULATE
EFFICIENCY LIMITS

After the detailed discussion of different models and
their behavior under certain circumstances, we achieve a
deeper understanding of how to calculate a reasonable and

also practical efficiency limit from available optical data
either gathered by experiments or from electronic structure
calculations. Given the strong dependence of the maximum
efficiency on the refractive index, we conclude that the
real part of the refractive index must not be neglected.
Moreover, the calculated efficiency is also very sensitive to
the internal luminescence quantum efficiency; see Fig. 5.
The internal luminescence quantum efficiency Qi is a
complex interplay between energy levels in the material,
defects, and kinetics in the device. It is, therefore, very
challenging to determine Qi computationally, but it might
be possible to determine it experimentally without having
to fabricate devices [56]. Approaches for first-principles
calculations of nonradiative recombination rates due to
point defects are emerging [66–68] and could provide in the
future at least an estimate of the upper limit of Qi under
idealized situations. In practice, it is useful to treat the
internal luminescence quantum efficiency as an indepen-
dent parameter, in particular, at an early stage of material
investigation when materials growth and device fabrication
have not yet been optimized. A third point that we want to
stress is the thickness dependence of the efficiency. Our
results in Sec. III show that a comparison of different
materials at a fixed thickness favors certain materials over
others without proper justification. Therefore, the optimal
thickness should be considered in the figure of merit for all
cases with Qi < 1.
We propose to make full use of the available optical data

from electronic structure theory to estimate the potential of
a new material as follows: (1) Decide on a light-trapping
scheme to calculate the absorptance A from the absorption
coefficient α; e.g., for flat devices, use Eq. (S1) in the
Supplemental Material [61]. (2) Calculate the short-circuit
current JSC and the radiative saturation current Jrad0 accord-
ing to Eqs. (1) and (2), which leads to the radiative
efficiency limit via Eq. (3). (3) Calculate the absorbance
and efficiency for numerous thicknesses to end up with an
efficiency-over-thickness curve ηðdÞ. (4) Find the maxi-
mum of this curve max½ηðdÞ� ¼ ηðdoptÞ and the correspond-
ing optimal thickness dopt. (5) For the reasons stated above,
we suggest repeating steps 1–3 for a number of reasonable
internal luminescence quantum efficiencies. Note that in
the presence of nonradiative recombination (Qi ≠ 1), we
need in addition to Eqs. (1)–(3) also Eqs. (4)–(6) to
determine the efficiency limit. Additionally, we like to
point out that this selection metric just like the selection
metric from Yu and Zunger can be applied only to materials
with a tail slope Ech smaller than kiloteslas; see the
Supplemental Material [61].
Exemplarily, we apply the suggested method to a few

complex refractive indices that are determined via first-
principles calculations. These calculations are performed
within the GW approximation [54], as implemented in the
VASP code [69,70] and are part of a larger database [71]. A
more detailed description of the approach is given in
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Refs. [72,73]. For this data set, the dielectric function is
calculated in the independent particle approximation.
Figure 7 presents the input data in the form of absorption
coefficients α and the refractive index n as a function of
photon energy E. We apply the method exemplarily to eight
materials, namely, CuInSe2 (gray), Cu2ZnSnSe4 [(CZTSe)
red], CuSbSe2 (orange), Sb2Se3 (green), CZTS (turquoise),
CuGaSe2 (blue), CuSbS2 (purple), and Sb2S3 (pink). All
thesematerials have sharp absorption edgeswithEch < kT, a
reasonable absorption coefficient for high energies between
105 and 106 cm and band-gap energies between 1 and 2 eV.
So, at first sight, they are all promising photovoltaic absorber
materials.
Figure 8 illustrates the maximum efficiencies calculated

according to our method for internal luminescence quan-
tum efficiencies lnðQiÞ ¼ 0 to −7 in steps of −1 (dark to
light) sorted by the energy of the direct band gap. In the
radiative limit (Qi ¼ 1), the highest efficiencies are reached
for CZTSe (red), CuSbSe2 (orange), and Sb2Se3 (green).
The radiative limit shown in Fig. 8 corresponds well with
the maxima of the SQ limit as depicted in Fig. 3, which
predicts the highest efficiencies for materials with band-gap
energies of 1.1–1.3 eV. Assuming more realistic quantum
efficiencies of Qi < 10−2, the highest efficiency is reached
for CZTS with a band-gap energy of approximately 1.56 eV.
This efficiency maximum is a direct consequence of the
band-gap-dependent loss in efficiency due to the internal
luminescence quantum efficiency. This effect is addressed in
detail in the context of Fig. 5. Note that all these efficiencies

are calculated assuming flat devices, with a perfect back
reflector and no reflectivity at the front surface.
However, these results are not very conclusive yet.

For instance, in the radiative limit, a very weakly
absorbing material can outperform other materials with
higher absorption if one does not consider the thickness
of the device. As the nonradiative recombination in
the bulk normally cannot be neglected, the carrier col-
lection efficiency decreases significantly with thickness.
Additionally, very thick devices in real life exhibit very
low efficiencies due to the finite mobility of the inves-
tigated materials. Therefore, in a realistic scenario, we aim
for a material that can reach efficiencies as high as
possible at a thickness as small as possible.
In Fig. 9, we plot the maximum efficiency over the

optimal thickness dopt for the same eight materials (colors
and symbols analogous to Fig. 8) to address the impor-
tance of thickness to a selection metric. In this case, we
exclude the case of Qi ¼ 1, as some of the samples reach
their efficiency maximum at infinite thickness for Qi ¼ 1,
which is unreasonable for a realistic estimation of the
photovoltaic potential of a certain material. For flat
surfaces, as shown in Fig. 9(a), CuSbSe2 (orange) exhibits
the smallest optimal thicknesses between 600 nm forQi ¼
10−7 and 1 μm for Qi ¼ 0.1. In Fig. 9(b), we assume a
Lambertian scatterer as the front surface and a perfect flat
back reflector. This light-trapping scheme leads to con-
siderably smaller optimal thicknesses and higher efficien-
cies for all materials. The quantitative gain in efficiency
and loss in optimal thickness is, however, distinct for each
material. This difference becomes apparent when looking
at the variation in optimal thickness between CuInSe2
(gray) and CuSbS2 (purple). For flat devices, the optimal
thicknesses for CuInSe2 are on average 5 μm smaller than
for CuSbS2. On the other hand, assuming a Lambertian
light scatterer, this difference in optimal thickness dimin-
ishes, e.g., doptðCuSbS2Þ < doptðCuInSe2Þ for high Qi and
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doptðCuSbS2Þ > doptðCuInSe2Þ for low Qi. Given this
analysis, we conclude that CuSbSe2 reaches the highest
efficiencies for the smallest thicknesses and, therefore, is
an excellent candidate for a high-performing photovoltaic
absorber material based on its complex refractive index.
Given that the materials presented in Figs. 6–8 are all

materials that have already been used for photovoltaics, it is
worth briefly comparing the results of our assessment based
on complex refractive index and internal luminescence
quantum efficiency with the empirical results for these
technologies. While a technology like CuðIn;GaÞSe2 is
capable of achieving efficiencies >22% [74], our analysis
for a constantQi does not state that this material is superior
to the others just based on its complex refractive index. This
observation is not particularly surprising given that our
selection of materials generally exhibit quite good optical
properties for photovoltaic applications. The current lack of
success of materials such as CZTSe [75], CuSbS2 [76,77],
or CuSbSe2 [78] is a matter of Qi being lower than for
CuðIn;GaÞSe2. Thus, there is a need for computational
materials screening to focus on parameters that are related
to the presence of defects such as the search for defect-
tolerant materials.

V. CONCLUSIONS AND OUTLOOK

The present paper shows that for successful computa-
tional screening of prospective photovoltaic materials, a

thermodynamically correct translation of material data into
photovoltaic output data is mandatory. For this purpose, we
define a hierarchy of extension steps (see Fig. 1) that allows
us to gradually add physical specifications to the original
SQ approach. The first, impartible step towards more detail
than the band-gap energy embraces knowledge of the
complex refractive index of photovoltaic absorber materials
as a necessary input parameter. As this step deduces the
absorptance from the absorption coefficient, assumptions
on the device thickness and light-trapping scheme must
also be made. The choice of a Lambertian light-trapping
scheme as the reference case seems appropriate due to its
physical simplicity and practical relevance. The obvious
choice for device thickness is then the one that yields the
highest efficiency.
The second step towards more detail is the introduction

of nonradiative recombination, i.e., the departure from an
internal luminescence quantum efficiency Qi ¼ 1. This
step necessarily implies that step 1 is conducted correctly.
Failure to do so implies misinterpretation of material data,
for instance, by neglecting that the internal and external
quantum efficiencies differ significantly. The present paper
restricts itself to the demonstration of steps 1 and 2.
However, the next level of detailing is obviously the
departure from virtually infinite mobility; in this case,
additional assumptions on junction type and doping den-
sities are necessary [16,17]. It is important to notice that
the level of sophistication of such models is still far below
that of a specific device model. We are still dealing with
generic models and a very low level of computational
effort compared to that needed to provide the initial first-
principles data.
In view of computational materials screening, the pos-

itive message is that the data that are necessary for the first
step of detailing are also most easily obtained numerically.
However, this does not imply that these properties (absorp-
tion coefficient and refractive index) are the most decisive
ones. In view of the fact that most practical photovoltaic
devices and even most record devices are limited by
nonradiative recombination [23,79] urges us to get access
to this loss mechanism by first-principles calculations.
For instance, the tendency of some types of semiconductors
to build shallow instead of deep intrinsic defects [80,81]
is certainly an important hint towards prospective photo-
voltaic performance. Therefore, extending the scope of
high-throughput computations to more detailed properties
by carefully stepping down the abstraction pyramid (see
Fig. 1) will have a high impact on the successful selection
and implementation of photovoltaic materials.
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