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The quantum computer has an amazing potential of fast information processing. However, the realization
of a digital quantum computer is still a challenging problem requiring highly accurate controls and key
application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues
successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in
laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to
universally emulate nonlinear dynamical systems including classical chaos. A number of numerical
experiments show that quantum systems consisting of 5–7 qubits possess computational capabilities
comparable to conventional recurrent neural networks of 100–500 nodes. This discovery opens up a
paradigm for information processing with artificial intelligence powered by quantum physics.
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I. INTRODUCTION

Quantum physics, which is one of the most fundamental
frameworks of physics, exhibits rich dynamics, sufficient to
explain natural phenomena in microscopic worlds. As
Feynman pointed out [1], the simulation of quantum
systems on classical computers is extremely challenging
because of the high complexity of these systems. Instead,
they should be simulated by using a machine of which the
operation is based on the laws of quantum physics.
Motivated by the recent rapid experimental progress in

controlling complex quantum systems, nonconventional
information processing utilizing quantum physics has been
explored in the field of quantum information science [2,3].
For example, certain mathematical problems, such as
integer factorization, which are believed to be intractable
on a classical computer, are known to be efficiently
solvable by a sophisticatedly synthesized quantum algo-
rithm [4]. Therefore, considerable experimental effort has
been devoted to realizing full-fledged universal quantum
computers [5,6]. On the other hand, quantum simulators are
thought to be much easier to implement than a full-fledged
universal quantum computer. In this regard, existing
quantum simulators have already shed new light on the
physics of complex many-body quantum systems [7–9],
and a restricted class of quantum dynamics, known as
adiabatic dynamics, has also been applied to combinatorial
optimization problems [10–13]. However, complex real-
time quantum dynamics, which is one of the most difficult

tasks for classical computers to simulate [14–16] and has
great potential to perform nontrivial information process-
ing, is now waiting to be harnessed as a resource for more
general-purpose information processing. Specifically, the
recent rapid progress in sensing and Internet technologies
has resulted in an increasing demand for fast, intelligent
big-data analysis with low energy consumption. This has
motivated us to develop brain-inspired information-
processing devices of a non–von Neumann type, on which
machine-learning tasks are able to run natively [17].
Here we propose a framework to exploit the complexity

of real-time quantum dynamics in ensemble quantum
systems for nonlinear and temporal learning problems.
These problems include a variety of real-world tasks such
as time-dependent signal processing, speech recognition,
natural language processing, sequential motor control of
robots, and stock-market predictions. Our approach is
based on a machine-learning technique inspired by the
way the brain processes information, so-called reservoir
computing [18–20]. In particular, this framework focuses
on real-time computing with time-varying input that
requires the use of memory, unlike feedforward neural
networks. In this framework, the low-dimensional input is
projected to a high-dimensional dynamical system, which
is typically referred to as a reservoir, generating transient
dynamics that facilitates the separation of input states [21].
If the dynamics of the reservoir involves both adequate
memory and nonlinearity [22], emulating nonlinear
dynamical systems requires only adding a linear and static
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readout from the high-dimensional state space of the
reservoir.
A number of different implementations of reservoirs have

been proposed, such as abstract dynamical systems for echo-
state networks (ESNs) [18] or models of neurons for liquid-
state machines [19]. The implementations are not limited to
programs running on the PC but also include physical
systems, such as the surface of water in a laminar state
[23], analog circuits and optoelectronic systems [24–29], and
neuromorphic chips [30]. Recently, it has been reported that
the mechanical bodies of soft and compliant robots have also
been successfully used as a reservoir [31–36]. In contrast to
the refinements required by learning algorithms, such as in
deep learning [37], the approach followed by reservoir
computing, especially when applied to real systems, is to
find an appropriate form of physics that exhibits rich
dynamics, thereby allowing us to outsource a part of the
computation. Nevertheless, no quantum physical system has
been employed yet as a physical reservoir.
Here we formulate quantum reservoir computing (QRC)

and show, through a number of numerical experiments, that
disordered quantum dynamics can be used as a powerful
reservoir. Although there have been several prominent
proposals on utilizing quantum physics in the context of
machine learning [38–43], they are based on sophisticatedly
synthesized quantum circuits on a full-fledged universal
quantum computer. Contrary to these software approaches,
the approach followedbyQRC is to exploit the complexity of
natural (disordered) quantum dynamics for information
processing, as it is. Instead of using quantum gates, which
contrasts our approach to the digital one, we employ analog
quantum dynamics under a time-independent Hamiltonian.
The parameters in theHamiltonian are randomly chosen, and
hence no fine-tuning of the parameters of the Hamiltonian is
required. Any quantum-chaotic (nonintegrable) system can
be harnessed, in general, and its computational capabilities
are specified. This is a great advantage, because we can
utilize existing quantum simulators or complex quantum
systems as resources to boost information processing.
Among existing works on quantum machine learning
[38–41,43], our approach attempts to exploit quantum
systems for temporal machine-learning tasks, which essen-
tially require amemory effect to the system.Aswe see below,
our benchmark results show that quantum systems consisting
of 5–7 qubits exhibit a powerful performance, with the help
of time multiplexing, comparable to the ESNs of 100–500
nodes [44]. Not only its computational power, QRC also
provides us an operational means to approach complex real-
time quantum dynamics. While there had been a missing
operational link between classical chaos and quantum-
chaotic systems manifested by a Wigner-Dyson-type statis-
tics of the energy-level spacing [45,46], it is quite natural to
connect them via the QRC framework naturally as an
emulation of classical chaos by quantum-chaotic systems.
Moreover, since complex quantum dynamics is ubiquitous,

this framework provides us an operational understanding of
quantum physics, such as quantum simulation, thermody-
namics in a closed quantum system, and fast scrambling in a
black hole.
The rest of this paper is organized as follows. In Sec. II,

we provide a detailed description of QRC, introducing
quantum mechanics and how it is related to nonlinear
temporal machine learning. In Sec. III, we provide dem-
onstrations of QRC for prototypical nonlinear machine-
learning tasks. These demonstrations are aimed to explore
potential applications of QRC in practical problems. In
Sec. IV, the performances of QRC are investigated in detail
with respect to their memory and nonlinear capacities and
compared to a classical reservoir computing (ESNs) as a
reference. The effect of imperfections in experimental
settings is also argued there. Section V is devoted to
discussion. The detailed settings and methods of the
numerical experiments are provided in the Appendix.

II. QUANTUM-RESERVOIR COMPUTING

A. Description of quantum system and dynamics

In this subsection, we explain how to describe the
quantum system and dynamics for readers who are not
familiar with quantum information. The minimum unit of
information in quantum physics is a quantum bit (qubit),
which consists of a two-level quantum system, namely, a
vector in a two-dimensional complex vector space spanned
by fj0i; j1ig. Let us consider a quantum system consisting
of N qubits, which is described as a tensor product space of
a complex vector space of two dimensions. (Below, we use
the number of qubits, N, to measure the size of a quantum
system, since it reflects a physical size of the system, like
the number of atoms or particles.) A pure quantum state is
represented by a state vector jψi in a 2N-dimensional
complex vector space. We may also consider a statistical
(classical) mixture of the states of the pure states, which can
be described by a 2N × 2N Hermitian matrix ρ known as a
density matrix. For a closed quantum system, the time
evolution for a time interval τ is given by a unitary operator
e−iHτ generated by a Hermitian operator H called the
Hamiltonian. Specifically, for the density matrix the time
evolution is given by

ρðtþ τÞ ¼ e−iHτρðtÞeiHτ; ð1Þ

where the Hamiltonian H is a 2N × 2N Hermitian matrix
and defines the dynamics of the quantum system.

B. Measurements in ensemble quantum systems

Measurements in a quantum system are described by a
set of projective operators fPig, which satisfies

P
iPi ¼ I

and PiPj ¼ δijPi. Then the probability to obtain the
measurement outcome i for the state ρ is given by
pi ¼ Tr½Piρ�. The state after the measurement gets a
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backaction and is given by PiρPi=Tr½Piρ�, that is, a single
quantum system inevitably disturbed by the projective
measurement. By repeating the projective measurements,
we can calculate average values hOi ≔ Tr½Oρ� of an
observable O ¼ P

iaiPi.
Here we consider an ensemble quantum system, where

the system consists of a huge number of the copies of ρ, i.e.,
ρ⊗m. Cold atomic ensembles and liquid- or solid-state
molecules are natural candidates of such an ensemble
quantum system. For example, in a NMR (nuclear-mag-
netic-resonance) spin-ensemble system, we have typically
1018–20 copies of the same molecules [47,48]. Their nuclear
spin degrees of freedom can be employed as the quantum
system, like NMR spin-ensemble quantum computers or
synthetic dimensions of ultracold atoms for quantum
simulations. We here assume that we can obtain the signals
as a macroscopic observable from the ensemble quantum
system directly, where the ensemble quantum system and
the probe system are coupled by an extremely weak
interaction. Actually, the NMR bulk-ensemble average
measurement is done in this way. There is almost no
backaction, or backaction is much smaller than other
imperfections like the T1 relaxation [47,48]. In QRC, we
make active use of such a property of the ensemble
quantum systems to exploit the complex quantum dynam-
ics on the large degrees of freedom.

C. Definition of quantum-reservoir dynamics

As nodes of the network of the QR, we use an orthogonal
basis of quantum states. The idea is similar to the quantum
walks [39,49,50], where each individual node is defined
not by qubits (subsystems) but by basis states like
fj000i; j001i;…; j111ig. Therefore, for N qubits, we have
2N basis states for a pure quantum state. Moreover, here we
employ the density matrix, in general; we define the nodes
of the network by an orthogonal basis of the operator
space of the density matrices. By using the Hilbert-Schmidt
inner product, the density matrix can be represented as a
vector x on a 4N-dimensional operator space. Here the ith
coefficient xi of x is defined by xi ¼ Tr½Biρ� by using the
set of N-qubit products of the Pauli operators fBig4Ni¼1 ¼
fI; X; Y; Zg⊗N (where BiBj ¼ δijI). Specifically, we
choose the first N elements such that Bi ¼ Zi for conven-
ience in the definition of the observables later.
In this operator space, the time evolution is reformulated

as a linear map for the vector x:

xðtþ τÞ ¼ UτxðtÞ: ð2Þ
Here Uτ is a 4N × 4N matrix whose element is defined by

ðUτÞji ≔ Tr½Bje−iHτBieiHτ�: ð3Þ
Owing to the unitarity of the dynamics e−iHτðe−iHτÞ† ¼ I,
we have UτUT

τ ¼ I. If the system is coupled to an external
system for a measurement and/or a feedback operation, the

time evolution (for the density matrix) is not given by the
conjugation of the unitary operator e−iHτ; instead, it is
generally given by a complete positive trace-preserving
(CPTP) map D for the density matrix ρ. Even in such a
case, the dynamics is linear, and hence the time evolution
for xðtÞ is given in a linear form:

x → Wx; ð4Þ

where the matrix element is defined

Wji ≔ Tr½BjDðBiÞ�: ð5Þ

In order to exploit quantum dynamics for information
processing, we have to introduce an input and the signals
of the quantum system [see Fig. 1(a)]. Suppose fskgMk¼1 is
an input sequence, where sk can be a binary (sk ∈ f0; 1g)
or a continuous variable (sk ∈ ½0; 1�). A temporal learning
task here is to find, using the quantum system, a nonlinear
function yk ¼ fðfslgkl¼1Þ such that the mean-square error
between yk and a target (teacher) output ȳk for a given task
becomes minimum. To do so, at each time t ¼ kτ, the
input signal sk is injected into a qubit, say, the first qubit,

(a)

(b)

input

reservoir computing

output

input

quantum reservoir computing

output

virtual 
nodes

true nodes

hidden nodes

LR

LR

input

quantum system

signalSk

i (t )

FIG. 1. Information-processing scheme in QRC. (a) The input
sequence fskg is injected into the quantum system. The signal
x0iðtÞ is obtained from each qubit. (b) Comparison between
conventional (upper) and quantum (lower) reservoir-computing
approaches. Note that the circles in the QRC do not represent
qubits but the basis of the Hilbert space like the nodes in a
quantum walk [39,49,50]. The true nodes correspond to a subset
of basis of the operator space that are directly monitored by the
ensemble measurements. The hidden nodes correspond to the
remaining degrees of freedom.
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by replacing (or by using measurement and feedback) the
first qubit with the state ρsk ¼ jψ skihψ sk j, where

jψ ski ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − sk

p
j0i þ ffiffiffiffi

sk
p j1i: ð6Þ

The density matrix ρ of the system is transformed by the
following CPTP map:

ρ → ρsk ⊗ Tr1½ρ�; ð7Þ

where Tr1 indicates the partial trace with respect to the
first qubit. The above action of the kth input on the state
xðtÞ is again rewritten by a matrix Sk by using Eq. (5).
After the injection, the system evolves under the
Hamiltonian H for a time interval τ. Thus, the time
evolution of the state for a unit time step is given by

xðkτÞ ¼ UτSkx½ðk − 1Þτ�: ð8Þ

After injecting the kth input, the system evolves under the
Hamiltonian for τ time. The time interval τ should be
chosen within a physically allowed time scale for the input
injections, which is determined by both the time scale for
the initialization of the qubit and the operation for the
input. Then, within such a time scale, τ can be chosen to
optimize the performance of the QR. As we see in Sec. IV,
the trade-off between memory and nonlinear degrees of
performance can be controlled by τ.
The signal, which is exploited for the learning process, is

defined as an average value of a local observable on each
qubit. We here employ, as observables, the Pauli operator
Zi acting on each ith qubit. Recall that, for an appropriately
ordered basis fBig in the operator space, the observed
signals are related with the first N elements of the state xðtÞ
via xiðtÞ ¼ Tr½ZiρðtÞ� (i ¼ 1;…; N). As we mentioned
before, we do not consider the backaction of the measure-
ments to obtain the average values fxiðtÞg by considering
an ensemble quantum system. We call the directly observed
signals fxiðtÞgNi¼1 as the true nodes. Then, the remaining
ð4N − NÞ nodes of xðtÞ are hidden nodes, as they are not
employed as the signals for learning. For the learning, we
employ x0iðtÞ defined by

x0iðtÞ ≔ Tr½ðI þ ZiÞ=2ρðtÞ� ¼ ½xiðtÞ þ 1�=2 ð9Þ

by adding a constant bias and rescaling with 1=2 just for
convenience for the presentation.
The unique feature of QRC in the reservoir computing

context is that the exponentially many hidden nodes which
originated from the exponentially large dimensions of the
Hilbert space are monitored from a polynomial number of
the signals defined as the true nodes as shown in Fig. 1(b).
For this purpose, in the next section, we introduce time
multiplexing by dividing a unit time interval τ into V
subintervals to construct V virtual nodes. This effectively
increases the total number of computational nodes

employed in the learning process from N true nodes to
NV computational nodes.
In contrast to a single quantum system, the ensemble

quantum system allows us to get real-time signals directly
from exponentially large degrees of freedom. It should be
noted that classical nonlinear delay systems mathematically
contain infinite degrees of freedom. However, in an actual
physical system, the time resolution is physically limited,
and hence the effectively available degrees of freedom are
also limited. This allows us to simulate them efficiently on
a classical computer, as long as their time evolution is given
appropriately. However, in the case of the quantum sys-
tems, we need exponentially many degrees of freedom in
general to execute their brute-force simulation (prediction
of the time evolution) on a classical computer, while the
descriptions of their time evolution are explicitly given.
This is the case even if the time resolution and precision of
the readouts are finite as long as they are sufficiently small.
Another physical implementation, photonic reservoir com-
puting with a laser [24–29,51], would have a similar
motivation, since photonics and lasers rely heavily on
quantum physics. In contrast to these photonic approaches,
we here should emphasize that our implementation cru-
cially exploits the quantum computational supremacy
region, where the classical simulation of the system is
computationally hard for a classical computer. Note that at
the injected one a clean qubit at each time step and the
single-qubit averaged outputs after a unitary time evolution
are hard enough for a classical computer to simulate
efficiently, in general [14,15].

D. Emerging nonlinearity from a linear system

We here provide a physical insight why quantum-
disordered dynamics can be employed for a nonlinear
learning task. One might think that the quantum system is
totally linear and, hence, that we cannot employ it for
learning tasks, which essentially require nonlinearity.
However, this is not the case. The definitions of the
nonlinearity defined for the learning task and the linearity
of the dynamics on the quantum system are quite different.
Let us, for example, consider a quantum circuit shown
in Fig. 2. For two input states jψ s1i ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s1

p j0i þ ffiffiffiffiffi
s1

p j1i
and jψ s2i ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p j0i þ ffiffiffiffiffi
s2

p j1i, we obtain hZouti ¼
ð1 − 2s1Þð1 − 2s2Þ, which has second-order nonlinearity
with respect to s1 and s2. Or equivalently, in the Heisenberg
picture, the observable Zout corresponds to the nonlinear
observable Z1Z2. Whereas dynamics is described as a
linear map, information with respect to any kind of
correlation exists in exponentially many degrees of free-
dom. In the QRC, such higher-order correlations or non-
linear terms are mixed by the linear but quantum-chaotic
(nonintegrable) dynamics Uτ. There exists a state corre-
sponding to an observable Bl ¼ ZiZj, i.e., xlðtÞ ¼
Tr½ZiZjρðtÞ� storing the correlation between xiðtÞ ¼
Tr½ZiρðtÞ� and xjðtÞ ¼ Tr½ZjρðtÞ�, which can be monitored

KEISUKE FUJII and KOHEI NAKAJIMA PHYS. REV. APPLIED 8, 024030 (2017)

024030-4



from another true node via Uτ. This mechanism allows us
to find a nonlinear dynamics with respect to the input
sequence fskg from the dynamics of the true nodes
fxiðtÞgNi¼1. The emergent nonlinearity is not as special,
because classical (nonlinear) dynamics appears as (coarse-
grained) dynamics of averaged values of the observables in
the quantum system. However, our main contribution goes
beyond it to use such nonlinear dynamics on the disordered
(chaotic) quantum systems for the simulation of general
nonlinear dynamics by training an optimal observable.
Such a simulation of general nonlinear dynamics with
analog quantum dynamics provides an alternative paradigm
to digital universal quantum computing.

E. Training readout weights

Here we explain how to train the QR from the observed
signals. We harness complex quantum dynamics in a
physically natural system by utilizing the reservoir com-
puting approach. Here the signals are sampled from the QR
not only at the time kτ but also at each of the subdivided V
time steps during the unitary evolution Uτ as shown in
Fig. 3. That is, at each time tþ vðτ=VÞ with an integer
1 ≤ v ≤ V, the signals x0i½tþ vðτ=VÞ� ¼ TrfZiρ½tþ
vðτ=VÞ�g are sampled. Thus, at each time step k, we have
NV computational nodes in total. These time-multiplexed
signals are denoted by x0ki with i ¼ nþ vN with integers
1 ≤ n ≤ N and 0 ≤ v ≤ V, x0ki, which means the signal of
the nth qubit at time t ¼ kτ þ vðτ=VÞ, i.e., x0ki ≔
x0i½kτ þ vðτ=VÞ�. A similar technique of time multiplexing
is also used in, e.g., Ref. [24]. As explained below, these
NV computational nodes are employed in the learning

phase. This allows us to make full use of the richness of
quantum dynamics, because unitary real-time evolution is
essential for nonlinearity.
Suppose learning is performed by using L time steps. Let

fx0kig (1 ≤ i ≤ NV and 1 ≤ k ≤ L) be the states of the
computational nodes in the learning phase. We also
introduce x0k0 ¼ 1.0 as a constant bias term. Let fȳkgLk¼1

be the target sequence for the learning. In the reservoir
computing approach, learning of a nonlinear function
ym ¼ fðfskgmk¼1Þ, which emulates the target sequence
fȳkg, is executed by training the linear readout weights
of the reservoir states such that the mean-square error

1

L

XL
k¼1

ðyk − ȳkÞ2 ð10Þ

is minimized. That is, what we have to do is to find linear
readout weights fwigNV

i¼0 to obtain the output sequence

yk ¼
XNV

i¼0

x0kiwi ð11Þ

with the minimum mean-square error. This problem cor-
responds to solving the following equations:

ȳ ¼ Xw; ð12Þ

where fx0kig, fȳkgLk¼1, and fwigNV
i¼0 are denoted by an

L × ðNV þ 1Þ matrix X and column vectors ȳ and w,
respectively. Here we assume that the length of the training

FIG. 2. Physical insight of QRC. (Top) A quantum circuit
whose output has second-order nonlinearity with respect to the
input variables s1 and s2. (Bottom) The quantum circuit is
replaced by a unitary time evolution under a Hamiltonian H.
The observables are monitored by the ensemble average mea-
surements.

virtual node

qubit 1

2

3

4

5

output

time

quantum dynamics

time 
multiplexing

# of virtual nodes V

readout

t

i (t )

i (t )

FIG. 3. Quantum-reservoir dynamics and virtual nodes. The
time interval τ is divided into V subdivided time steps. At each
subdivided time step, the signals are sampled. Using the NV
signals as the computational nodes for each time step k in the
learning phase, the linear readout weights fwLR

i g are trained for
a task.
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sequenceL is much larger than the total number of the nodes
NV þ 1 including the bias term. Thus, the above equations
are overdetermined, and hence theweights that minimize the
mean-square error are determined by the Moore-Penrose
pseudoinverse Xþ ≔ ðXTXÞ−1XT [ðNV þ 1Þ × L matrix]
of X as follows:

wLR ≔ Xþȳ: ð13Þ

Using wLR, we obtain the output from the QR

yk ¼
XNV

i¼0

wLR
i x0ki: ð14Þ

Or, equivalently, an optimal observable

Otrained ≡
XN
i¼1

wLR
i ðI þ ZiÞ=2þ wLR

Nþ1I ð15Þ

is trained, and the output is obtained as hOtrainedi.
Specifically, as is the case in the conventional reservoir

computing approach, none of the parameters of the system
(Hamiltonian) requires fine-tuning except for the linear
readout weights. Thus, we can employ any quantum system
(Hamiltonian) as long as it exhibits dynamics with appro-
priate properties for our purpose, such as fadingmemory and
nonlinearity. That is, as long as theQR is sufficiently rich, we
can find an optimal observableOtrained capable of exploiting
the preferred behavior via the training (learning) process. In
the following numerical experiments, we employ, as an
example, the simplest quantum system, a fully connected
transverse-field Isingmodel, which exhibits aWigner-Dyson
statistics of the energy-level spacing [45,46,52]:

H ¼
X
ij

JijXiXj þ hZi; ð16Þ

where the coupling strengths are randomly chosen such that
Jij is distributed randomly from−J=2 to J=2.We introduce a
scale factor Δ so as to make τΔ and J=Δ dimensionless.
When wemention the size of QRs, we refer to the number of
qubits, N, simply because it reflects the physical size of the
quantum systems as is also the case in the quantum-
information literature. However, we should recall that the
total number of computational nodes in the learning phase is
NV because of time multiplexing. In any numerical experi-
ments, we show the number of virtual nodes V explicitly.
Note that we do not employ any approximation, but the
quantum dynamics of the above Hamiltonian is exactly
calculated to evaluate the potential performance of the QRs.
The imperfections including decoherence and noise on the
observed signals, which might occur in actual experiments,
are further taken into account in Sec. IV B.

III. DEMONSTRATIONS OF QRC FOR
TEMPORAL LEARNING TASKS

We start by providing several demonstrations to obtain a
sense of QRC using a number of benchmark tasks in the
context of machine learning. Our demonstrations consist of
a timing control (the timer task), learning of input-driven
dynamical systems or nonautonomous dynamical systems
[the nonlinear autoregressive moving average (NARMA)
task], and learning of autonomous dynamical systems
including chaotic attractors (the Mackey-Glass prediction
task), which cover typical cases of the target applications
in reservoir computing schemes [18–20,53]. Detailed
analyses of the performance for each task are given in
the Appendix.

A. Timer task

Our first experiment is to construct a timer. One important
property of QRC is havingmemory to be exploited.Whether
the system contains memory or not can be straightforwardly
evaluated by performing this timer task (see, e.g., Ref. [53]).
The input is flipped from 0 to 1 at certain time step (k0) as a
cue, and the system should output 1 if τtimer time steps have
passed from the cue; otherwise, it should output 0 [see
Fig. 4(a), left diagram]. To perform this task, the system has
to be able to “recognize” the duration of time that has passed
since the cue was launched. This clearly requires memory.
Herewe used six-qubit QRswith τΔ ¼ 1 to perform this task
by incrementally varying V.
Figure 4(a) shows the task performance with trained

readouts. We can clearly observe that by increasing V the
performance improves, which means that the amount of
memory,which canbe exploited, also increases. In particular,
when V ¼ 5 and 10, the system outputs overlap with the
target outputs within the certain delay, which clearly dem-
onstrates that ourQRsystem is capable of embedding a timer.
By increasing the delay time steps τtimer, we can gradually see
that the performance declines, which expresses the limitation
of the amount ofmemory that can be exploitedwithin theQR
dynamics. It is interesting to note that, while the systems are
highly disordered, we can find an observable Otrained or a
mode, at which the wave function of the system is focused
after a desireddelay time τtimer. This is veryuseful as a control
scheme for engineering quantum many-body dynamics. For
further information, see detailed settings, experimental and
learning procedures, and analyses for the timer task in
Appendix A 1.

B. NARMA task

The second task is the emulation of nonlinear dynamical
systems, called NARMA systems, which is a standard
benchmark task in the context of recurrent neural-network
learning. This task presents a challenging problem for any
computational system because of its nonlinearity and
dependence on long time lags [54]. The first NARMA
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system is the following second-order nonlinear dynamical
system:

ykþ1 ¼ 0.4yk þ 0.4ykyk−1 þ 0.6s3k þ 0.1: ð17Þ
This system was introduced in Ref. [55] and used, for
example, in Refs. [33,35]. For descriptive purposes, we call
this system NARMA2. The second NARMA system is the
following nonlinear dynamical system that has an order of n:

ykþ1 ¼ αyk þ βyk

�Xn−1
j¼0

yk−j

�
þ γsk−nþ1sk þ δ; ð18Þ

where ðα; β; γ; δÞ are set to (0.3,0.05,1.5,0.1), respectively.
Here, n is varied using the values of 5, 10, 15, and 20, and the
corresponding systems are called NARMA5, NARMA10,
NARMA15, and NARMA20, respectively. In particular,
NARMA10 with this parameter setting is introduced in
Ref. [55] and broadly used (see, e.g., Refs. [20,33,35]). As

a demonstration, the input sk is expressed as a product of three
sinusoidal functions with different frequencies. This input
setting is just for illustrative purposes. The results of the
different types of input stream, such as randomly drawn real
values, are also provided in Appendix A 2, along with the
detailed analyses. (Note that, when the input is projected to
the first qubit, the value is linearly scaled to [0, 1]; see
Appendix A 2 for details). Here, according to an input stream
expressed as a product of three sinusoidal functions with
different frequencies, the system should simultaneously
emulate five NARMA systems (NARMA2, NARMA5,
NARMA10, NARMA15, and NARMA20), which we call
multitasking.
Figure 4(b) plots the input sequence and the correspond-

ing task performance of our six-qubit QR system with
τΔ ¼ 1 with a trained readout by varying V. We can clearly
observe that, by increasing V, the performance improves,
so that when V ¼ 10 the system outputs almost overlap
with the target outputs. Further information and extended
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FIG. 4. Typical performances of
QR for temporal machine-learning
tasks. (a) The timer task.A six-qubit
QR system is prepared, and, starting
from different initial conditions, ten
trials of numerical experiments
were run for each τtimer setting. k0
is set to 500 throughout the numeri-
cal experiments. The plots overlay
the averaged system performance
over ten trials forV ¼ 1, 2, 5, and10
with the target outputs. (b) The
NARMA emulation task. This task
requires five different NARMAsys-
tems driven by a common input
stream to be emulated. The upper
plot shows the input stream, and the
corresponding task performances
of a six-qubit QR system for five
NARMA tasks are plotted, over-
laying the case for each V with
the target outputs. (c) The
Mackey-Glass prediction task.
The performances for τMG ¼ 16
(nonchaotic) and 17 (chaotic) are
shown. The trained system outputs
are switched to the autonomous
phase at time step 10000. Two-
dimensional plots ðyk; ykþ15Þ are
depicted for the autonomous phase
in each case. For each setting of
τMG, case 1 represents the case for
six qubits and, otherwise, represent
the cases for seven qubits. In this
task, the number of virtual nodes is
fixed to beV ¼ 10. For all tasks, the
detailed settings and analyses are
provided in the Appendix.
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analyses on the tasks with random input streams can be
found in Appendix A 2.

C. Mackey-Glass prediction task

The third experiment is a Mackey-Glass (MG) time
series prediction task, including a chaotic time series. This
is also a popular benchmark task in machine learning (e.g.,
Ref. [18]). Here, unlike the previous two cases, the system
output is fed back as the input for the next time step, which
means that, when the system with a trained readout
generates outputs, it receives its own output signals through
the feedback connections instead of through external
inputs. To train the readout weights, the system is forced
by the correct teacher output during the presentation of the
training data, without closing the loop. A slight amount of
white noise is added to the reservoir states in the training
phase to make the trained system robust, and the weights
are trained through the usual procedure (see Appendix A 3
for further information). The MG system has a delay term
τMG, and when τMG > 16.8 it exhibits a chaotic attractor.
We first test a nonchaotic case (τMG ¼ 16) for comparisons
and then test the chaotic case, where τMG ¼ 17, which is
the standard value employed in most of the MG system
prediction literature.
Figure 4(c) depicts the typical task performances of six-

and seven-qubit QR systems. When τMG ¼ 16, the system
outputs overlap the target outputs, which implies successful
emulations. When τMG ¼ 17, our systems tend to remain
relatively stable in the desired trajectory for about 200 steps
but, after switched from the teacher-forced condition, start
to deviate perceptibly large. Although it is difficult to
compare the performance of the closed-loop task directly
with that of different types of reservoirs due to the
differences in experimental conditions and reservoir set-
tings, we would like to mention that, in the MG prediction
task (for τMG ¼ 17 case) using an ESN equipped with 400
leaky integrator neurons, it is observed that the predictions
started to deviate perceptibly from the target not earlier than
after about 1200 steps [56]. Recent results from an analog
hardware implementation of RC using 600 computational
nodes reported that the mean-squared error (MSE) of the
predictions calculated by moving average windows of 200
steps reached approximately 1.1 × 10−1 after 2500 steps
[51], whereas our system reaches the same MSE value
relatively faster, after 820 steps [e.g., case 4 in Fig. 4(c)].
Since our system exploits only 70 (N ¼ 7 qubits and
V ¼ 10 virtual nodes) computational nodes in total in this
demonstration, it would be worth investigating how our
system performance behaves according to the increase in
computational nodes in future work. Furthermore, checking
a two-dimensional plot by plotting points ðyk; ykþ15Þ, it
appears that the learned model has captured the essential
structure of the original attractor (e.g., when τMG ¼ 17, the
model actually demonstrates chaos). In both tasks, the
seven-qubit QR systems generally perform better than the

six-qubit QR systems. Further details of the statistical
analyses of the performance and the analysis of the largest
Lyapunov exponent for the cases in Fig. 4(c) are provided
in Appendix A 3.

IV. PERFORMANCE ANALYSES

We perform detailed analyses on the computational
capabilities of the five-qubit QRs focusing on the two
popular benchmark tasks of Boolean function emulations
over a binary input sequence (see, e.g., Refs. [34,57]),
which we name the short-term memory (STM) task and
parity check (PC) task. The former task is intended to
emulate a function that outputs a version of the input stream
delayed by τB time steps, whereas the latter is intended to
emulate an τB-bit parity checker. Both tasks require
memory to be emulated, and the PC task requires non-
linearity in addition, because the parity-checker function
performs nonlinear mapping. Hence, the STM task can
evaluate the memory capacity of systems, and the PC task
can additionally evaluate the amount of nonlinearity within
systems.
The function for the STM task can be expressed as

follows:

yk ¼ sk−τB ;

where sk is a binary sequence and τB represents the delay.
The function for the PC task is expressed as follows:

yk ¼ Q

�XτB
m¼0

sk−m

�
;

QðxÞ ¼
�
0 ½x≡ 0ðmod 2Þ�
1 ðotherwiseÞ:

We investigate both tasks thoroughly by applying a random
input sequence for the tasks such that there is no external
source to provide temporal coherence to the system. In
these tasks, one trial consists of 5000 time steps. The first
1000 time steps are discarded, the next 3000 time steps are
used for training, and the last 1000 time steps are used for
system evaluation. We evaluated the system performance
with the target output for each given τB by using the
measure known as τB-delay capacity CðτBÞ expressed as

CðτBÞ ¼
cov2ðyk; ȳkÞ
σ2ðykÞσ2ðȳkÞ

:

In the main text, τB-delay capacities for the STM task and
the PC task are termed τB-delay STM capacity CSTMðτBÞ
and τB-delay PC capacity CPCðτBÞ, respectively. Note that,
in the analyses, to reduce a bias due to the effect of the finite
data length, we subtract Cðτmax

B Þ from CðτBÞ, where τmax
B is

a substantially long delay. The capacity C is defined as
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C ¼
Xτmax
B

τB¼0

CðτBÞ;

where τmax
B is 500 throughout our experiments. The

capacities for the STM task and the PC task are referred
to as the STM capacity CSTM and the PC capacity CPC,
respectively. For each task, 20 samples of the QRs are
randomly generated, and the average values of the τB-delay
capacities and the capacities are obtained.
In Fig. 5(a) (left), CSTMðτBÞ is plotted as a function of τB

for V ¼ 1;…; 50, where τΔ ¼ 1 and J=Δ ¼ 1.0 are set.
The abrupt decay exhibited by the curve is improved when
the number of virtual nodes is increased. In Fig. 5(a)
(middle), the STM capacity is plotted as a function of the
number of virtual nodes V and the time interval τΔ. It
shows that the STM capacity becomes saturated around
V ¼ 10. The five-qubit QRs with τΔ ¼ 0.5 and 1.0 exhibit
a substantially high STM capacity of approximately 20,
which is much higher than that of the ESNs of 500 nodes
(see Sec. IVA for details). A plot of the STM capacity as a
function of τ for a fixed number of virtual nodes V ¼ 10
does not exhibit monotonic behavior, as shown in Fig. 5
(right). This behavior is understood as follows. In the limit
of τ → 0, the dynamics approach an identity map and hence
become less attractive, and this is more desirable to
maintain the separation among different inputs. At the
same time, a shorter τ implies less information is embedded
in the present input setting. In the limit of larger τ, on the
other hand, the input sequence is injected effectively;

however, the dynamics become attractive, and the separa-
tion fades rapidly. Originating from these two competing
effects, there is an optimal time interval τ for which the
STM capacity is maximized.
In Fig. 5(b) (left), CPCðτBÞ is plotted as a function of τB

for V ¼ 1;…; 50. Specifically, CPCðτBÞ is exactly zero
when V ¼ 1. This clearly shows that the virtual nodes,
which spatialize the real-time dynamics during the interval
τ, are important to extract nonlinearity. In Fig. 5(b)
(middle), the PC capacity is plotted as a function of the
number of virtual nodes V and the time interval τΔ. As
expected, the longer the time interval τ is, the higher the PC
capacity exhibited by the QR, as shown in Fig. 5 (middle
and right). This is because the true nodes are able to
increase communication with the virtual nodes. The num-
ber of virtual nodes required for the saturation of the PC
capacity is also increased in the case of a longer τ.

A. Characterizations of QRs

Let us clarify the unique properties of the QRs in terms
of the STM and PC capacities. We plot ðCSTM; CPCÞ for the
five-qubit QRs with various coupling settings in Fig. 6(a),
which include a restricted type of QR with one-dimensional
nearest-neighbor (1DNN) couplings, i.e., Jij ≠ 0 only for
j ¼ iþ 1 in Eq. (16). In this case, the transversal-field Ising
model becomes integrable, that is, exactly solvable by
mapping it into a free-fermionic model via the Jordan-
Wigner transformation. Because the effective dimension of
the state space is reduced from 22N to 2N, the amplitudes of
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the oscillations are larger for the 1DNN case as shown in
Fig. 6(b). From the real-time dynamics, one might expect a
rich computational capability even for the integrable
dynamics. Although this is true for the STM capacity, it
does not hold for the PC capacity. As shown in Fig. 7, the
STM capacity of the 1DNN QRs is above 20, rather higher
than that of fully connected QRs. However, the PC capacity
is substantially poor, which cannot improve even if the time
intervals τ or the number of virtual nodes are changed. This
is a natural consequence of the inability of the 1DNN
model to fully employ exponentially large state spaces. In
this way, the computational capacity of QRs, especially
their nonlinear capacity, has a close connection with the

nonintegrability of the underlying QR dynamics. This
implies that the computational capacity as a QR provides
a good metric of the integrability of quantum dynamics. A
nonintegrable quantum system is identified as quantum
chaos, which is specified by the Wigner-Dyson distribution
of the energy eigenstate spacing. The operational metric of
the integrability of quantum dynamics would be useful to
build a modern operational understanding of quantum
chaos by relating it to the emulatability of classical chaos.
Next we investigate the scaling of the STM and PC

capacities against the number of the qubits N in the QRs. In
Fig. 8, the STM and PC capacities are plotted against the
number of qubits for the virtual nodes V ¼ 1, 2, 5, 10, 25,
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and 50. First, both capacities monotonically increase in the
number of the qubits N and the virtual nodes V. Thus, by
increasing the time resolution and size of the QR, we can
enhance its computational capability. The STM capacity is
improved by increasing the number of virtual nodes V
especially for optimally chosen time intervals τ. The
improvement saturates around V ¼ 10. The scaling behav-
ior of the STM capacity seems to be different for N ¼ 2–4
and N ¼ 4–7 when the virtual nodes are introduced. For

optimally chosen time intervals, the STM capacity seems to
increase linearly in terms of the number of qubits.
The PC capacity also increases in terms of the number of

virtual nodes V, but its saturation highly depends on the
choice of the time interval τ. For a short interval τΔ ¼ 1,
the PC capacity saturates around V ¼ 10. However, for
τΔ ¼ 128, it seems not to saturate even with V ¼ 50. In
any case, the PC capacity seems to increase linearly in
terms of the number of the qubits N. Interestingly, at the
large τ and large V limits, the PC capacity saturates the line
defined by CPC ¼ 2ðN − 2Þ. The origin of this behavior is
completely unknown at this moment.
In Fig. 6(c), the STM and PC capacities are plotted for

the QRs from N ¼ 2 to N ¼ 7. The seven-qubit QRs, for
example, with τΔ ¼ 2, J=Δ ¼ 2h=Δ ¼ 1, and V ¼ 10–50,
are as powerful as the ESNs of 500 nodes with the spectral
radius around 1.0. Note that, even if the virtual nodes
are included, the total number of computational nodes
NV ¼ 350 is less than 500.

B. Robustness against imperfections

We here investigate the effect of decoherence (noise) to
validate the feasibility of QRC. We consider two types of
noise: The first is decoherence, which is introduced by an
undesired coupling of QRs with the environment, thereby
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resulting in a loss of quantum coherence, and the other is a
statistical error on the observed signals from QRs. The
former is more serious, because quantum coherence is, in
general, fragile against decoherence, which is the most
difficult barrier for realizations of quantum information
processing.
We employ the dephasing noise as decoherence, which is

a simple yet experimentally dominant source of noise.
In the numerical simulation, the time evolution is divided
into a small discrete interval δt, and qubits are exposed
to the single-qubit phase-flip channel with probability
ð1 − e−2γδtÞ=2 for each time step:

EðρÞ ¼ 1þ e−2γδt

2
ρþ 1 − e−2γδt

2
ZρZ: ð19Þ

This corresponds to a Markovian dephasing with a dephas-
ing rate γ and destroys quantum coherence, i.e., off-
diagonal elements in the density matrix. Apart from the
dephasing in the z direction, we also investigate the
dephasing in the x direction, where the Pauli Z operator
is replaced by X. In Fig. 9, the STM and PC capacities
ðCSTM; CPCÞ are plotted for τΔ ¼ 0.5, 1.0, 2.0, and 4.0
(from left to right) with V ¼ 1, 2, 5, 10, 25, and 50 and
γ ¼ 10−1, 10−2, and 10−3. The results show that dephasing
of the rates 10−1–10−3, which is within an experimentally
feasible range, does not degrade computational capabilities.
A subsequent increase in the dephasing rate causes the

STM capacity to become smaller, especially for the case
with a shorter time interval τΔ ¼ 0.5. On the other hand,
the PC capacity is improved by increasing the dephasing
rate. This behavior can be understood as follows. The
origin of quantum decoherence is the coupling with the
untouchable environmental degree of freedom, which is
referred to as a reservoir in the context of open quantum
systems. Thus, decoherence implies an introduction of
another dynamics with the degree of freedom in the
reservoir computing framework. This leads to the
decoherence-enhanced improvement of nonlinearity
observed in Fig. 9, especially for a shorter τ with less rich
dynamics. Of course, for a large decoherence limit, the
system becomes classical, preventing us from fully exploit-
ing the potential computational capability of the QRs. This
appears in the degradation of the STM capacity. By
attaching the environmental degree of freedom, the spa-
tialized temporal information is more likely to leak outside
the true nodes. Accordingly, we cannot reconstruct a past
input sequence from the signals of the true nodes. In other
words, quantum coherence is important to retain informa-
tion of the past input sequence within the addressable
degree of freedom. In short, in the QRC approach, we do
not need to distinguish between coherent dynamics and
decoherence; we can exploit any dynamics on the quantum
system as it is, which is monitored only from the address-
able degree of freedom of the quantum system.
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references. From top to bottom, the spectral radius is changed from 0.5 to 2.0.
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Next, we consider the statistical noise on the observed
signal from the QRs. We investigate the STM and PC
capacities by introducing Gaussian noise with zero mean
and variance σ on the output signals as shown in Fig. 10.
The introduction of statistical noise leads to a gradual
degradation of the computational capacities. However,
the degradation is not abrupt, which means that QRC
would be able to function in a practical situation. In the
small τ region, the STM capacity is sensitive to the
statistical observational noise. This is because, in such a
region, the dynamic range of the observed signals
becomes narrow. For example, when τΔ ¼ 0.5 and
τΔ ¼ 4, the dynamic ranges are approximately 0.01
and approximately 0.5, respectively. While, in the ideal
case, the performances of the five-qubit QRs are com-
parable to the ESNs of 100 nodes, their performances
under the statistical observational noise of the order of
10−3 against the dynamic ranges is still comparable to
the ESNs of 50 nodes without any noise. Moreover, as
we see in the demonstration of the chaotic time series
prediction, we even introduce statistical noise to the
observed signals with the aim of stabilizing the learning
process. This implies that in some situation we can
positively exploit the natural observational noise in our
framework.
These tolerances against imperfections indicate that the

proposed QRC framework soundly functions in realistic
experimental setups as physical reservoir computing.

V. DISCUSSION

The QRC approach enables us to exploit any kind of
quantum systems, including quantum simulators and quan-
tum annealing machines, provided their dynamics are
sufficiently rich and complex to allow them to be employed
for information processing. In comparison to the standard
approach for universal quantum computation, QRC does not
require any sophisticatedly synthesized quantum gate, but
natural dynamics of quantum systems is enough. Therefore,
QRC exhibits high feasibility in spite of the fact that its
applications are broad for temporal learning tasks.
The conventional software approach for recurrent neural

networks takes time, which depends on the size of the
network, to update the network states. In contrast, in the
case of QRC, the time evolution is governed by natural
physical dynamics in a physically parallelized way. For
example, liquid- and solid-state NMR systems with nuclear
and electron spin ensembles [47,48] are favorable for
implementing QRC. These systems enable us to obtain
the output signals in real time via the radio-frequency coil
by virtue of its huge number of ensembles. Note that we
employ the simplest model and that no optimization of the
QRs has been done yet. More study is necessary to
optimize the QRs with respect to a Hamiltonian, network
topology, the way of injecting the input sequences, and the
readout observables.
Notwithstanding its experimental feasibility, control-

lability, and robustness against decoherence, the QRC
framework would also be useful to analyze complex
real-time quantum dynamics from an operational perspec-
tive. The computational capabilities provide operational
measures for quantum integrable and chaotic dynamics.
Recently, delocalization (and localization) of quantum
information by unitary dynamics in closed quantum sys-
tems has been attracting much attention in various fields of
physics, such as fast scrambling in a black hole and
thermalization in statistical physics of closed quantum
systems. Our framework shares the same setting, time-
independent Hamiltonian dynamics monitored from local
observables. Since our framework allows us to evaluate the
computational capability of the signals obtained from
such systems, it provides an operational way to understand
these phenomena related to complex unitary dynamics.
Apparently, the STM is closely related to time correlation
in many-body quantum physics and the thermalization of
closed quantum systems. Moreover, the chaotic behavior of
quantum systems has been investigated in an attempt to
understand the fast scrambling nature of black holes
[58,59]. It would be intriguing to measure the computa-
tional capabilities of such black hole models. We believe
that QRC for universal real-time quantum computing,
which bridges quantum information science, machine
learning, quantum many-body physics, and high-energy
physics coherently, provides an alternative paradigm to
quantum digital computing.
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FIG. 10. Effect of the statistical error on the observed signals
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APPENDIX: EXPERIMENTAL SETTINGS
AND EXTENDED ANALYSES

This section describes detailed settings for the task
experiments mentioned in the main text and provides
extended analyses. We maintain the notation for symbols
used in the main text.

1. The timer task

The timer task is one of the simplest yet most important
benchmark tasks to evaluate the memory capacity of a
system (see, e.g., Ref. [53]). As explained in the main text,
our goal for the demonstration of QRC is to emulate the
function of a timer [Fig. 4(a) in the main text]. The I/O
relation for a timer can be expressed as follows:

sk ¼
�
1 ðk ≥ k0Þ;
0 ðotherwiseÞ;

yk ¼
�
1 ðk ¼ k0 þ τtimerÞ;
0 ðotherwiseÞ;

where k0 is a time step for launching the cue to the system
and τtimer is a delay for the timer. Our aim is to emulate this
timer by exploiting the QR dynamics generated by the input
projected to the first qubit in the QR system.
A single experimental trial of the task consists of 800

time steps, where the first 400 time steps are discarded as
initial transients. At time step 500, the input is switched
from 0 to 1 (i.e., k0 ¼ 500), and the system continues to run
for another 300 time steps. For the training procedure,
using a six-qubit QR system with τΔ ¼ 1, we iterate this
process over five trials, starting from different initial
conditions, and collect the corresponding QR time series
for each time step from time step 400 to time step 800 as
training data. We optimize the linear readout weights using
these collected QR time series with a linear regression to
emulate the target output for the given delay τtimer and the
setting of the number of virtual nodes V in QR systems. We
evaluate the performance of the system with the optimized
weights by running five additional trials (evaluation trials)
and compare the system outputs to the target outputs in the
time region from time step 400 to time step 800.
Here, we aim to analyze the performance of the timer

task further. We prepare ten different six-qubit QR systems,
whose coupling strengths are assigned differently, and for
each setting of ðτtimer; VÞ, we iterate the experimental trials

as explained above over these ten different systems. To
effectively evaluate the system’s performance against the
target outputs ȳk, given the setting of τtimer, we define a
measure CðτtimerÞ, which is expressed as

CðτtimerÞ ¼
cov2ðyk; ȳkÞ
σ2ðykÞσ2ðȳkÞ

;

where covðx; yÞ and σðxÞ express the covariance between x
and y and the standard deviation of x, respectively. In short,
this measure evaluates the association between two time
series and takes a value from 0 to 1. If the value is 1, it
means that the system outputs and the target outputs
completely overlap, which implies that the learning is
perfect. At the other extreme, if the value is 0, it implies
that the learning completely fails. Evaluation trials are used
to actually calculate this measure. Now, we further define a
measure, capacity C, which is expressed as a simple
summation of CðτtimerÞ over the entire delay:

C ¼
Xτmax
timer

τtimer¼0

CðτtimerÞ;

where τmax
timer is set to 300 in our experiments.

By using these two measures, CðτtimerÞ and C, we
evaluate the performance of the timer tasks of six-qubit
QR systems. Figure 11 plots the results. Figure 11(a)
clearly indicates that larger values of V can perform the
timer task reliably for a longer delay, which shows a
characteristic curve for each setting of V. This point is also
confirmed by checking the plot of C according to the value
of V, where C increases almost linearly with an increase in
V [see Fig. 11(b)]. These results are consistent with the
result demonstrated in the main text. We compare the
performance with ESN, where the experimental conditions
are set the same as the experiment with QR (see
Appendix A 4 for the basic settings of ESN). The spectral
radius of the ESN is fixed to 0.95, and we vary the number
of nodes as M ¼ 12, 30, 60, 100, and 200, and, for each
number of nodes, we perform ten cycles of experimental
runs using different ESN internal connection weights.
As a result, we obtain C ¼ 4.48� 0.53 for M ¼ 12, C ¼
11.15� 0.52 for M ¼ 30, C ¼ 20.89� 1.35 for M ¼ 60,
C ¼ 28.16� 1.93 forM ¼ 100, and C ¼ 31.88� 1.67 for
M ¼ 200, suggesting that QR compares favorably to ESN.

2. The NARMA task

As explained in the main text, the emulation of NARMA
systems is a challenge for machine-learning systems, in
general, because it requires nonlinearity and memory [22].
Thus, the emulation task has been a benchmark for
evaluating the amount of nonlinearity and memory to be
exploited in the system [20,24,31–33,35,54,55]. These
tasks appear as the second demonstration of QRC in the
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main text [Fig. 4(b) in the main text]. Here, we explain the
experimental procedures in detail and present extended
analyses for these tasks.
We use a superimposed sine wave for the input to the

NARMA systems, which is expressed as follows:

sk ¼ 0.1

�
sin

�
2παk
T

�
sin

�
2πβk
T

�
sin

�
2πγk
T

�
þ 1

�
;

where ðα; β; γÞ ¼ ð2.11; 3.73; 4.11Þ and T ¼ 100. Note that
sk is in the range [0, 0.2] with the aim of stabilizing the
behavior of the NARMA systems (to prevent divergence).
Similar types of input sequences for NARMA systems can
be found in Refs. [31–33,35]. The input range is rescaled to
[0, 1] when projected to the first qubit of the QR system.
The experimental trial consists of 5000 time steps, where
the first 1000 time steps are used for the washout, the
following 3000 time steps are used for the training phase,
and the final 1000 time steps are used for the evaluation
phase. Note that, when the input is a superimposed sine
wave, we should be careful to prevent the same input and
target output time series in the training phase from
appearing again in the evaluation phase, because this
would not enable us to characterize the generalization
capability of the system effectively. Our setting of the
length of the training and evaluation phases is confirmed to
be safe on this point. By collecting the QR time series and
the corresponding target outputs for each task in the
training phase, we train the linear readouts for five outputs,
which correspond to the five target NARMA systems, by
using the scheme explained in the main text. The trained
linear readouts are used to generate system outputs for the
evaluation phase.
The contribution of the QR system is characterized

explicitly by comparing the task performance with a simple
linear-regression (LR) model, ykþ1 ¼ w0

1 × sk þ w0
0, where

w0
0 and w0

1 are trained using the same time series as in the
training phase. Note that this corresponds to the case in
which no QR system is available, and only the raw input
remains for LR. This comparison enables us to conclude
that, for any system performance exceeding that of this
model, the QR system has contributed to the emulation task
[31–35].
We evaluate the performance of the system output in the

evaluation phase by calculating the normalized mean-
squared error (NMSE) with the target output:

NMSE ¼
P

M−L
k¼Lþ1ðȳkþ1 − ykþ1Þ2P

M−L
k¼Lþ1 ȳ

2
kþ1

; ðA1Þ

where L represents the time steps for the washout and
training phase, of which the duration is 4000 time steps in
this experiment, and M is the time steps for the evaluation
phase, which requires 1000 time steps. Table I lists the
NMSE for each of the experimental conditions. We can
confirm that our six-qubit QR system outperforms the LR
system in any setting of V for each NARMA task, which
implies that the QR system has contributed to the task
performance. Furthermore, we can see that, by increasing
V, the performance improves in all the NARMA tasks,
which is consistent with the plots presented in Fig. 4(b) in
the main text.
Here we aim to further analyze the information process-

ing capacity of our QR system based on the NARMA tasks.
We adopt the same task settings as for the previous case
except for the input settings. The input stream is generated
by using white noise with a range of [0, 0.2] for the same
reason as in the previous experiment, rather than using a
superimposed sine wave. This choice of input stream is
commonly used [20,24,55] and is determined not to add
additional temporal coherence originating from external
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FIG. 11. Analyses of the memory capacity based on CðτtimerÞ and C for a six-qubit QR system. (a) Plot showing CðτtimerÞ according to
τtimer for V ¼ 1, 2, 5, and 10. For each setting of V, ten different six-qubit QR systems are prepared, and for each system, the average of
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input to the system and to evaluate the pure computational
power contributed only by the QR systems. As this input
setting perceivably complicates the performance evalu-
ation, we quantify the task performance in terms of
NMSE. For each NARMA task, we test the relevance of
τ and V in terms of the task performance and vary them for
τΔ ¼ 1, 2, 4, 8, 16, 32, 64, and 128, and V ¼ 1, 2, 5, 10,
25, and 50, respectively. Using a five-qubit QR system, 20
samples of the QRs are randomly generated, and for each
ðτΔ; VÞ setting, the average values of NMSEs are obtained.
The performance of the QR systems is characterized by

again using the previously mentioned LR system for
comparison. Furthermore, we use a conventional ESN as
a candidate for the standard machine-learning system and
use it to compare our task performance. The basic settings
of the ESN are described in Appendix A 4. To allow for fair
comparisons, 100 samples of ESN with M nodes are
generated by assigning the same NARMA tasks with the
same experimental settings explained above, and the
average values of NMSEs for the ESN are obtained (by
varying the spectral radius of the ESN internal weight
matrix from 0.05 to 1.95 in increments of 0.1; the case of
the smallest NMSE, which provides the best performance,
is used for comparison). The number of nodes M is varied
for M ¼ 10, 20, 30, 50, and 100 for each NARMA task.

Figure 12 depicts the results for the performance of the
five-qubit QR system for the NARMA tasks with a random
input stream. First, we can see that, for all the NARMA
tasks, our five-qubit QR system outperforms the LR
system, which means that the QR system actually contrib-
utes to the task performance. In general, we can confirm
that the increase in the number of the virtual nodes V leads
to an improved performance. The effect of the number of
τΔ on the task performance depends on the type of task. For
the NARMA2 and NARMA5 tasks, an increase in the
number of τΔ tends to improve the performance. In
particular, for the NARMA5 task, when V ¼ 50 and
τΔ ¼ 128, the five-qubit QR system performs at a level
in between the performance of the ESN with M ¼ 30 and
M ¼ 50 (see Fig. 12). For NARMA10, NARMA15, and
NARMA20, this tendency does not hold, in general, and
the use of a small number of τΔ is found to improve the
performance. In particular, for the NARMA20 task, when
τΔ ¼ 1 and V > 5, the five-qubit QR system performs at a
level in between the performance of the ESN with M ¼ 50
and M ¼ 100 (see Fig. 12). Interestingly, this implies that
the five-qubit QR system can deliver a performance similar
to that of an ESN with fewer computational nodes (e.g.,
when τΔ ¼ 1 and V ¼ 5, the five-qubit QR system has 25

TABLE I. Performance of the six-qubit QR systems in terms of
NMSE for NARMA tasks using the superimposed sine wave.

Task System Error (NMSE)

NARMA2 LR 1.7 × 10−5

QR (V ¼ 1) 1.0 × 10−5

QR (V ¼ 2) 4.7 × 10−6

QR (V ¼ 5) 1.7 × 10−7

QR (V ¼ 10) 4.9 × 10−8

NARMA5 LR 3.0 × 10−3

QR (V ¼ 1) 4.6 × 10−4

QR (V ¼ 2) 7.1 × 10−5

QR (V ¼ 5) 2.8 × 10−5

QR (V ¼ 10) 7.6 × 10−6

NARMA10 LR 2.6 × 10−3

QR (V ¼ 1) 2.0 × 10−4

QR (V ¼ 2) 9.2 × 10−5

QR (V ¼ 5) 3.0 × 10−5

QR (V ¼ 10) 1.3 × 10−5

NARMA15 LR 2.7 × 10−3

QR (V ¼ 1) 6.7 × 10−4

QR (V ¼ 2) 3.1 × 10−4

QR (V ¼ 5) 1.2 × 10−4

QR (V ¼ 10) 4.0 × 10−5

NARMA20 LR 2.3 × 10−3

QR (V ¼ 1) 1.2 × 10−3

QR (V ¼ 2) 2.6 × 10−4

QR (V ¼ 5) 1.3 × 10−4

QR (V ¼ 10) 3.8 × 10−5
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FIG. 12. Performance of five-qubit QR systems with several τΔ
settings for the NARMA tasks with a random input stream. For
each plot, the vertical and horizontal axes show the NMSE and
the number of virtual nodes V, respectively, and both axes are in
logarithmic scales. The error bars show the standard deviations
evaluated on 20 samples of the QRs with respect to the random
couplings. For comparisons, the dashed line shows the perfor-
mance of an LR system in terms of NMSE, and the solid lines
show the performance of an ESN with M nodes (e.g., “E10”
represents the performance of ESN with 10 nodes). See the text
for details on analyses and experimental procedures.
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computational nodes and the performance exceeds that of
an ESN with 50 nodes). These outcomes of the task
performance are induced by the balancing of memory
and nonlinearity, which can be exploited by the system
and which is required to perform the task; this is closely
related to the results mentioned in the main text. Further
analyses will be included in our future work.

3. The Mackey-Glass prediction task

Chaotic attractor learning is a popular test for learning
dynamical systems [18,56]. One of the well-known systems
used for the target of learning is the MG delay differential
equation

_yðtÞ ¼ αyðt − τMGÞ
1þ yðt − τMGÞβ

− γyðtÞ;

where the parameters are set to α ¼ 0.2, β ¼ 10,
and γ ¼ 0.1. The system has a chaotic attractor if
τMG > 16.8. In the majority of studies, τMG ¼ 17 is used,
which yields a chaotic attractor. In our experiments, we also
use this parameter setting of τMG ¼ 17. Additionally, we
use the case of τMG ¼ 16 for comparison, as this setting
does not exhibit chaos.
The discrete time version of the MG system is often used

to prepare the training sequences [18] through

ykþ1 ¼ yk þ σ

�
0.2yk−τMG

σ

1þ y10
k−τMG

σ

− 0.1yk

�
;

with a step size of σ ¼ 1=10, and then subsampled by 10.
One step from k to kþ 1 in the resulting sequences
corresponds to a unit time interval ½t; tþ 1� of the original
continuous system. In our numerical experiments, the target
time series is linearly scaled to [0, 1] and used in the actual
experiments.
For each setting of τMG, we generate the above system

for a while as a washout, and then a length of 12 000 time
steps (already subsampled) is collected for the experiment.
We use 10 000 time steps for the training phase and the
remaining 2000 time steps for the evaluation phase. The
task is to train the QR system by using these training
sequences, which after training should regenerate the
corresponding chaotic or nonchaotic attractors.
Because this task requires feedback to the system, the

training procedure is different from the previous cases.
During the training phase, we clamp the feedback from the
system output and provide the target outputs as inputs,
which means we set skþ1 ¼ ȳk. Thus, the training phase is
carried out with an open loop, such that the system is forced
into the desired operative state by the target signals (this
approach is typically referred to as teacher forcing). The
robustness of the learning is improved by adding a slight
amount of noise in the range of ½−σ; σ� in the training phase.

When the evaluation phase starts, we switch the inputs to
the system output generated by the trained readout weights
[this phase is expressed as the autonomous phase in
Fig. 4(c) in the main text] and check whether the system
is able to embed the corresponding MG system.
Table II summarizes the experimental conditions and the

prediction errors for the QR system used in the main text.
We calculate the errors in NMSE by using the entire time
series in the evaluation phase.
We test whether the trained network indeed generates a

chaotic time series by empirically estimating the largest
Lyapunov exponent of the network-generated output signal
by using a procedure similar to that introduced in Ref. [56].
For the trained network, we analyze the previous four cases
(cases 1–4) in the τMG ¼ 17 setting. When the network is
switched from the teacher-forcing condition to the closed-
loop mode at time step 10 000, the reservoir signals are
perturbed by a uniform noise vector, the network is left
running freely, on this occasion starting from the perturbed
state for the entire 2000 steps of the evaluation phase, and
the resulting output sequence is recorded. The exponential
divergence rate λ between this perturbed sequence y0k and
the original sequence yk is estimated by computing

dk ¼ ∥½y10001þk…y10017þk� − ½y010001þk…y010017þk�∥;

λ ¼ logðd500Þ − logðd0Þ
500

;

where the subsequent 17 time steps that are used for the
computation of dk are chosen because they correspond to
approximately one full “loop” of the attractor. Figure 13
plots the behavior of dk for four cases. We can see that all
four cases have a positive λ value, which implies that their
output sequences are chaotic.

4. Echo-state network settings for comparisons

We further characterized the computational power of our
QR system by comparing its task performance with that of a
conventional ESN [18,56,61,62] (the comparisons of ESN
performance with that of our systems appear in Sec. IVA
and also in the analyses of the NARMA tasks demonstrated
above). The ESN is a type of recurrent neural network,
which hasM internal network units, input units, and output

TABLE II. Experimental settings and prediction errors (NMSE)
for the Mackey-Glass prediction tasks in the main text.

τMG Case Qubit τΔ Noise strength (σ) Error (NMSE)

16 1 6 3 1.0 × 10−4 4.7 × 10−3

2 7 2 1.0 × 10−4 3.9 × 10−3

17 1 6 3 1.0 × 10−4 1.6 × 10−1

2 7 3 1.0 × 10−4 2.5 × 10−2

3 7 4 1.0 × 10−5 4.9 × 10−2

4 7 2 1.0 × 10−5 1.7 × 10−2
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units. Activation of the ith internal unit at time step k is xik
(i ¼ 1;…;M). We use the same I/O setting for the ESN as
with our system for each task concerned to enable us to
efficiently and directly compare the performance. The
number of trials, the lengths of the washout, training,
and evaluation phases, and the evaluation procedures are
also kept the same. The connection weights for the M ×M
internal network connecting the ith unit with the jth unit are
denoted as wij, and the input weights proceeding from the
input unit into the ith internal unit are denoted as wi

in. The
readout weights wi

out proceed fromM internal units and one
bias to the output unit (where x0k ¼ 1 and w0

out for a bias
term). The readout weights wi

out are trained using the
procedure explained for each task; the internal weights
wij and the input weights wi

in are randomly assigned from
the range ½−1.0; 1.0� and fixed beforehand. The activation
of the internal units and the output unit are updated as

xik ¼ f

�XM
j¼1

wijx
j
k−1 þ wi

insk

�
;

yk ¼
XM
i¼0

wi
outx

i
k;

where f is a tanh function. It is reported that the computa-
tional power of ESN can be well characterized by the
spectral radius of the internal connection weight matrix
[18,20,56,61,62]. In each comparative experiment, by
incrementally varying the spectral radius, we observe the
ESN performance. Detailed experimental conditions are
given for each of these comparisons.
Herewe present the ESN settings for the comparisonswith

QR systems that appear in Sec. IVA. The experimental

settings including the length of training and evaluation
phases are kept the same with the QR system for a fair
comparison. For the randombinary input sequence,we adopt
two cases. In the first case (case I), we change the actual input
value to “−1” only if sk ¼ 0. For the second case (case II),we
directly project the f0; 1g-binary state input sk to the internal
network units. In theESN, if sk ¼ 0, the internal units receive
no external input and, therefore, are expected to introduce an
asymmetry into the network performance. We test these two
cases (case I and case II) in Fig. 14. As can be seen from the
plot, both cases show different modalities of performances in
terms of CPC and CSTM, which are due to the asymmetry
introduced by the input settings. We present the results for
case I in Sec. IVA, but the same explanations hold for
both cases.
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