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We present a phenomenological theory of bipolar filamentary resistive random-access memory
describing the commonly observed features of their current-voltage characteristics. Our approach follows
the approach of a thermodynamic theory developed earlier for chalcogenide memory and threshold
switches and largely independent of their microscopic details. It explains, without adjustable parameters,
such features as the domains of filament formation and switching, voltage-independent current in SET and
current-independent voltage in RESET regimes, the relation between the set and reset voltages, filament
resistance independent of its length, etc. Furthermore, it expresses the observed features through the
material and circuitry parameters, thus paving the way to device improvements.
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I. INTRODUCTION: QUESTIONS

Filamentary resistive random-access memory (RRAM)
devices have been a subject of intensive investigations
for more than a decade. In spite of a significant amount
of data accumulated for various materials systems, many
aspects of device operations are not understood and, unlike,
e.g., spin-transfer-torque memory [1], their understanding
remains rather limited, and a sufficient theory of the
resistive-switching phenomena is not yet available.
There is a consensus about the crucial role of

conductive filaments (CFs) determining RRAM operations.
CFs can break switching the device into the RESET state.
Reestablishing CF would switch the system into its SET state.
The existing models of CFs are either qualitative or entirely
numerical, containing a number of adjustable parameters.
This work introduces a quantitative phenomenological

theory of RRAM answering several outstanding questions.
They are listed in Table I referring to the sketch of typical
current-voltage characteristics in Fig. 1. As an example, we
elucidate the symmetry URESET ¼ −USET, similarity
between URESET and USET in various systems, vertical
and horizontal domains of the current-voltage character-
istics in the SET and RESET regions, respectively, etc.
Our theory below provides quantitative answers to the

questions of Table I in the framework of a phenomenological
analysis that does not specify the microscopic structure of
CFs or the details of chemical composition. Instead, it
concentrates on generic thermodynamic properties consis-
tent with the data. The quantitative description is achieved by
introducing the chemical potentials of different phase states
involved and considering the system free energy that includes
the thermal, the electric, and the chemical components.
The consideration is organized as follows. It starts with a

purely qualitative discussion in Sec. II that explains without

any math the model and the logic of the paper; that section
is appropriate because the paper deals with a variety of
subjects formally belonging to different fields in physics
and applications. In Sec. III, we introduce our model of
CFs with a previously overlooked property of the polarity-
dependent electric charging. Section IV describes the
thermodynamic analyses of nucleation and growth proc-
esses related to the domains in Fig. 1 and Table I. These
processes are treated quantitatively in Sec. V.

II. QUALITATIVE DESCRIPTION

Here, we present a low-resolution “bird’s-eye” view guide
through subsequent consideration, some parts of which
contain the inevitable distracting details. This section pro-
vides a brief summary of this paper’s approaches and
major results.
(1) In Sec. III, we describe a model independent

capacitive property of CFs, i.e., its ability to accu-
mulate electric charges in response to the applied
bias. The charges generate strong lateral electric
fields polarizing the existing electric dipoles and/or
creating the displacements of charged defects in the
surrounding host, which couples CFs with the
insulating matrix. That coupling is bias dependent,
thus explaining the nature of SET and RESET

transitions under biases of opposite polarities.
(2) Also, in Sec. III, we show how the latter polarization

becomes possible at temperatures exceeding a cer-
tain freezing temperature (qualitatively similar to the
glass transition temperature), which is determined
by the applied voltage and its pulse width or ramping
rate. The same freezing temperature determining the
SET and RESET transitions makes their corresponding
voltages equal in absolute value.
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(3) In Sec. IV, we show that a sufficient description of the
empirically observed RRAM facts requires that the
material involved has at least three distinct phases:
stable insulating, metastable conductive, and unsta-
ble conductive. Also, we analyze the role of material
amorphicity and related observations of logarithmic
time relaxations, noises, and parameter drifts.

(4) Based on the latter three-phase diagram, the quanti-
tative analyses of SETand RESET processes in Sec. IV
separately addresses the nucleation and growth
processes, including the nucleation of CFs and its
radial growth, as well as the nucleation and growth
of insulating gap responsible for the high resistive
state. We derive analytical results for the threshold-
switching voltage, CF radius, SET voltage, the RESET

current drop, the gap width, and the saturated RESET

current through the material parameters.

III. FILAMENT MODEL

Any CF model has to address a significant fact: that CF
resistance is practically independent of its length h. An
often-assumed picture of CFs postulates a local geometrical
constriction responsible for CF resistance (the hourglass
model [8,9]). In that model, the RESETand SET processes are
attributed to the destruction and restoration of the con-
striction. Experimentally, it was found that CFs can have a
truncated cone shape. However, the radii of that cone faces
are typically different by only a numerical factor [10,11],
r1=r2 ∼ 2, not significant enough to attribute the entire cone
resistance to its narrow region [the truncated cone resis-
tance [12], Rcone ¼ ρh=ðπr1r2Þ, where ρ is the resistivity
and h is the filament length].

A. Filament electrostatics

Our phenomenological theory below does not specify
CF structure, treating it as a formed conductive cylinder; we
will not assume that its conical shape is essential. The CF
resistance independent of its length h will be explained
without the assumption of its determining constriction [see
Eqs. (33) and (35)]. As an alternative structure-independent
feature, our model in Fig. 2 includes the electric charges
accumulated by CFs due to its electric capacitance, as
explained next; they induce electric polarization that
couples the host and the CF.

FIG. 1. A sketch of the typical current-voltage characteristics
[2–7] showing various domains in Table I.U is the voltage across
the device, which is different from the power source voltage V
due to the load resistor RL effect. In particular, the latter can
change the shape of the A-B and B-C domains decreasing the
difference between UT and USET; subtracting the voltage drop
across RL leads to a noticeable difference between UT and USET
[2–4]. USTOP is determined by the maximum absolute value of
voltage V during the reset process. The slope R at point C is the
conductive-filament resistance. Note that, in experiments, the SET

current ISET is defined as the maximum (compliance) current
allowed. The dashed fragment in the third quadrant shows the
sometime-observed deviations from the current saturation behav-
ior with jIFj ≳ jIEj. The dashed fragment in the first quadrant
represents the switching part of the SET process where the data
points between A and B may not be measurable.

TABLE I. Outstanding questions about RRAM current-voltage (I-U) characteristics.

Domain marked in Fig. 11,b Question

A-B, switching at threshold voltage UT . What is the nature of the snapback at UT and its dependence
on material and circuit parameters, temperature, and voltage rate?

B-C, vertical I-U curve at USET. USET vs material parameters.

C-0-D, the on-state (low-resistance) domain. Filament radius and resistance R ∝ 1=ISET vs material parameters.

D-E, switching to RRESET at URESET. Why does the resistance increase past URESET? What is the nature
of snap forward? Expression for URESET, IRESET, and snap-forward
ratio ID=IE.

E-F, the current saturating to IR;sat
or slightly increasing towards USTOP
(“horizontal I-U curve”).

Expressions for IR;sat and/or IðUÞ in E-F.

aHere, we limit ourselves to the case of bipolar RRAM undergone during the filament-forming process.
bWe do not discuss here the off-state (high-resistance) domain F-0-A, in which I-U characteristics are determined by the insulating

material properties without structural transformations.
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The latter polarization can be caused by either redis-
tribution of ions or reorientation of local embedded dipoles.
The existence of such dipoles does not necessarily imply
that the host material exhibits bulk ferroelectricity. It is
indeed known that making HfO2 ferroelectric requires
particular doping and growth techniques stabilizing the
nonequilibrium orthorhombic phase [13]. However, strong-
enough electric dipoles with high susceptibility can exist
locally due to the stress- or field-related conditions around
CFs. They were observed even for amorphous morpholo-
gies [14] and can be vitally important for the understanding
of materials with high dielectric permittivity [15], such as
HfO2. For a particular case of Hf-based RRAM, it should
be noted that the high dielectric permittivity ε ≈ 25 is
mostly due to ionic displacements [16] [as follows from a
comparison with the square of the refraction index (approx-
imately 2.1)] and can be pinned by some defects.

1. Filament charging

To describe CF charging, we recall the well-known
model of two long parallel wires of radius r and resistance
R, each separated by a distance rmax ≫ r and connected to
the power source through resistance RL ≫ R. The poten-
tials of the wires will be different by IRL. The latter
potential difference results in capacitive linear charges �β
on the wires. The linear charge density β is found by
equating the integral of its created electric field 2β=r to
IRL. As a result, the capacitance (C) and charge (β) per
length and the radial electric field at the wire surface (Er)
become (in Gaussian units)

C ¼
�
2 ln

�
rmax

r

��
−1
; β ¼ IRLC; Er ¼

2β

r
; ð1Þ

where I is the current. Because rmax ≫ r, changing rmax by
a numerical factor or even by an order of magnitude (say,
from 1 mm to 1 cm) will not significantly change the results
in Eq. (1), which are not sensitive to the circuitry design.
The expression for linear charge density β reflects its
capacitive nature corresponding to the voltage difference
IRL between CFs and the rest of circuitry separated by the
load resistance.
A simple analysis leading to Eq. (1) can be related to

Fig. 2 by identifying one of the two parallel wires to CFs
and another to the lump circuit resistance Rcirc. The fact
that the second wire may not be parallel to the CF is of
no importance due to the inequality rmax ≫ r, as noted
after Eq. (1). The constraint RL ≫ R, Rcirc is not
significant and can be relaxed, as explained in the rest
of this subsection below.
The phenomenon of electric fields produced by current-

carrying wires has been known since 1852, first considered
by Weber, as is thoroughly discussed in Ref. [17]. (We note
parenthetically that, with rare exceptions [18], it is not
sufficiently presented in the standard physics curricula,
being overshadowed by the magnetic phenomena caused
by electric currents.) Specifically, the expression for Er can
be derived without the above assumption of RL ≫ R
[Eq. (6.21) in Ref. [17] ], making Er dependent on the
longitudinal coordinate zmeasured from the wire midpoint,

Er ¼
1

r

�
ln

�
rmax

r

��
−1
�
IRL þ IR

2

�
1 −

2z
h

��
: ð2Þ

We observe that the radial field around the CF remains
proportional to the current I, and its direction is determined
by the current polarity. Equation (2) describes the circuitry
in Fig. 2 when Rcirc is included in the load resistance:
RL → RL þ Rcirc in Eq. (2).
The generalization in Eq. (2) shows that the effect of

filament charging and its based analysis below remains,
regardless of the load-resistor value. One other observation
is that the radial field effects exist for either sign of I.
That field and polarization directions are determined in
the process of device electroforming (by the sign of the
forming voltage pulse [19]). Therefore, in this theory
framework, RRAM can be formed and operated by bias
of any polarity, which is consistent with the body of various
experimental data.
Finally, we note that when the surrounding material

polarization Π is aligned with the electric field Er, its
related energy density −ΠEr does not change sign with z
[as opposed to Er in Eq. (2)] and remains significantly
negative relative to the energy gain. In the opposite case of
antialigned Π (achievable by fast switching of the current
polarity), the energy density is positive, corresponding to
the energy loss conducive to CF breakup, as explained in
what follows.

FIG. 2. A conductive filament under biases of different polar-
ities accumulates the electric charges (denoted by ⊖ and ⊕),
creating the electric field that (left panel) attracts or (right panel)
repels ions (for the specificity shown as ⊕ outside the filament).
Rcirc represents the system wires with their own capacitance and
charges, characterized by the linear dimension rmax. RL is the
load resistance; RL ≫ Rcirc. Short arrows represent the electric
polarization along the energetically favorable directions parallel
to the local field.
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2. Filament screening

A realistic analysis takes into account that a CF-induced
lateral field must be screened by the redistribution of free
electrons in the metal electrodes. Such a screening of a
charged filament was considered in Ref. [20]. It was shown
that CF-induced lateral electric field is screened at distances
of the order of filament length h, which is intuitively clear
from the image-charge argument. As a result, rmax under
the logarithm in Eq. (1) should be replaced with h, which
makes the radial electric field fully independent of a
particular circuit design.
To avoid any misunderstanding, we note that the latter

electrode screening takes place for the equipotential elec-
trodes, each at its own potential; the potential difference
between the electrodes equals the applied voltage. In fact, it
is the screening that maintains the electrode equipotential-
ity by eliminating the tangential component of the electric
field at the electrode interfaces.
While the filament capacitance is numerically

insignificant—say, C ∼ 0.1 pF=cm—its radial electric field
is strong due to the relatively small radius r ≪ h. The field
in Eq. (1) is strong compared to the longitudinal field
IRL=h between the electrodes, with the ratio Er=E ¼
ðh=rÞ= lnðh=rÞ ≫ 1 (that remarkable strength of the radial
electric field was noticed also in Ref. [17]).

3. Other considerations

C in Eq. (1) should not be mixed with the specific
capacitance of a stand-alone thin metal needle analyzed
since Maxwell [21–23], and given, per length, by

C0 ¼
�
2 ln

�
h
r

��
−1
; ð3Þ

numerically close toC. The difference between theC andC0

effects is that the former accumulate capacitive charges due
to the electric-current-caused potential difference, which
depends on the current polarity, while the latter acquires
charges in response to the chemical-potential difference
between the material of the CF and its surrounding material;
i.e., it is polarity independent. (Theoretically, applying
external bias between the two phases would introduce the
electrochemical potential instead of the chemical onemaking
the effect polarity dependent as well; however, it is not quite
clear how such a bias could be introduced.) For example,
estimating the Fermi-energy difference between a Hf-
dominated CF and its surrounding HfO2 [24] as δEF ∼ 1
to 2 eV, the current-independent charge per length becomes

β0 ¼
C0δEF

e
; ð4Þ

where e is the elemental charge. Depending on the relation
between β and β0, one can predict current-I-driven changes
in the electric field Er contributing to CF-related operations
in both bipolar and unipolar modes.

Through the radial electric field, the bias polarity will
stimulate redox or other processes affecting CF size and
morphology. Specifically, the above-predicted electric field
Er could explain the radial drift of ions assumed by the ion-
drift models for RRAM operations (see, e.g., Ref. [25] and
the references therein). However, our phenomenological
treatment here does not explicitly specify the underlying
microscopic models.
Equation (1) formally predicts a CF-generated radial

electric field that should disappear when the current is
turned off, I ¼ 0. In Sec. IV below, we consider the atomic
rearrangements (ion or ferrodisplacement) electric polari-
zationΠ caused by that field. Such a polarization possesses
significant inertia, making it long-lived after the current is
turned off. Furthermore, we will show that a self-consistent
state of CF charge and surrounding polarization can form a
polaronlike stable or metastable state.

B. Freezing temperature

Another model-independent statement pertains to the
fact that a CF does not undergo any significant changes
(representing a long-lived conductive channel) when the
voltage across the device is between USET and URESET,
while voltages beyond that interval cause significant CF
transformations. Specifically, R ¼ dV=dI determines the
resistance of the long-lived CF that does not change
between USET and URESET, i.e.,

RðUSETÞ ¼ RðURESETÞ: ð5Þ

Phenomenologically, the property ofUSET andURESET to
confine the regime of CF stability means that they play the
role of “freezing” or “unfreezing” voltages, such that the
temperature above USET and below URESET must be higher
than some freezing temperature Tf, while it is below Tf

when URESET < U < USET. Tf can correspond to a par-
ticular phase transition, such as, e.g., glass transition [26],
but also, in general, to any thermally activated process.
Assuming the activated atomic transformation with the
characteristic time τ0 expð−Wa=kTÞ, where τ0 ∼ 10−13 s is
the characteristic period of atomic vibrations, k is the
Boltzmann’s constant, and Wa is the activation energy. Tf

is determined by the condition (similar to Refs. [26–28])

τp ¼ τ0 expðWa=kTfÞ; ð6Þ

where τp represents the voltage pulsewidth or ½dðlnUÞ=dt�−1
for a continuously varying voltage UðtÞ.
The Joule-heat-related temperature change is described

by δT ¼ Tf − T0 ¼ τTP=kNa, where τT is the thermal-
ization time, T0 is the room temperature, P ¼ U2=R, and
Na is the number of degrees of freedom (roughly equal to
the number of atoms) in the region involved. Therefore, the
freezing or unfreezing condition takes the form
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τT
U2

RNa
¼ Wa

lnðτ=τ0Þ
− kT0: ð7Þ

Since the criterion in Eq. (7) is satisfied for voltages
USET and RðUSETÞ ¼ RðURESETÞ according to Eq. (5), we
conclude that it is satisfied when URESET ¼ −USET, thus
elucidating the latter relation pointed out among the out-
standing challenges in Table I. We note that our model does
not rely on details of any particular microscopic mechanism
for Eq. (7) unlike, say, Eqs. (1)–(6) in Ref. [25]. In
particular, it remains applicable to the processes in glasses
of phase-change memory where bipolar switching was
recently observed [29].
Furthermore, Eq. (7) predicts that USET and URESET

will change logarithmically with τp, which was observed
[2,30–32]. We note that, in a noncrystalline system, the
activation energies generally vary between different local
regions in the manner described in Sec. IV C.

IV. CHEMICAL POTENTIALS

A. Three states of the system

Similar to the standard phase transitions, we assume CF
transformation through the nucleation and growth stages.
The newly nucleated phases may not be immediately stable
or even long-lived. We consider a possibility that they
initially appear to be unstable, having to undergo further
transformations towards stability. Indeed, it was independ-
ently argued [33] that in polymorphic systems, nucleation
can evolve in two steps, through an intermediate metastable
phase. Also, it has been experimentally observed that CFs
can be annealed at a high-enough temperature [34,35]; i.e., it
presents a metastable state long-lived enough to have
practical significance as a nonvolatile memory.
Table II specifies our model processes and their corre-

sponding chemical potentials related to various domains in
Fig. 1. The field-induced nucleation at the threshold voltage

UT is followed by the longitudinal growth of a narrowCF that
is unstable without the electric field. As shown below, its
subsequent radial growth is characterized by resistance R
inversely proportional to the current—and hence the vertical
current-voltage characteristic atUSET. The chemical potential
of the structure constituting that unstable CF is higher than
that of the insulating host, μuc > μi, as reflected in Table II.
The relations between the chemical potentials of

insulating, unstable (short-lived) conductive, and metasta-
ble (long-lived) conductive phases and their corresponding
thermodynamic barriers are illustrated in Fig. 3 for
zero electric field, and in Fig. 4 for finite electric biases
in RRAM operation. The barriers describe energetically
unfavorable configurations through which the system
evolves towards a metastable or stable state.
While energetically most favorable under zero bias

[Fig. 4(a)], the insulating phase significantly increases its

TABLE II. Processes and chemical potentials corresponding to different domains in Fig. 1.

Domain Process CPa

A-B Nucleation and longitudinal growth of a narrow
unstable CF shorting between the electrodes

μuc ¼ μi þ δμ1 > μi

B-C Radial growth of the long-lived charged CF and
its stabilizing polarization near point C,
making CF long-lived

μuc→μmc¼μuc−δμ2<μuc, μmc > μi

C-0-D Long-lived metastable CF changing the charge
polarity at point 0

μmc

D-E Unfreezing oppositely charged metastable CF in
the “wrong polarization” environment, CF
breakup via nucleation of insulating gap

μmc → μi

E-F Increase in the insulating gap to its steady-state
width

μi

aCP stands for the chemical potentials of the insulating phase (μi), unstable CF (μuc), and metastable CF (μmc)
phases illustrated in Fig. 3.

FIG. 3. (Left panel) A contour plot of the system chemical
potentials in 2D space of unspecified configurational coordinates
showing three distinct minima corresponding to the insulating (i),
unstable conductive (uc), and metastable conductive (mc) phases
and their related barriers. (Right panel) 1D presentation of the
same along an unspecified coordinate. Arrows represent trans-
formations between the mc and uc and the uc and i phases where
the energy barriers are relatively low.
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energy (∝ E2) under electric bias due to the strong electric
field, E ¼ U=h. Assuming, as usual, a load resistance RL in
series with the device resistance R, the source voltage V
corresponds to the device voltage U ¼ VR=ðRþ RLÞ con-
siderably lowered by CF that introduces a low-resistance R
path. Therefore, under electric bias, the conductive states
have lower energy than the insulating one, as reflected in
Fig. 4(b). In the same diagram, arrows show the processes of
nucleation and growth through a short-lived state (uc), with
the left barrier playing the role of nucleation barrier
decreased by the field, as described in Sec. VA 1. The latter
short-lived state then decays into the long-lived conductive
state (mc), which is lower in energy than the insulating state
(i); this sequence constitutes the SET process.
Presented in Fig. 4(c) is the system with SET-formed CF

under the instantaneously reverted bias polarity. The
inherited polarization conflicting with the instantaneously
acquired CF opposite charge strongly increases the free
energy of a formerly stabilized CF state, making it unstable
and triggering CF breakdown by forming an insulating gap.
This constitutes the first stage of the RESET process, which
is described more quantitatively in Sec. VA 2.
Shortly after CF polarity reversal, the surrounding

polarization realigns correspondingly, lowering CF energy
as depicted in Fig. 4(d). The subsequent growth of
the insulating gap proceeds through the energetically
unfavorable short-lived (uc) state represented by arrows in
Fig. 4(d). This constitutes the second stage of RESET

quantitatively described in Sec. V B 2.
Phenomenologically, δμ1 ¼ μuc − μi remains a material

parameter. It can be estimated for specific CF models, such
as those formed by oxygen vacancies in HfO2. Assuming
their relative concentrations in the bulk and CF to be,
respectively, nb ∼ 0.1 and nCF ∼ 1, and using the results for
dilute solutions (nb ≪ 1) [36], one gets

δμ1 ¼
kT
a30

lnðnCF=nbÞ; ð8Þ

where a30 is the volume per vacancy, roughly equal to the
atomic volume. Based on the temperature measurements
[37], we take T ∼ 600 K. Taking a0 ∼ 0.2 nm as well
yields δμ1 ∼ 109 J=m3.
At a certain radius and resistance satisfying the

criterion in Eq. (7) with U ¼ USET, CF becomes stabi-
lized by the host polarization, as explained in Sec. III
before the paragraph containing Eq. (1). Its structure
remains frozen in the interval of voltages URESET <
U < USET. The polarization Π contribution to the
chemical potential is given by [38] δμ2 ¼ Π · E where
E is the electric field, which is due to the charged CF for
the case under consideration.
We describe the polarization assuming that it signifi-

cantly screens the filament field, i.e., E ≈ −4πΠ, and

δμ2 ¼ jEΠj ≈ 4πΠ2: ð9Þ

According to definition, the polarization Π ¼ ðeaÞn, where
ea is the elemental dipole corresponding to the elemental
(ion) charge e shifted over distance a, and n is the concen-
tration of such dipoles. We take the typical a ∼ 0.1 nm, and
n ∼ 1022 cm−3, which yields δμ2 ∼ 109 J=m3. In spite of the
order-of-magnitude coincidence, δμ1 ∼ δμ2, one should
assume δμ1 > δμ2, on empirical grounds reflected in
Table II. Note that the above estimated polarization does
not require a significant diffusion of ions in the host material
and thus can be fast enough to explain the observed fast
transformations.
With voltage U across the device changing its polarity,

so does the electric charge density β on the CF, and its
corresponding electric field E. Therefore, the former
polarization becomes energetically unfavorable, leading
to the chemical potential μmc þ jΠ ·Ej > μmc and trigger-
ing CF disruption atURESET, when the criterion in Eq. (7) is
satisfied and CF structure thaws off. The disruption creates
an insulating gap, which can grow further, as described in
Secs. VA 2 and V B 2.
Finally, we note that a three-phase model similar to

that of Fig. 3 can be developed for the alternative case when
the chemical potential of conductive phase is the lowest, as,
for example, takes place in the phase-change memory
structures. Indeed, it was observed that the structural
transformations in phase-change memory involve more
than just two phases [39]; hence, a three-phase description
is relevant.

B. Bound states of CF charge and polarization

In connection with the concept of a polarization-
stabilized CF, we would like to point out the possibility
of the polaronlike bound states retaining the CF charges
even after the current I [in Eq. (1)] is turned off. Indeed,
based on the standard thermodynamics of dielectrics, the
polarization-energy gain can be represented as [38]

FIG. 4. Free energy vs configurational coordinate under differ-
ent electric biases corresponding to Fig. 1. (a) Zero bias (same
shape as in Fig. 3). (b) Point A, bias UT triggering a SET process
by nucleation and radial growth of the CF. (c) Point D, the
opposite polarity charge triggering RESET via CF breakdown by
nucleation of the insulating gap. (d) Point E, a strong field and a
composite CF combining an insulating gap and conductive
domains in the final stage of RESET. See the text for further details.
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δF ¼ −
h
2

Z
h

r
ΠErðr0Þ2πr0dr0 ¼ ð1 − εÞhβ2 ln

�
h
r

�
; ð10Þ

where we have taken into account that Π ¼ Erðε − 1Þ=4π.
One can analyze the possibility of persistent CF charging

by adding to Eq. (10) the energy-loss terms βhV and
ðβhÞ2=2ðChÞ, with β and C taken from Eq. (1). They
present, respectively, the work done to move the electric
charge through the voltage source V and to charge the CF
capacitor. Approximating V ≈ IRL, it is straightforward to
see that persistent CF charging is energetically favorable if
ε > 2þ lnðh=rÞ. The latter condition takes place for high-
dielectric-permittivity materials. More-realistic estimates
should include the polarization-related anisotropy, strains,
and nonlinearity.

C. Role of amorphicity

Here, we discuss the role of the amorphicity of the
material phases involved. It is well known, from the physics
of amorphous materials, that they are nonequilibrium
systems gradually decreasing their energies with time
(aging). Specifically (see Ref. [40] and the references
therein), the amorphous structure relaxation processes
are responsible for the observed drift of parameters in
phase-change memory based on chalcogenide glasses.
The atomic configurations undergoing structural trans-

formations are described as double-well atomic potentials
characterized by the random thermodynamic barriers WB.
The probabilistic distribution of the random barriers WB is
approximated as uniform,

gðWBÞ ≈ 1=ΔWB; ΔWB ¼ WB;max −WB;min; ð11Þ

between the two boundary values. That makes their
relaxation-time distribution reciprocal in t, and its related
change in the system energy is logarithmic in time [40],

δμ ¼ δμmin þ ðδμmax − δμminÞfðtÞ; ð12Þ

where the distribution function of relaxation times is
given by

fðtÞ ¼ kT
ΔWB

ln

�
t

τmin

�
; τmin < t < τmax; ð13Þ

and

τmaxðminÞ ¼ τ0 expðWB;maxðminÞ=kTÞ: ð14Þ

fðtÞ saturates at fmax ≡ fðτmaxÞ ¼ 1 for times t > τmax and
can describe a remarkably broad time interval ranging from
τmin shorter than one microsecond to, say, τmax ∼ 105 s,
assuming τ0 ∼ 10−13 s (a characteristic atomic-vibration
time) and WB;max ¼ 1 eV as a rough estimate.

According to Eqs. (12) and (13), any structural trans-
formation in Table II and Fig. 3 involving one or more
amorphous components will exhibit long time-relaxation
behavior following logarithmic dependence. In some cases,
these underlying logarithmic dependencies reveal them-
selves in other temporal forms entering results in exponents
or other functions, such as, e.g., the temporal drift of
resistance [40] given by

RðtÞ ¼ Rð0Þ
�

t
τmin

�
ν

; ν ¼ Du0
ΔWB

; ð15Þ

whereD is the deformation potential and u0 is the saturated
value of the relative volume change (dilation), so that
ν ∼ 0.03. The underlying mechanism is the material defor-
mation changing the Fermi energy and resistance.
Long time logarithmic-type relaxations in RRAMdevices

have been observed [2,30,31]. Still more evidence of random
double-well atomic potentials is the 1=f noise [41] (see
details in Sec. VIII.3.3 of Ref. [42]). 1=f noise corresponds
to the self-correlation function (also known as the Pearson
correlation coefficient) logarithmically decaying with time
[43]. Therefore, the recently observed [44] correlation
coefficient decaying linearly in log t for RRAM resistance
measurements separatedby time t can be related to the above-
described random double-well potentials.
The latter assertion requires a special comment explain-

ing how the measurements in RRAM devices reveal mostly
the random telegraph noises (RTNs; see Refs. [45,46] and
the references therein) rather the 1=f noise. RTNs are
commonly related to double-state fluctuators (double-well
potentials) when the number of such fluctuators is small
[42]. When the size of large systems with 1=f nose
decreases to a degree where there are only a few fluctuators
left, the noise acquires the behavior of the RTN.
Conversely, the superposition of a great number of two-
state fluctuators corresponding to small devices with
various relaxation times is seen as 1=f noise [47,48].
The latter argument applies to RRAM filamentary

devices where the effective volume contributing to oper-
ations is extremely small, limited to a fraction of the CFs
undergoing structural transformations; similarly small is
the number of contributing fluctuators corresponding to
noises of not-too-low frequencies and revealing themselves
via RTN signal. However, in extremely long time mea-
surements, the number of significant fluctuators increases
to include those with lengthy relaxation times. A system
with a large number of fluctuators possesses 1=f noise
behavior, which explains the observed logarithmic decay of
correlation functions [44].
It is a general feature specific of the RRAM nanosized

devices that the number of double-well potentials affecting
CFs is rather limited, i.e., not much larger than unity.
Therefore, the results of the reprograming of a given device
cannot be accurately described by averaging over
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continuous distribution of barriers characterizing the cor-
responding infinite system. This new situation of “nano-
glass” remains to be further explored, although some
important results are listed in Sec. V.3 of Ref. [42].
Here, we limit ourselves to stating that the lack of self-
averaging in a small system with random double-well
potentials leads to significant variations in their created
deformations [49], and thus resistances, some of which will
increase or decrease in the course of reprograming. This
type of behavior was observed with the magnitude of
dispersion increasing towards small-radius CF devices [2].
Also, we would like to point out the data on resistance

variations as a function of the number of device reprog-
raming cycles N [Fig. 3(a) of Ref. [50] ] exhibiting the
dependence R ∝ Nν for both high- and low-resistance
states. In the meantime, this or another specific device
exhibits noticeable fluctuations between programing
cycles.
We speculate that the latter dependence can be explained

by Eq. (15), where t is replaced with N. Such an
interpretation implies that increasing the number of reprog-
raming cycles increases the total time of exposure to
elevated temperatures activating higher and higher barriers
in the system. While this is not the standard temporal drift
of parameters of a stand-alone device, it can be described as
the “reprograming parameter drift”.
Finally, we would like to point out a difference between

the temporal dependencies in Eq. (12) and those of Eq. (7).
The behavior in Eq. (12) is due to multiple random
activation barriers in a broad interval of energies, character-
istic of amorphous systems. On the contrary, Eq. (7)
describes a time dependence in a system with a single
energy barrier Wa. Specifically, it shows how a power of
perturbation, necessary to change the material structure,
depends on the time during which it is exerted, while
Eq. (12) predicts long time relaxations that are independent
of the power injected.

V. QUANTITATIVE ANALYSIS

A. Nucleation events

Here, we consider the two nucleation events alongside
the other processes listed in Table II.

1. Threshold switching

Our thermodynamic approach relates the threshold
voltage UT to the field-induced nucleation [51–54]. Omit-
ting the details, it can be presented, in Gaussian units, as
[from, e.g., Eq. (13) of Ref. [51] and with the additional
multiplier 1=2 derived in Ref. [55] ]

UT ¼ hW0

kT lnðτp=τ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π3α3ΛW0

32εr3c

s
; ð16Þ

where

W0 ¼ 16πσ3=3δμ2 and rc ¼ 2σ=δμ

are the classical nucleation barrier and radius [56], σ
and δμ are the interfacial tension and the difference in
chemical potentials between the insulating host and the
CF, α ¼ rmin=rc ∼ 0.1, rmin is the minimum CF radius
(consistent with its integrity), ε is the dielectric permittivity
of the host material, τp is the electric pulse length, and
τ0 ∼ 10−13 s is the characteristic atomic-vibration time in
solids; Λ≲ 10 is a multiplier logarithmically dependent on
the embryo aspect ratio.
Equation (16) is convenient for estimates because the

characteristic ranges ofW0 ∼ 1–3 eV and rc ∼ 1–10 nm are
known for various cases of nucleation in solids [57–65]. We
note that, corresponding to the abovementioned ranges forW
and rc, our results predict a broad range of threshold voltages
from 0.2 to 5 V that can explain multiple observations for
different systems. Here, we use rc ∼ 3 nm and W0 ∼ 3 eV.
Setting also h ∼ 10 nm, lnðτp=τ0Þ ∼ 10, ε ∼ 25, and T ∼
600 K (due to the Joule heat [19]) yields UT ∼ 1 V,
consistent with the typical data [66].
We recall that the mechanism of field-induced nucleation

[51–54] is based on a strong reduction of the electric-field
energy due to nucleation of a conductive-needle-shaped
embryo. Once created, the field strength is further amplified
towards its tip (the lightning-rod effect). Therefore, nucle-
ation of the next embryos at the tip becomes easier, and the
probability of formation of a narrow CF is determined by
the first nucleation event at the threshold voltage given in
Eq. (16). The radial growth of a just-formed narrow CF
with r ∼ rmin is described in Sec. V B 1.
Note that the above description defines the threshold

voltage through the condition

τp ¼ τ0 exp

�
~U
U

�
when U ¼ UT; ð17Þ

where ~U is presented by an obvious combination of
parameters from Eq. (16), for example,

~U ¼ hW0

kT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π3α3ΛW0

32εr3c

s
: ð18Þ

If the field increases with time, so that U ¼ λt (used in
some experimental studies), then the probability p of
nucleation is described by the equation

dp
dt

¼ 1

τ0
exp

�
−

~U
U

�
: ð19Þ

Integrating the latter and setting p ¼ 1 defines the threshold
voltage through the equation
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UT ≈ ~U

�
ln

�
U2

T

λ ~Uτ0

��−1
: ð20Þ

The transcendental equation (20) can be easily iterated
by replacing UT under the logarithm with its approximate
value starting with UT ¼ ~U, leading to

UT ≈ ~U

�
ln

�
~U
λτ0

��−1
; ð21Þ

etc., where Eq. (21) provides a rather close approximation
with an accuracy of approximately 10%. It predicts that UT
should increase with the sweep rate λ, which is consistent
with the data.
Another aspect of nucleation switching important for

noncrystalline nanodevices is its stochastic nature. It was
shown [52,53] that, because of the inherent disorder, the
delay times of switching and the threshold voltages are
statistically distributed and the width of these statistical
distributions decreases with the area of a structure (i.e., a
CF cross section) where the nucleation takes place.
Conversely, the increase in UT variations is due to
suppression of self-averaging with the area decrease.
The underlying physics is that the field-induced nucleation
in a RRAM structure takes place through the gap of the
preliminary formed filament, whose cross-section area is
rather small (on the order of several nanometers).
Therefore, that nucleation evolves along the easiest of
the available pathways, which in a given filament does not
necessarily represent the entire statistical distribution.
A more quantitative analysis of that issue for RRAM

devices goes beyond the scope of this paper. Here, we limit
ourselves to pointing out that, based solely on the above
statements, the variations between the parameters of the
nominally identical RRAM structures should decrease with
CF area. The latter prediction is in qualitative agreement
with the observations presented in Fig. 4 of Ref. [2], where
variations strongly increase with a CF resistance that is
inversely proportional to the CF area. This aspect of the
nanoglass behavior is similar to that discussed in the
preceding section for random double-well potentials.

2. Nucleation of insulating gap

As explained in Sec. IV, the gap formation is triggered by
the unfavorable polarization of a host material developed
during the SET process. The gap constituting a new phase is
energetically favorable, providing gain Alδμmax in free
energy, where A is the gap cross-section area and l is its
width. Here,

δμmax ≈ δμ1 þ δμ2 ð22Þ

corresponds to the transition from the unfavorably polar-
ized CF to the insulating phase. We consider two possible

scenarios: the complete rupture of CF, A ¼ A0, and the
partial CF rupture leaving some neck of cross-section area
A0 − A between the gap edges (Fig. 5), where A0 is the
cross-section area of CF before gap formation.
Complete rupture.—We assume first that the electronic

processes remain fast enough to adiabatically follow
changes in atomic configuration, particularly the electric
current through the stack remaining the same due to the
corresponding increase of the local electric field (the
alternative case is discussed at the end of this subsection).
The gap formation will then change the free energy by

F ¼ −δμmaxA0lþ 2A0σ þ E2

8π

ρ2i
ρ2c

A0l: ð23Þ

Here, 2σA0 is the interfacial energy loss. The last term
describes the electric-field energy due to the interior field
Eint that must be, by a factor ρi=ρc ≫ 1, stronger than
E ¼ U=h to maintain the current flow through the stack. F
becomes negative when

l ≥ lc ¼ rc

�
1 −

E2ρ2i
8πδμmaxρ

2
c

�−1
; ð24Þ

where the classical nucleation radius rc ¼ 2σ=δμmax [56].
Once the gap is formed, the current will decrease by a

factor of

ID=IE ¼ ρi
ρc

�
1 −

E2ρ2i
8πδμmaxρ

2
c

�
; ð25Þ

where ID and IE stand for the currents in points E and D in
Fig. 1. Assuming the typical E ∼ 105 V=cm and δμmax∼
2 × 109 J=m3, one can estimate E2=8πδμmax ∼ 10−6,
while the ratio ρi=ρc is sensitive to material properties
and varies between different device recipes. (The voltage
will change as well due to redistribution between the load
and a just-formed gap resistance.)
It follows that (a) the snap-forward ratio ID=IE depends

on the ratio of insulating and conductive phase resistivities
varying between different materials, and (b) when the latter
ratio is high enough, the filament breakup becomes
impossible [ID=IE cannot be negative in Eq. (25)]: CF is
stabilized by the electric field.

FIG. 5. Sketch of an insulating gap of area A and width l in the
filament cross section of area A0. Two edges are shown for the
case of partial rupture where CF retains its integrity in the area
A0 − A.
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Partial rupture.—Following Fig. 5, the interior field Eint
must be, by a factor A0=ðA0 − AÞ, stronger than E ¼ U=l to
provide continuous current flow through the gap. As a
result, the free-energy change accompanying the gap
formation becomes

F ¼ −δμmaxAlþ 2Aσ þ E2

8π

A2
0

ðA0 − AÞ2 Al: ð26Þ

F is stationary when

A0 − A ¼ A0ðE2=8πδμmaxÞ1=3 ð≪ A0Þ: ð27Þ

The corresponding energy decrease must be greater than
the surface energy loss 2σA0. That takes place when l > rc.
We observe that the insulating gap can nucleate with a

width l≳ rc nm, leaving a narrow bridging neck. As the
gap is formed, the current will snap forward, decreasing by
a factor of

ID=IE ¼ A0=ðA0 − AÞ ¼ ð8πδμmax=E2Þ1=3 ∼ 100: ð28Þ

The latter prediction is consistent with the data [2,4–7].
Comparing the free energies in Eqs. (23) and (26) shows

that the complete gap rupture is energetically more favor-
able when ρc=ρi < ðE2=8πδμmaxÞ1=2 ∼ 0.01, where we use
E ∼ 106 V=cm and δμmax ∼ 109 J=m3. (In the case of the
very fast structural transition mentioned at the end of the
preceding subsection, the latter inequality changes to
l=h < 0.01.)
We end this section by pointing out its approximations

lacking numerical factors and neglecting the concomitant
thermal processes that may be significant [19]. However,
this remains the only analytical approach to CF rupture
phenomena since their first observationmore than 100 years
ago (for the contacts of dissimilar metals) [67]; further
efforts are called upon.

B. Growth processes

Our approach is based on the reduction of a kinetic
problem of the filament or gap growth to the free-energy
analysis, which we briefly illustrated for the case of CF
radii. We start with the kinetic Fokker-Planck equation,
which, for the average CF radius (neglecting variations in
an ensemble of different CFs) can be transformed into [68]

∂r
∂t ¼ −br

∂F
∂r : ð29Þ

The latter has the standard meaning of a relation between
the (growth) velocity and the (thermodynamic) force
−∂F=∂r, with the mobility br. It follows that the steady-
state average radius corresponds to the stationary point of
the free energy, a condition that we use next.

We note that the concept of free energy F is not
compromised by the power dissipation since the electric
current is fixed by the circuit and serves only as a
temperature source [68]. The corresponding requirement
(of self-consistent Fokker-Planck equation) [69] is that the
thermalization time τT must be shorter than that of the
system evolution, empirically, τr ≳ 100 ps [70]. In other
words, the system remains quasistatic, with temperature
adiabatically following its particular configurations.
For numerical estimates, we note that τT ∼ L2=κ, where

L is the characteristic linear dimension of the system and κ
is the thermal diffusivity. The latter ratio of thermal
conductivity [71] χ ∼ 1 W=mK over specific heat c ∼
10 J=cm3 K is estimated as κ ∼ 10−3 cm2=s. Assuming
the nanometer-sized devices, L ∼ 1 nm, then yields
approximately 0.01 ns. Therefore, the existing RRAM
devices fall in the domain τr ≳ τT , where the thermody-
namic analysis applies at least semiquantitatively.
A particularly important case represents the thermal-

ization process dominated by CF per se serving as the
strongest heat conductor transferring energy to the device
electrodes. In the case assumed earlier for the threshold
switches [72] and modern RRAM devices [25],

τT ¼ h2=κ; ð30Þ

where κ is understood as the thermal diffusivity of Hf-based
CF. Using the numerical values [25] c ∼ 2 J=cm3K and
χ ∼ 0.2 W=mK, it is estimated as κ ∼ 0.1 cm2=s, leading to
τT ∼ 10−12 s for a 10-nm-long CF, close to the estimate
from the preceding paragraph. The difference is that
Eq. (30) predicts the CF-length-dependent τT , which will
result in a rather specific prediction of VSET and CF
resistance R independent of the h given in Sec. V B 1 below.
The major part of the free energy is given by

F ¼
Z

d3rcδT þ 2πrhσ þ πr2hδμþ
Z

d3r
E2ε

8π
: ð31Þ

Here, c is the specific heat and δT is the temperature
change. The first term in Eq. (31) represents the thermal
contribution, the second and third correspond to the phase
transformation, and the fourth stands for the electrostatic
energy. We approximate the first terms with τTP, where P
is the Joule power produced by the filament.

1. Radial growth of CF

The domain B-C in Fig. 1 corresponds to the current
source regime because the filament dynamic resistance
R ≪ RL. The electrostatic energy does not change in the
course of filament-radius growth and is neglected in what
follows. Neglecting also the surface-tension term (see the
discussion at the end of this subsection), the corresponding
free energy can be written as
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F ¼ τTI2Rþ ρch2δμ1
R

; ð32Þ

where ρc is the resistivity of the CF phase and we use
R ¼ ρch=πr2. Optimizing the latter with respect to R yields
its optimum value and the corresponding CF radius,

Rð0Þ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρch2δμ1
τTI2

s
; rð0Þ ≡

�
ρcτT
δμ1

�
1=4

ffiffiffi
I
π

r
: ð33Þ

These results define the steady-state CF resistance and
radius. The corresponding SET voltage is given by

USET ¼ Rð0ÞI ¼ Uð0Þ
SET ≡ h

ffiffiffiffiffiffiffiffiffiffiffi
ρcδμ1
τT

s
: ð34Þ

A particularly important case of CF-dominated thermal-
ization in Eq. (30) makes the CF resistance and the SET

voltage independent of device thickness,

Rð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcκδμ1
I2

r
; rð0Þ ¼

�
ρch2

κδμ1

�
1=4

ffiffiffi
I
π

r
; ð35Þ

and

Uð0Þ
SET ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κρcδμ1

p
: ð36Þ

Equations (33) and (35) predict the dependence R ∝ I−1,
explaining the observations in Table I. Also, using the above-
estimated δμ1 ∼ 109 J=m3 and resistivity [25]ρc∼10−4 Ωcm
predicts the numerical values R ≈ 1 kΩ, r ≈ 3 nm, and
USET ∼ 0.1 V consistent with the data [4].
Remarkably, Eqs. (33) and (35) predict CF resistance

that is independent of device thickness h. The experimen-
tally established fact of that independence, therefore, does
not require a constriction described in the “hourglass”
model [8,9] mentioned at the beginning of Sec. III above.
[We should note, however, that, while Eqs. (33) and (35)
show that the thickness-independent CF resistance can be
understood without the assumptions about its determining
constriction, they do not state that CF constrictions, such as
those observed in Ref. [73], cannot exist.]
We note that the phenomenon R ∝ I−1 experimentally is

not limited to RRAM and threshold-switching devices: it
was observed for 1D granular metals [74,75] and, more
than 100 years ago, for the granular media (metal filings)
forming the coherer devices [76]. The approach presented
here may be relevant for the latter two phenomena as well.
To make this subsection analysis more accurate, one

can account for the above neglected surface-tension term
as a perturbation. It can be conveniently estimated as
2πσrh ¼ πr2hδμðrc=rÞ, where rc ¼ 2σ=δμ is the classical
nucleation radius [56] whose typical value in solids is on
the order of 1 nm. The latter estimate shows that the surface

term becomes significant when the filament radius remains
small, r ∼ rc, but it can be neglected for the “grown”
filament with r ≫ rc, which empirically corresponds to the
vertical portion of the B − C domain.
Adding the surface contribution to the free energy of

Eq. (32) and optimizing it, to the accuracy of terms linear in
σ, yields

R ¼ Rð0Þ
�
1þ rc

4rð0Þ

�
; U ¼ Uð0Þ

SET

�
1þ rc

4rð0Þ

�
: ð37Þ

Taking into account that r ∝
ffiffi
I

p
, we observe that the

current-voltage characteristic becomes slightly “back-
slashed” (i.e., showing some negative slope), in qualitative
agreement with the available data.
Finally, we note that combining Eqs. (35), (36), and (7)

with Na ¼ πr2h=a30 yields the relation between the SET

process time τ and its driving current I (representing here
the compliance current, i.e., the maximum current on the
domain B − C of Fig. 1 allowed by the setup),

ln

�
τ

τ0

�
¼ Wa

δμ1a30 þ kT0

: ð38Þ

The first term in the denominator describes the effect
of the temperature increase kδT and turns out to be
independent of I. Its physical interpretation is that the
Joule-heat-generated thermal-energy increase must be
equal the chemical energy in order to overcome the energy
deficit δμ1 per volume in Fig. 3. Another useful form of the
latter result concerns the freezing temperature,

Tf ¼ T0 þ
a30δμ1
k

¼ Wa

lnðτ=τ0Þ
; ð39Þ

and emphasizes its thermodynamic nature.
Using the above numerical values a0 ¼ 0.2 nm and

δμ1 ¼ 109 J=m3 yields δT ∼ 600 K. The latter falls in
the ballpark of the earlier-measured and -modeled values
of CF temperature [32,77–79].
As a final note, we mention that τ in Eq. (38) has the

meaning of the characteristic time of radial-filament
expansion, which exponentially decreases with the temper-
ature Tf (and thus the heat per volume δμ1) necessary to
maintain that process. Also, it should be remembered that
Eqs. (38) and (39) are limited to the case of endothermic
reaction (i.e., δμ1 > 0) where the relation r ∝

ffiffi
I

p
applies; it

cannot be extended to the alternative case of δμ1 > 0.

2. Growth of insulating gap

Consider the opposite regime of voltage-source operations
(R ≫ RL) corresponding to the RESET domain E-F in Fig. 1.
As illustrated in Fig. 3, it is characterized by the change in
chemical potential, δμ0 ¼ μi − μmc ¼ −δμ1 þ δμ2 < 0,
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where the insulating gap is formed as a final product of the
structural transformation involved. However, as explained in
Sec. IV above and illustrated in Fig. 3, there is a significant
difference in the transformation barriers, suggesting that the
insulating gap is formed through the intermediate unstable
state requiring an increase δμ2 > 0 in chemical potentials.
After the energy δμ2πr2l is provided, the unstable CF
quickly decays into the stable insulating phase. The free
energy responsible for the former bottleneck process is
described by

F ¼ τTU2

Ri
þ δμ2πr2lþ

E2ε

8π
πr2l; ð40Þ

where l stands for the gap width, and Ri ¼ ρil=πr2 and ρi
represent its resistance and resistivity.
The behavior of the electrostatic term in Eq. (40)

depends on the relation between the gap-growth time tg
and the characteristic RC time of the system. Assuming
RC ≪ tg, the system remains in equilibrium with the
voltage source; hence, voltage U is given, and the field
strength becomes U=l, yielding an electrostatic term that is
inversely proportional to l, similar to the first term in
Eq. (40). The electrostatic contribution decreases with l
because maintaining constant voltage results in passing a
charge through the voltage source [38]. (Specifically,
CU2δl=2l is the energy gain due to increase δl in the
distance l between the plates of a parallel-plate capacitor C
at a fixed voltage U.) Based on the experimental values [2],
we assume here that RC ≪ tg.
With the above in mind, minimizing the free energy in

Eq. (40) leads to the equation

−
τTU2πr2

ρil2
þ δμ2πr2 þ

εU2r2

8l2
¼ 0: ð41Þ

Here, the first and third terms have similar l dependencies,
and the latter is small for any practical choice of material
parameters, for example, τT ∼ 0.01 ns, ε ≈ 25 (for HfO2

[80]) and ρi ∼ 0.001–0.1 Ωm.
Solving Eq. (41) yields the gap width l, its resistance Ri,

and the current I that should be identified with the “satu-
ration” current, IR;sat, marked in the Fig. 1 domain E-F,

l ¼
ffiffiffiffiffiffiffiffiffiffiffi
τTU2

ρiδμ2

s
and IR;sat ¼

U
Ri

¼ r2

ffiffiffiffiffiffiffiffiffi
δμ2
τTρi

s
: ð42Þ

For numerical estimates, we assume r ∼ 10 nm and ρi ∼
100ρc ∼ 10−2 Ω m based on the typical difference in the
on- and off-state resistances [81]. This choice of parameters
yields a reasonable gap l ∼ 1 nm and IR;sat ∼ 10 μA
according to Eq. (42), in fair agreement with the data
[2,82,83]. The sometime-observed deviations from the
voltage-independent current in the domain E-F of Fig. 1

can be caused by the non-Ohmicity of the insulating phase
resistivity.
Taking into account the discussion at the end of Sec. IV,

Eq. (42) predicts that the saturation current, IR;sat, propor-
tional to δμ2 should be time dependent. Such dependencies
have been observed. For example, in the experimental
design of Ref. [2], the time t that must be substituted in
Eq. (13) is determined by the change in the electric
potential divided by the voltage ramp rate jdV=dtj leading
to the observed dependence IR;sat vs jdV=dtj.
For completeness, we mention an alternative RESET

scenario where the domains E-F and F − 0 overlap without
hysteresis. One can consider indeed that, in spite of a
certain increase in U2, the increase in resistance at the E-F
domain suppresses Joule heat enough to ensure that the
freezing criterion in Eq. (7) obeys. Should that condition
take place, the system would not structurally evolve in the
domain E-F, resulting in the no-hysteresis behavior, and
Eq. (42) becomes unapplicable.
Finally, we note that our above phenomenological theory

is limited to the Ohmic mechanism of conductivity setting
aside possibilities of electron tunneling [84–86] that would
change the results in Eq. (42). Therefore, we would like to
briefly describe the effects of quantum tunneling through
the gap dielectric.
In our generic approach, we use the simplest expression,

RT ¼ R0
T expðl=aTÞ, for the tunneling resistance RT vs gap

width l, where R0
T and aT are two phenomenological

parameters. Using RT instead of Ri and optimizing the
free energy in Eq. (40) yields

l ¼ aT ln
�

τTU2

R0
TaTδμ2πr

2

�
and I ¼ aTδμ2πr2

τT jUj : ð43Þ

We conclude that the gap logarithmically widens and the
tunneling current decreases as 1=U with a voltage increase.
For numerical estimates, we assume R0

T ∼ 10 kΩ (on the
order of the quantum resistance [84–86]), aT ∼ 1 nm
(typical of tunneling in solids), r ∼ 5 nm, and the above-
introduced τT ∼ 0.01 ns, δμ2 ∼ 109 J=m3. With the latter
numbers, Eq. (43) yields l ∼ aT ∼ 1 nm and I ∼ 10 μA for
jUj ∼ 1 V. It is worth noting that the latter quantum current
is of an order of magnitude equal to IR;sat.
Because the tunneling contribution decreases, the Ohmic

current will dominate starting at some voltage. A simple
extrapolation of such a behavior takes the form

I ¼ P1þ P2
U

; ð44Þ

where P1 and P2 are two parameters that can be deter-
mined from experiments and whose characteristic values
are provided, respectively, in Eqs. (42) and (43).
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VI. CONCLUSIONS

In this paper, we derive closed-form equations for all of
the quantities listed in Table I.
Our results are summarized in Table III. The correspond-

ing numerical estimates, while approximate, are in the
vicinity of measured values.
The essence of our phenomenological theory is (a) the

notion of the filament charging, (b) its accompanying
polarization of the host material, and (c) the existence of
three phase states of the material: stable insulating, unstable
conducting, and long-lived metastable conducting. The
items (a) and (b) are model independent, while (c) remains
a model hypothesis, which, however, suffices to explain a
large number of outstanding questions, as illustrated in
Tables I and III.
Finally, our results contain a number of predictions

calling upon experimental verification. Such is the phe-
nomenon of filament charging, the temperature dependence
of threshold voltage, the amplitude of the current snap
forward, voltage dependence of the insulating gap width,
and some others.
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