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We develop a modified two-temperature (2T) model of laser-matter interaction in dielectrics based on
experimental insight from picosecond-pulsed high-frequency temperature-controlled second-harmonic
(515 nm) generation in periodically poled stoichiometric LiTaO3 crystal and required for computational
treatment of short-pulsed nonlinear optics and materials processing applications. We show that the
incorporation of an extended set of recombination-kinetics-related energy-release and heat-exchange
processes following short-pulsed photoionization by two-photon absorption of the second harmonic allows
accurate simulation of the electron-lattice relaxation dynamics and electron-lattice temperature evolution in
LiTaO3 crystal in nonlinear laser-frequency conversion. Our experimentally confirmed model and detailed
simulation study show that two-photon ionization with the recombination mechanism via ion-electron-
lattice interaction followed by a direct transfer of the recombination energy to the lattice is the main laser-
matter energy-transfer pathway responsible for the majority of the crystal lattice heating (approximately
90%) continuing for approximately 50 ps after laser-pulse termination and competing with effect of
electron-phonon energy transfer from the free electrons. This time delay is due to a recombination
bottleneck which hinders faster relaxation to thermal equilibrium in photoionized dielectric crystal.
Generally, our study suggests that in dielectrics photoionized by short-pulsed radiation with intensity range
used in nonlinear laser-frequency conversion, the electron-lattice relaxation period is defined by the
recombination-stage bottleneck of a few tens of picoseconds and not by the time of the electron-phonon
energy transfer. This modification of the 2T model can be applied to a broad range of processes involving
laser-matter interactions in dielectrics and semiconductors for charge density reaching the range of
1021–1022 cm−3.

DOI: 10.1103/PhysRevApplied.8.024025

I. INTRODUCTION

Nonlinear laser-frequency conversion is a constantly
growing field of optical technology encompassing a wide
range of applications, input and generated laser frequen-
cies, laser intensities and pulse durations, repetition rates,
nonlinear materials, and media [1]. The last two decades
of the development of this field have been marked by a
technical breakthrough in production of periodically poled
(PP) crystal structures [2] allowing practical operation
under low temperatures [3] by using quasi-phase-matching
of the laser waves as suggested in classical work [4].
Significant progress in practical application of nonlinear PP
crystal structures has occurred in recent years [5], leading
step by step towards greater efficiency operation at higher
input intensities. However, high-intensity and short-pulsed
operation in nonlinear laser-frequency conversion is asso-
ciated with a number of side effects and limitations induced
by the input and generated laser waves.

In this connection, the progress in development, opti-
mization, and applications of high-efficiency nonlinear
optical devices can be effectively supported by the develop-
ment of theoretical and application-oriented computational
models allowing a complex multiscale analysis of the main
laser-frequency conversion mechanism in the presence of
various laser-induced side effects.
The formalization of the applied computational models

of nonlinear laser-frequency conversion including the
various effects caused by laser-induced heating and plasma
generation depends on laser-pulse duration. That is, in the
interaction of nanosecond laser pulses with nonlinear
optical crystals, the temperature of the electron-lattice
system is assumed to be in quasiequilibrium after fast
electron-lattice relaxation, allowing the use of the heat-
conduction equation for estimating the temperature- related
thermo-optical effects crucial for laser-beam propagation
and laser-frequency conversion [6–8]. In contrast, during
laser-matter interaction of picosecond- and shorter pulse
duration, the relaxation time is larger than the pulse
duration, and the temperature of excited free electrons
differs from that of the lattice. In this case, the complex*oleglouchev@riken.jp
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process of electron-lattice energy exchange and relaxation
to the equilibrium is described by the two-temperature (2T)
model developed initially to treat the relaxation between
electrons and crystalline lattices [9]. This 2T model
approach was then adopted as a reliable theoretical frame-
work for short-pulsed laser-matter interaction in metals,
semiconductors, and dielectrics [10–14] providing valuable
insights into many materials processing applications under
intensive short-pulsed laser radiation [15]. In particular,
the 2T model and related simulation form a significant
part of the theoretical framework underpinning the recent
study revealing large optical nonlinearity in indium tin
oxide [16].
Short-pulsed laser-matter interaction has remained the

focus of many research papers using various experimental
approaches and theoretical models for the estimation of
laser-light absorption, electron and lattice temperature for
the laser ablation process, surface and bulk damage,
modification of optical properties of dielectric materials,
and electron-lattice relaxation in photoexcited materials
[10–31]. Our present work focuses on a modification of the
phenomenological 2T model of laser-matter interaction for
short-pulsed operation in nonlinear optical materials and is
based on a recent experimental study of the temperature-
controlled picosecond-pulsed second-harmonic generation
(SHG) by a periodically poled stoichiometric LiTaO3

(PPSLT) crystal [32]. In this paper, we develop a modified
2T model which extends the theoretical framework of laser-
matter interaction allowing comprehensive simulation of
the underlying mechanism of short-pulsed photoionization
followed by electron-lattice relaxation and lattice heating in
a SHG experiment yielding good agreement of the simu-
lations with the experimental data.
In particular, in treating the case of short-pulsed laser-

matter interaction in nonlinear laser-frequency conversion
[32], we first consider in detail the experimental data of
temperature-controlled high-frequency picosecond SHG in
PP LiTaO3 from which we find the value of the lattice
temperature increase resulting from a single laser pulse.
After that, we introduce a modification to the 2T model
allowing the calculation of all parameters which may be
significant for laser-beam frequency conversion and propa-
gation in nonlinear optical devices: charge density, electron
energy (temperature), and lattice temperature. We make a
detailed computational study to evaluate the effect of the
main important parameters. In particular, we study the
effect of the electron-phonon energy-transfer rate constant
with resulting energy of free electrons and dynamics of
recombination mechanism. Additionally, we discuss when
this modification can be used in other cases of short-pulsed
laser-matter interaction.
In Sec. II, we discuss the experimental data of high-

frequency picosecond-pulsed SHG. In Sec. III, we develop
the modified 2T model. In Sec. IV, we give the results of
(i) the reduced analytical approximation and (ii) the

comprehensive simulation of the experimental case given
in Sec. II. In Sec. V, we discuss applying the modified
model to other cases of short-pulsed laser-matter interac-
tion. In Sec. VI, we give a short summary of our work.

II. EXPERIMENT AND DATA ANALYSIS

We use the experimental data of picosecond-pulsed
SHG by the temperature-controlled quasi-phase-matching
(QPM) of PPSLT crystal [32]. In particular, in Fig. 1 we
show the measured SHG efficiency as a function of input
peak intensity I1 ¼ 0.1–9.5 GW=cm2 using (i) 2-mm-long
crystal, (ii) λ1 ¼ 1030 nm pulsed input radiation of τp ¼
18 ps pulse duration, (iii) νp ¼ 10 kHz pulse repetition
rate, (iv)

ffiffiffi
2

p
r0 ¼ 0.15 mm input beam radius, and

(v) QPM temperature TQPM ¼ 41°C.
The red line in Fig. 1 shows SHG efficiency η vs I1

measured during operation with the temperature of the
crystal holder Tc maintained at the QPM temperature,
Tc ¼ TQPM ¼ 41°C. This line shows the increase and
saturation of SHG efficiency at the level of η ≈ 0.35
followed by its decrease towards η ¼ 0.22 associated with
thermally induced dephasing [32]. The black line shows
the SHG efficiency η vs I1 measured during operation with
the crystal holder maintained at 10 K below that of
QPM:TC ¼ TQPM − 10 ¼ 31 °C. These data show how
the thermal dephasing caused by the absorption of the
second harmonic revealed in the first case can be compen-
sated by a temperature shift ΔTexp ≈ 10 K allowing one
to restore SHG efficiency to the maximal possible level
η ≈ 0.35 with I1 ¼ 9.5 GW=cm2.
We use these experimental data for estimating the value

of temperature increase for a single pulse by considering
several analytical expressions [33,34]. The experimental
value of the optimal temperature shift (ΔTexp ¼
TQPM − Tc ≈ 10 K) found in Fig. 1 for efficiency recovery
under I1 ¼ 9.5 GW=cm2 corresponds to the maximum of
the temperature tolerance curve of SHG at TQPM ¼ 41°C
and, hence, to 50% of the maximal temperature increase
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FIG. 1. Experimental data for SHG by PPSLT: SHG efficiency
vs peak input intensity.

LOUCHEV, WADA, and PANCHENKO PHYS. REV. APPLIED 8, 024025 (2017)

024025-2



induced in the operating crystal, approximately ΔTSPSN,
where ΔTSP is the single-pulse temperature increase and
SN ¼ P

N
n¼1 exp½−nDT=ð2νPr20Þ� is the multipulse thermal

superposition factor [33,34] taking into account the heat
dissipation, where DT ¼ 2.01 × 10−2 cm2=s [35] is the
heat diffusivity of LiTaO3 and N is the number of pulses.
Therefore, by using ΔTexp ≈ 0.5ΔTSPSN ≈ 10 K, we can
find the following value for the single-pulse temperature
increase:

ΔTSP ≈ 2ΔTexp=SN ≈ 0.18 K; ð1Þ

where SN ≈ 111.5 for N → ∞, νp ¼ 10 kHz, andffiffiffi
2

p
r0 ¼ 0.15 mm.
By using this value, we obtain simplified estimates of the

related absorption effects. Assuming that (i) the thermal
effect is mainly associated with the recombination of all
free electrons with energy release per one electron equiv-
alent to the energy band gap Eg ¼ 4.6 eV of LiTaO3 and
(ii) the energy of free electrons εe ≪ Eg, we can estimate
the number of free electrons generated during the single
pulse Δne as [31]

Δne ≈ ΔTSPρC=Eg ≈ 7.4 × 1017 cm−3; ð2Þ

and the photoionization (PI) frequency as

wPI ¼ Δne=ðτPN�Þ ≈ 2.14 × 106 s−1; ð3Þ

where ρ ¼ 7400 kg=m3 is the density, C ¼ 410 J=kgK
is the specific heat, N� ¼ ρ=M ≈ 1.9 × 1022 cm−3 is the
molecular density, andM ¼ 236 a:u: is the molecular mass
of the LiTaO3 crystal.
By using these values, we can get an estimate of the

related absorption coefficient as follows: approximately
−ð1=I2Þ½ðdI2Þ=dz� ≈ ½ðΔneEgÞ=I2τP� ≈ 9.1 cm−1 for SH
intensity I2¼ ηI1¼0.35×9.5¼3.32GW=cm2. This value
is much larger than the absorption coefficients associated
with the generated free electrons estimated as follows:
αe−1 ¼ ½ðνmom

e-ph =cÞ�½ðω2
pÞ=ω2

1� ≈ 0.26 cm−1 and αe−2¼
½ðνmom

e-ph =cÞ½ðω2
pÞ=ω2

2�≈0.065 cm−1, where νmom
e-ph ≈ kBT=ℏ≈

4.1 × 1013 Hz is the electron-phonon momentum-transfer
rate (collision frequency), ω1 ¼ 1.83 × 1015 rad=s for
the input 1030-nm radiation, ω2¼3.66×1015 rad=s for
the generated SH of 515 nm, c ¼ 3 × 108 m=s, and ωP
is the plasma frequency defined as follows: ωP ¼
eðne=ϵ0meÞ1=2, where e is the electron charge, ϵ0 is
the vacuum permittivity, me is the electron mass, and ne ≈
2 × 1017 cm−3 is the maximal electron density achieved
during the pulse (see Sec. IV).
Let us now estimate the temperature increase associated

with two-photon absorption (TPA) by using the following
expression for the TPA coefficient:

βTPA ≈ 2σð2ÞN�=ℏω2 ≈ 2.5 cm=GW; ð4Þ

where ℏ is the Dirac constant, and σð2Þ ≈ 2.5 ×
10−50 cm4 s=photon2 is the estimate of the TPA cross
section (λ2 ¼ 515 nm) [1].
This value agrees well with the experimentally defined

range for the TPA coefficient 1.1–2.7 cm=GW [32], and
by neglecting the thermal energy dissipation by heat
diffusion during electron-lattice relaxation, we can estimate
the temperature increase after a single laser pulse via the
value of generated pulse energy Q2 ¼ ηQ1 as follows:

ΔTSP ≈
βTPAI22τP

ρC
≈ 0.16 K; ð5Þ

where τp ≈ 18 ps, I2 ¼ Q2=ð2πr20τpÞ ≈ 3.32 GW=cm2,
and η ≈ 0.35 (see Fig. 1).
This estimate agrees well with that of Eq. (1) and

suggests that in this experiment the lattice heating mecha-
nism can be mainly attributed to the effect of the TPA of the
generated second harmonic.
Let us roughly estimate how changing the laser intensity

during the pulse can affect the final values of ΔTSP
andΔne. The ionizing laser intensity is expressed as I2ðtÞ≈
I2–0 expð−2t2=τ02Þ, where τ0 ¼ τp=2, and I2−0 ¼
21=2Q2=ðπ3=2r20τpÞ is the peak intensity of the second
harmonic scaled to provide the generated SH pulse energy
Q2 ¼ ηQ1 by integration of I2ðtÞ over time and beam
radius. After integrating ρCdT=dt ≈ βTPAI22ðtÞ; the related
temperature effect is determined by 2ΔTSP=

ffiffiffi
π

p
, where

ΔTSP is given by Eq. (5). That is, assuming a constant
laser intensity in the calculations can lead to ð2= ffiffiffi

π
p − 1Þ ×

100 ≈ 13% errors in estimating the values of the generated
temperature effect and related electron density.

III. 2T MODEL

Let us now consider the 2T model for short-pulsed laser-
matter interaction in nonlinear optical crystals on the time
scale of relaxation between laser-induced free electrons and
the crystal lattice. Generally, in treating this problem, two
interacting subsystems are considered: (i) the free electrons
generated into the conduction band with a density of ne and
the related thermal energy density Ee ¼ neεe ¼ neCeTe
(Te is the electron temperature, εe ¼ CeTe is the electron
energy, and Ce ¼ 3kB=2 is the specific heat of the electron
gas), and (ii) the lattice with related atomic density nL and
thermal energy EL ¼ nLCLTL (TL is the lattice temperature
nL ¼ N� and nLCL ¼ ρC). We neglect in our study the
impact ionization by high-energy electrons assuming that
the value of εe remains below the critical energy necessary
for this type of ionization.
First, in considering how under photoionization the

electron energy density evolves with time, we take into
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account the rate of photoionization (PI) WPI ¼ wPIN� and
related contribution to the energy-density rate of the
electron subsystem as WPIðnphℏω2 − EgÞ, where nph is
the number of photons required for ionization. Second, we
take into account that the free electrons can be heated by the
laser waves with a rate given by ne

P
2εqi ν

mom
e-ph , where

the sum
P

takes into account both laser frequencies
involved in nonlinear laser-frequency conversion, εqi ¼
½ðe2E2

i Þ=4meω
2
i � is the electron quiver energy, and Ei is the

electric field amplitude of the related laser wave. Third, in
ferroelectric materials the free electrons can also be
accelerated by the quasiconstant electrostatic field E
induced across the irradiated zone by charge separation,
local perturbation in the lattice temperature, and sponta-
neous polarization. The rate of this effect follows from
the Newton equation (medVe=dt ¼ eE) and is given byffiffiffi
2

p
enejEjε1=2e =m1=2

e . Fourth, we take into account the
energy transfer between the two subsystems, i.e.,
νene-phneCeðTe − TLÞ, where νene-ph ¼ 1=τ� is the electron-
phonon energy-transfer rate, and τ� ≈ 1–7 ps is the related
characteristic energy-transfer time [15,28,36,37].
Let us now consider the recombination kinetics and

related energy-exchange effects outlining the main modi-
fication point suggested in our work. In particular, under
generation of plasma in materials, the recombination can be
treated as a triple-collision effect. First, one can consider
the triple collision involving one ion and two free electrons
and occurring with the rate of βRnin2e, where βR is the
Auger recombination constant, and ni and ne are the
density of ions and electrons, respectively. This pathway
of recombination is considered in 2T models for photo-
excited semiconductors using the experimental value of
βR ¼ 3.8 × 10−31 cm6=s found for Si [38]. In this case, the
recombination energy (equivalent to Eg) is released after
the ion captures one free electron and is transferred together
with the energy of the captured free electron εe ¼ CeTe to
the second free electron remaining in the conduction band.
That is, in this case, the energy of Eg þ εe per one collision
feeds first the energy of the electron subsystem, and only
after that, it is transferred to the lattice by electron-
phonon (e-ph) energy transfer, i.e., by the above-
mentioned νene-phneCeðTe − TLÞ. Consequently, in the
related 2T model, the product of (i) the recombination rate
and the (ii) electron and recombination energy, i.e.,
βRnin2eðEg þ εeÞ, is introduced into the energy rate equa-
tion for the electron subsystem. Thus, in this case, before
being transferred to the crystal lattice, all radiation energy
absorbed by the photoionization accumulates in the elec-
tronic subsystem.
However, in contrast with the above-mentioned pathway

of recombination, one can consider that in wide band-gap
optical materials, the recombination proceeds by the triple
collision involving one ion, one electron, and one neigh-
boring lattice atom followed by energy transfer directly

to the crystal lattice [28]. The rate of this recombination
process is given by pγRnine, where the electron-
ion collision constant γR depends on the mean electron
velocity Ve (or on the electron energy εe ¼ CeTe ¼
3kBTe=2) as follows: γR ≈ σRVe ≈ σRð2εe=meÞ1=2, where
σR ≈ 2 × 10−14 cm2 is the Coulomb cross section for the
electron-ion collision [39], and p ≈ 1 is the probability of
the lattice atom being present in the vicinity of the location
of electron-ion recombination [28]. In this case, the
recombination energy together with the energy of the
captured free electron Eg þ εe feeds directly into the energy
of the lattice subsystem. Consequently, in our present work,
we treat the effect of recombination energy transfer by
using the product of the recombination rate and accom-
panying energy effects directly in both energy rate equa-
tions as (i) the energy loss rate of the electron subsystem
−γRnineεe and as (ii) the corresponding energy-release rate
γRnineðEg þ εeÞ introduced into the energy rate equation
for the lattice subsystem. Unlike the previous case, given the
same level of charge density reached during photoionization,
this mechanism provides significantly lower energy transfer
to the electron subsystem, resulting in significantly lower
electron energy reached during the pulse.
Thus, in our present work, we consider two recombi-

nation pathways and rates defined as follows: (i) βRnin2e
with related energy-transfer rate βRnin2eðEg þ εeÞ and
(ii) γRnine with related energy-transfer rates −γRnineεe
and γRnineðEg þ εeÞ. Finally, we use the following set of
equations:

∂ðneCeTeÞ
∂t þ∇qe

¼WPIðnphℏω2−EgÞþne
X

2εqi ν
mom
e-ph þbnejEjðCeTeÞ1=2

þβRnin2eðEgþCeTeÞ−γRnineCeTe

−νene-phneCeðTe−TLÞ; ð6Þ

∂ðnLCLTLÞ
∂t þ∇qL

¼ νene-phneCeðTe − TLÞ þ γRnineðEg þ CeTeÞ; ð7Þ

where b ¼ 21=2e=m1=2
e , and qe and qL are the energy-

transport terms for the electrons and lattice subsystems,
correspondingly, the effect of which can be neglected for
picosecond-pulse duration.
The densities of free electrons and ions are defined by the

two following equations:

∂ne=∂tþ∇je ¼ WPI − βRnin2e − γRnine; ð8Þ

∂ni=∂t ¼ WPI − βRnin2e − γRnine ; ð9Þ
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where je ¼ −De∇ne − μEne is the electron flux density,
μ ≈ 1–10 cm2=Vs is the electron mobility, and De ¼
μkBTe=e is the diffusion coefficient of electrons.
The electrostatic field E caused by (i) the charge-

separation effect and (ii) local change of the spontaneous
polarization Ps is defined by the Maxwell equation written
for ferroelectric materials as follows:

∇ðϵϵ0Eþ PsÞ ¼ eðni − neÞ; ð10Þ

where ϵ ¼ ϵ33 ¼ 43 is the relative permittivity for LiTaO3,
and the spontaneous polarization depends on the lattice
temperature as Ps ¼ Ps0 þ pTΔTL (with pT ¼dPs=dTL¼
−230×10−6 Co=m2K for LiTaO3) giving the pyroelectric
(PE) field when the lattice temperature changes.
Equations (6)–(10) encompass a wide range of possible

processes and materials. However, in the particular exper-
imental case of SHG in PPSLT considered here, we find
that Auger recombination involving an ion and two
electrons does not play a significant role. Consider the
triple interaction by assuming that one free electron collides
with an ionized molecule which has already in its vicinity a
second free electron. In this case, the related rate of
recombination can be estimated as p�σ�RVenine, where
σ�R ≈ N�−2=3 ≈ 14 × 10−16 cm2 is the cross section of
electron collision with the ionized molecule where nearby
electron screens the positive charge, and p� ≈ ne=N� is the
probability of a second electron being present estimated via
the electron density ne and the molecular density of the
crystal N�. Hence, we can obtain the following expression
for this recombination pathway p�σ�RVenine ¼ βRnin2e by
using which, we find the following scaling estimate: βR≈
σ�RVe=N�≈VeN�−5=3 ≈ ð7.4×10−31Þ− ð1.9×10−30Þ cm6=s
for Ve ≈ ð1–1.25Þ×107 cm=s and N� ≈ 1.9 × 1022 cm−3.
For Si of density N� ≈ 5 × 1022 cm−3 and the typical range
of Ve ≈ ð1–1.25Þ×107 cm=s, this scaling gives βR ≈
VeN�−5=3 ≈ ð1.5–3.8Þ×10−31 cm6=s, which agrees well
with the experimental value βR ≈ ð1–3.8Þ × 10−31 cm6=s
[38]. By using now the values of σR ≈ 2 × 10−14 cm2,
σ�R ≈ 14 × 10−16 cm2, we find that for ne ≈ ni ≈
2 × 1017 cm−3, the ratio of the recombination rates
βRnin2e=γRnine ≈ σ�Rne=σRN

� ≈ 10−6 allows us to set βR ¼
0 in all calculations related to our experimental case [32].

IV. RESULTS AND DISCUSSION

A. Analytical approximation

In order to obtain an analytical approximation while
retaining the main modification point, we consider the case
of εe ≪ Eg and νene-phneCeðTe − TLÞ ≪ γrneniEg addition-
ally assuming quasineutrality ne ≈ ni. In this case, the 2T
model reduces to a set of two equations defining the
temperature of the lattice:

ρC
dTL

dt
¼ γRn2eEg; ð11Þ

dne
dt

¼ WPI − γRn2e; ð12Þ

where WPI¼WTPA¼βTPAI22=Eg for t ≤ τP and WPI ¼ 0

for t > τP.
This model corresponds to the limiting case when the

lattice heating is due only to the effect of the recombination
of free electrons combined with the direct transfer of
recombination energy to the lattice. The solution of these
equations is given by the following set of expressions
for t ≤ τp:

ΔneðtÞ ¼ antanhðanγRtÞ; ð13Þ

ΔTLðtÞ ¼ aT

�
t
τP

− tanhðanγRtÞ
anγRτP

�
; ð14Þ

and for t > τP,

ΔneðtÞ ¼ an
tanhðanγRτPÞ

1þ tanhðanγRτPÞanγRðt − τPÞ
; ð15Þ

ΔTLðtÞ¼aT

�
1− 1

anγRτP
×

tanhðanγRτPÞ
1þ tanhðanγRτPÞanγRðt−τPÞ

�
;

ð16Þ
where an ¼ ½βTPAI22=ðEgγRÞ�1=2 is the characteristic scale
of the free electron density, and aT ¼ βTPAI22τP=ρC is the
characteristic scale of the lattice temperature.
In Fig. 2, we show this solution using the dimensionless

values Δne=an and ΔTL=aT vs t=τP for anγRτP ≈ 2.6
corresponding to the experimental case [32]: an ≈
2.7 × 1017 cm−3, γR≈0.53×10−6 cm3=s, ε0¼2ℏω−Eg¼
0.2 eV, and τP ≈ 18 ps. A few important points are clear
from this solution. First, for TPA ionization, the lattice
temperature tends finally towards the value of
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FIG. 2. Analytical solution: The dimensionless electron density
and lattice temperature vs time.
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aT ¼ βTPAI22τP=ρC. Second, the increase of lattice temper-
ature controlled by the rate of recombination does not stop
after pulse termination. In particular, only after a period of
approximately 5τP ≈ 90 ps does the lattice temperature
reach the value of 0.95aT . Third, the characteristic time of
recombination can be scaled as follows vs the radiation
intensity involved in the process of photoionization
I2 ¼ ηI1:

τR ¼ ðanγRÞ−1 ¼
E1=2
g

β1=2TPAγ
1=2
R I2

: ð17Þ

This scaling shows that for the considered case (i) the
recombination time depends weakly on the electron
energy, i.e., τR ∝ ε−1=4e and (ii) τR ∝ 1=I2 agreeing with
the experimental data on after-pulse electron-relaxation
dynamics vs the intensity of the ionizing radiation [29].
Finally, in Fig. 3, we show the value of f½ΔTLðτPÞ�=

aTg¼1−f½tanhðanγRτPÞ�=anγRτPg estimated by Eq. (14)
for t ¼ τP as a function of the pulse duration in the range of
100 fs to 1 ns. This figure shows an extent of transfer
to the lattice of the energy absorbed by photoionization
at the end of the laser pulse, i.e., f½ΔTLðτPÞ�=aTg ¼
ρCΔTLðτPÞ=βTPAI22τP. In particular, for τP < 1 ps, the
lattice remains cold at the end of the laser pulse, whereas
for τP > 0.1 ns, the laser energy absorbed by photoioni-
zation is almost completely transferred to the lattice.
Additionally, this figure shows that the time scale of
complete electron-lattice equilibration is of order 100 ps.

B. Numerical simulation

Let us now consider the results of simulation showing in
full detail how this model operates for the experimental
case [32]. We simulate electron excitation, electron-lattice
energy transfer, and equilibration on the time scale of

Δt ¼ 150 ps. The ionization rate associated with the TPA
of the second harmonic is modeled byWPIðnphℏω − EgÞ ¼
βTPAI22ð2ℏω2 − EgÞ=Eg with βTPA ≈ 2.5 cm=GW, 2ℏω2 ≈
4.8 eV, Eg ¼ 4.6 eV, and I2 ¼ ηI1 ≈ 3.32 GW=cm2. On
the time scale of Δt ¼ 150 ps, the temperature perturbation
does not reach the side surfaces of the crystal with cross
section of 2 × 1 mm, allowing us to use at the side surfaces
the condition E ¼ −∇φ ¼ 0, where φ is the electric
potential. The values of laser fields are defined by
Ei ¼ ðIi=2nRIϵ0cÞ1=2, where nRI is the refractive index
of LiTaO3 [40].
In computer simulations, we start by using the value νene-ph

defined as follows: νene-ph¼νmom
e-ph ðme=MaÞ1=2≈0.14×1012Hz

(Ma ¼ 47 a:u: is the mean atomic mass) and giving τ� ¼
1=νene-ph ≈ 7 ps [15,28]. After that, we simulate the range
νene-ph≈1012−ð2.9×1012ÞHz and τ� ¼1=νene-ph≈0.35−1 ps
and discuss related effects. The values νene-ph ≈ 1012 Hz
and τ� ¼ 1=νene-ph ≈ 1 ps are the generally accepted values
for the dielectrics [36,37], whereas the values of νene-ph≈
ð1.4×1012Þ–ð2.9×1012ÞHz and τ�¼1=νene-ph≈0.35−0.7ps
are estimated from νene-ph ¼ g=ðneCeÞ, where g is the
value of the electron-phonon coupling constant given in
W=Kcm3 for silicon-dioxide-like materials [41].
First, we give a set of two figures showing our simulation

data for τ� ¼ 1=νene-ph ≈ 7 ps. Figure 4(a) shows the charge
density, Fig. 4(b) the electron energy, Fig. 4(c) the
generated electric field, and Fig. 4(d) the lattice temperature
vs time. Figure 4(a) shows that the charge density achieves
the saturation level ne ¼ ½βTPAI22=ðEgγRÞ�1=2, and the
electron-ion separation does not happen on the time scale
of Δt ¼ 150 ps.
This result agreeswith the estimate of the electron diffusion

coefficient De ¼ μkBTe=e ≈ 0.2 cm2=s [μ ≈ 1 cm2=V s,
kBTe≈0.2 eV, and E≈103V=cm; see Figs. 4(b) and 4(c)],
related diffusion length ðDeΔtÞ1=2 ≈ 6 × 10−4 mm, and
electron drift length μEΔt ≈ 1.5 × 10−5 mm, which are a
few orders of magnitude smaller than

ffiffiffi
2

p
r0 ¼ 0.15 mm. The

numerical simulation shown in Fig. 4(a) gives a maximal
value of the charge-density approximately 10% lower com-
pared with that given by the analytical approximation,
showing that the latter underestimates the increase of the
electron energy and of the recombination rate during the
pulse. The electron energy shown in Fig. 4(b) increases
during the pulse, achieves its maximum of approximately
0.3 eV, decays, and tends with time towards the value
defined by the electric field induced in the irradiated zone
by the ΔTL field. The energy of the remaining free electrons
εe ≈ 0.3 eV corresponds roughly to the energy balance of
bjEjðCeTeÞ1=2 ≈ νene-phCeðTe − TLÞ and is due to the PE field
induced by the change of the lattice temperature. However,
the contribution of these electrons to the lattice heating is
negligibly small because of the low value of ne reached by the
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FIG. 3 Analytical solution: Absorbed energy transfer to the
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end of the relaxation period when the lattice temperature
increase and PE field reach their maxima. Figure 4 shows that
the recombination process and thermal relaxation are domi-
nated by the effect of γRneni and continue approximately
50 ps after the pulse termination. The onset of the electric field
[Fig. 4(c)] corresponds to the time of recombination and
electron-lattice relaxation of approximately 50 ps. The effect

of charge separation is negligibly small as compared with
EPE ¼ −½ðdPsÞ=dT�½ðΔTLÞ=ϵϵ0� induced by the increase of
the lattice temperature.
It should be stressed that the simulated temperature of

the lattice obtained at the end of the electron-lattice
relaxation period [Fig. 4(d)] ΔTL ≈ 0.182 K agrees well
with ΔTSP ≈ 0.18 K found from the experiment by Eq. (1).
The temperature increase given by the analytical approxi-
mation (ΔTL ≈ 0.165 K at t ¼ 150 ps) is close to that
of the simulation (ΔTL ≈ 0.182 K at t ¼ 150 ps). The
difference is due to the additional heating of free
electrons by two laser waves with the main effect caused
by 1030-nm radiation. It is also necessary to note that
after pulse termination, the lattice temperature and PE field
decay on the time scale of the heat-diffusion effect
of order approximately 2r20=DT ≈ 10−2 s, i.e., by ΔTL ≈
½ðβTPAI22τPÞ=ρC� expð−tDT=2r20Þ, whereas on the time
scale of Δt¼150 ps, the heat-diffusion length ðDTΔtÞ1=2≈
1.7 × 10−4 mm is about 3 orders of magnitude smaller
than

ffiffiffi
2

p
r0 ¼ 0.15 mm, and the effect of heat diffusion is

negligibly small.
Figure 5(a) shows the energy-transfer rates for the

electron subsystem, Fig. 5(b) shows the energy-transfer
rates for the lattice subsystem, Fig. 5(c) the electron energy
density neCeTe, and Fig. 5(d) shows the lattice energy
density ρCΔTL. In particular, Fig. 5(a) shows that the
rates of all effects involved in electron heating have about
the same order of magnitude with maxima around
1–2 GW=cm3, whereas Fig. 5(b) shows that the lattice
heating is mainly due to the effect of γRneniEg providing
approximately 90% of the total thermal effect.
In Figs. 6(a)–6(c), we consider the computational results

for νene−ph ≈ 1012–ð2.9 × 1012Þ Hz and τ� ¼ 1=νene-ph ≈
0.35–1 ps, and compare them with those made for
τ� ¼ 1=νene-ph ≈ 7 ps. In particular, in Fig. 6(a), we show
the charge density, Fig. 6(b) the electron energy, and
Fig. 6(c) the lattice temperature vs time. Let us outline the
significant points. First, for a change from τ� ≈ 7 ps to
τ� ≈ 1 ps and τ� ≈ 0.35 ps, the charge density increases
on approximately 25% and 40%. This increase is due to
the significant decrease of the electron energy (andVe) shown
in Fig. 6(b) caused by a faster energy transfer to the lattice. In
particular, for τ� ≈ 7 ps, the electron energy reaches the
maximum of approximately 0.3 eV, decays after pulse
termination, and tends finally to the level defined by the
generated E field. In contrast, for lower values of τ� ≈ 1 ps
and τ� ≈ 0.35 ps, the electron energydecays starting from the
initial value of approximately 0.2 eVand tending finally to the
level defined by the generated E field. However, in all cases,
the relaxation time is approximately 50 ps. It should be noted
that the final lattice temperature value achieved after full
relaxation does not change significantly with decrease of τ�,
remaining in all cases close to 0.18 K. That is, regardless of
the value of τ�, the electron-lattice relaxation is controlled by
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the recombination stage continuing for approximately 50 ps
in all cases, and the thermal effect is dominated by recombi-
nation heat release.
Additionally, in Fig. 7 we show the values of the relative

energy transfer integrated over the whole period vs the
value of τ� from (i) the effect of recombination heat release
of γRnineðEg þ CeTeÞ and (ii) the effect mediated by the
electron-phonon energy transfer νene-phneCeðTe − TLÞ. This
figure shows that the energy transfer is dominated by the
direct transfer of the recombination energy to the lattice for
the whole range of τ� considered in our study.
We should stress that the relaxation continues for

approximately 50 ps after the pulse termination agreeing
to an order of magnitude with the experimental observa-
tions of electron-lattice relaxation dynamics [26,27,29].
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Thus, our computational study suggests that the process
of the electron-lattice relaxation is controlled by the
recombination-stage bottleneck (approximately 50 ps),
which is at least about 1 order of magnitude higher than
the characteristic time of the electron-phonon energy
transfer (0.3–7 ps).
To finalize this section, we note that the release of

recombination heat directly to the lattice is associated with
phonon generation required for heat dissipation and taking
place during the whole period of recombination, which
agrees well with the observations [27,28] where approx-
imately (15–50)–ps phonon generation under femtosecond-
laser-induced plasma relaxation in the bulk of crystalline
insulators is found.

V. ADDITIONAL REMARKS

The experiment, theoretical model, and simulation that
we consider here show that this case corresponds to the low
charge density combined with low electron energy in which
the generated thermal effect is mainly due to the recombi-
nation heat release into the lattice. We suggest that this
pathway of energy transfer to the lattice is able also to play
a significant role in combination with other effects in many
processes of laser-matter interaction in dielectrics and
semiconductors.
In particular, this modification can be used for the

theoretical treatment of other applications in which the
irradiated dielectrics are close to full ionization with
high charge density of approximately 1022 cm−3 and high
electron energies inducing avalanche ionization. It is
important to note here that the involvement of βRnin2e in
the recombination process can lead to (i) a significant
increase of electron energy followed by (ii) a faster energy
transfer to the lattice due to electron-phonon energy
transfer. Under combined recombination occurring when
the electron density and energy vary with time, the
recombination time can exhibit a more complex character.
In particular, considering the relaxation by using
dne=dt ¼ −γRn2e, one finds that the process of after-pulse

relaxation is defined by neðtÞ ≈ nmax=ð1þ nmaxγRtÞ,
where nmax is the maximal electron density reached at
the end of the laser pulse. By using dne=dt ¼ −βRn3e,
one finds that the relaxation is defined by neðtÞ ≈
nmax=ð1þ 2n2maxβRtÞ1=2. However, unlike the case consid-
ered in our study, under high densities of charges generated
by photoionization and related characteristic recombination
time of approximately ðβRn2maxÞ−1 ≪ τ� ≈ 1 ps; the laser-
matter energy transfer is hindered by the electron-phonon
energy-transfer rate.
In considering this case, we should note that even under

laser intensities inducing avalanche ionization, the electrons
are not able to achieve energy much above the level of Eg

because after reaching this energy level, the electrons are
involved in impact ionization losing Eg per every ionizing
collision with lattice atoms. Hence, even in high-intensity
laser interaction under avalanche ionization, the effect of
recombination energy release to the lattice suggested here
can provide an effective pathway to the total energy transfer
to the lattice and electron-lattice relaxation. To treat these
operational conditions with εe > 1.5Eg, our modification
should be properly combined with kinetic and thermal
effects of electron avalanche ionization [18,24,25]. In
particular, the model should include the value of Rine in
electron-ion rate equations and the value of electron energy
loss −RineEg in the electron energy rate equation (Ri is the
frequency of impact ionization).
Additionally, in using this modification for other cases of

high-intensity laser-matter interaction, one should take into
account several significant effects. First, under high charge
density, the Coulomb cross section σR used in γR ¼ σRVe is
significantly reduced by the screening effect, tending to that
of σ�R ≈ ðN�Þ−2=3 ≈ 14 × 10−16 cm2. The screening effect
should be also taken into account in treating Auger
recombination when ne > 1021 cm−3 [42]. Second, for
ne reaching closely to the range of 1021–1022 cm−3, the
crystalline state of the irradiated matter is no longer a
thermodynamically stable phase [42]. Third, under high
charge density, high electron, and lattice temperature, the
band-gap energy can be reduced [43], leading to a
significant enhancement of absorption-, photo-, collision-
, and thermally induced ionization rates. Fourth, with
increase in charge density when ðγRneÞ−1 ≈ τ�, the relax-
ation process is controlled by e-ph energy transfer. In
order to treat this effect, the related recombination rate used
in this model γRnine should be modified as follows:
ne=½τ� þ ðγRniÞ−1� [42].
Finally, we note that the suggested mechanism and

theoretical treatment can be used for developing computa-
tional techniques for simulation of short-pulsed laser-
beam propagation in nonlinear laser-frequency conversion
prone to various effects of photoionization. In particular,
the generation of the free electrons can produce a signifi-
cant change of refractive indices for the laser beams

1.0

0.8

0.6

0.4

0.2

0.0R
el

at
iv

e 
en

er
gy

-t
ra

ns
fe

r 
co

nt
ri

bu
tio

n

108642

Electron-lattice energy-transfer time τ*(ps)

By e-ph energy transfer

By effect of γr neni (Eg+εe)

FIG. 7. Relative contributions of energy-transfer effects vs τ�.

LASER-MATTER INTERACTION IN DIELECTRICS: … PHYS. REV. APPLIED 8, 024025 (2017)

024025-9



ΔnRI ≈ −ω2
p=2ω2

i . The change of the refractive indices can
lead to a loss of initial phase-matching condition in
periodically poled structures Δk ¼ 2k1 − k2 − 2π=Λ ¼ 0
[1], where ki ¼ nRIωi=c are the values of wave vectors, and
Λ is the poling period. A laser beam propagating across the
medium with a nonuniform distribution of the refractive
index can experience a strong lensing effect leading to an
additional mismatch Δk, dephasing effect, and beam
distortions [1].
The modifications suggested here can be used for

developing a more comprehensive framework for the
simulation of electron density and electron energy coupled
with the integration of a laser-beam propagation model
under filamentation in optical crystals [44]. Our inclusion
of the recombination heat release to the lattice can be
also extended (with appropriate modifications taking into
account relevant energy levels) to the photoionization-
recombination kinetics, laser-beam filamentation, and elec-
tron-lattice relaxation via the interband energy levels and
related defects known to exist in optical crystals [14,29,44].
However, a detailed consideration of these effects and
related electron kinetics in multilevel complex energy
systems is out of the scope of the present study.

VI. SUMMARY

To conclude, this work suggests a modification of the 2T
model for treating short-pulsed laser-matter interaction in
nonlinear optical crystals based on the estimation of single-
pulse temperature increase obtained from the experimental
data of the temperature-controlled picosecond-pulsed
SHG in PPSLT crystal. We show that for the considered
experimental case, the main mechanism of the lattice
heating after generation of free electrons via the two-
photon absorption of generated second harmonic is due to
the recombination mechanism combined with the direct
transfer of the recombination energy to the lattice sub-
system. The effect of this mechanism provides approx-
imately 90% of laser-matter energy transfer and extends for
approximately 50 ps after laser-pulse termination due to a
recombination-stage bottleneck which hinders a faster
relaxation to the thermal equilibrium. Generally, our model
and detailed computational study suggest that under photo-
ionization by short-pulsed radiation with intensity range
used in nonlinear laser-frequency conversion, the electron-
lattice relaxation is controlled by the recombination-stage
bottleneck and not by the characteristic time of electron-
phonon energy transfer.
We consider a modification of the 2T model directly

suitable for the relatively low laser intensities used in
nonlinear laser-frequency conversion processes when the
energies achieved by the free electrons are not sufficient
for the onset of collisional electron avalanche ionization.
However, our estimates suggest that this modification
combined with the formalism for avalanche ionization
can be expanded to other applications using significantly

higher laser intensities. Under high intensity, short-pulsed
laser interaction with dielectrics, and high electron density
generated during the pulse, this pathway of recombination
with direct energy transfer to the lattice can also provide a
significant contribution to the total laser-matter energy-
transfer mechanism.
This 2T model can be combined with the formalisms of

nonlinear laser-frequency conversion allowing a compre-
hensive simulation and optimization of operational and
device parameters involved in short-pulsed nonlinear laser-
frequency conversion techniques. In particular, this model
can be used for the simulation of the fields of the electron
density, electron, and lattice temperatures enabling the
calculation of the threshold laser intensities under which
the operation can be strongly inhibited by thermal or
electron dephasing or completely disabled by laser-induced
crystal damage. This model can be also used for estimating
the temperature range necessary for temperature-controlled
operation of the crystal and process optimization for
specific application-oriented devices using nonlinear
laser-frequency conversion. We also note that developed
analytical approximation for electron-lattice relaxation with
appropriate modifications can be also used for the case of
multiphoton absorption.
Finally, we suggest here that the effect of energy transfer

to the lattice during photoionization and relaxation can play
a significant role in other processes of laser-matter inter-
action including modification of the optical properties,
ablation, phenomena of optical breakdown, damage, and
short-pulsed filamentation.
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