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The synthetic magnonic crystals (i.e., periodic composites consisting of different magnetic materials)
form one fascinating class of emerging research field, which aims to command the process and flow of
information by means of spin waves, such as in magnonic waveguides. One of the intriguing features of
magnonic crystals is the presence and tunability of band gaps in the spin-wave spectrum, where the high
attenuation of the frequency bands can be utilized for frequency-dependent control on the spin waves.
However, to find a feasible way of band tuning in terms of a realistic integrated device is still a challenge.
Here, we introduce an array of asymmetric saw-tooth-shaped width-modulated nanoscale ferromagnetic
waveguides forming a pseudo-one-dimensional magnonic crystal. The frequency dispersion of collective
modes measured by the Brillouin light-scattering technique is compared with the band diagram obtained by
numerically solving the eigenvalue problem derived from the linearized Landau-Lifshitz magnetic torque
equation. We find that the magnonic band-gap width, position, and the slope of dispersion curves are
controllable by changing the angle between the spin-wave propagation channel and the magnetic field. The
calculated profiles of the dynamic magnetization reveal that the corrugation at the lateral boundary of the
waveguide effectively engineers the edge modes, which forms the basis of the interactive control in
magnonic circuits. The results represent a prospective direction towards managing the internal field
distribution as well as the dispersion properties, which find potential applications in dynamic spin-wave
filters and magnonic waveguides in the gigahertz frequency range.
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I. INTRODUCTION

Periodically patterned arrays of magnetic elements in the
submicron scale [1–6] have attracted wide interest over the
last decadebecause of both the unique features ofmagnetism
in low-dimensional systems and the potential applications in
the design of magnetic storage [7], memory [8], sensors [9],
and spin-based signal-processing and logic devices [10–13].
Photonic crystals, which are artificial electromagnetic
dielectric materials with a periodically modulated refractive
index, have already found practical applications in opto-
electronics. Magnonic crystals (MCs) [11,14] can be
regarded as the magnetic counterpart of photonic crystals
with spinwaves (SWs) acting as information carriers. In fact,
since the wavelength of SWs is several orders of magnitude
shorter than that of electromagnetic waves of the same
frequency in photonic crystals, MCs offer better prospects
for theminiaturization ofmicrowave devices. Based on their
design,MCs exhibit a characteristicBragg scattering leading
to the formation of band-gap regions of the SW spectrum in
which SW propagation is prohibited [15–17]. The number
and properties of the band gaps can be tuned by controlling
the material and structural parameters [18,19] as well as
the strength of the biasmagnetic field. This tunability allows
for the reliable and active manipulation of the propagation
properties of SWs and makes MCs potentially useful in

microwave resonators, filters, and switches operating in the
gigahertz frequency range. Also, the significant reduction of
SWgroupvelocity in thevicinity ofmagnonic band gaps can
be exploited for designing frequency-dependent delay lines.
To this end, understanding the interplay between shape and
intrinsic anisotropy as well as the influence of dipolar
coupling in these laterally confined magnetic structures is
of paramount importance for any desired application.
Hitherto, intensive research has been carried out to

investigate the spin-wave dynamics in one- [16,18–21],
two- [3–6,22–25], and three-dimensional [26,27] arrays of
magnetic nanostructures of different shapes and composi-
tions, which were studied using various methods ranging
from analytical [such as the plane-wave method (PWM)]
and computational (using micromagnetic simulations)
methods to experimental means using Brillouin light
scattering (BLS), ferromagnetic resonance, and time-
resolved magneto-optical Kerr-effect techniques. These
structures can be broadly subdivided into three groups:
(i) an array of interacting ferromagnetic dots [3,5,22–24],
where the dynamical coupling between the dots is due to
magnetostatic interaction between the SWmodes excited in
the single dot. (ii) Array of periodic holes in a ferromag-
netic thin film or antidot lattice [6,28,29]. Here the
formation of the magnonic band structure is determined
by the periodicity of the demagnetizing field around the
holes in the film plane. In some cases, the holes can also be
filled with another ferromagnetic material (bicomponent*abarman@bose.res.in
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MC) [25], where all the effects mentioned above are
present, and the additional dipolar and exchange inter-
actions between the two materials give additional control
parameters over the magnonic band gap and propagation
velocity. (iii) One-dimensional periodic waveguides in the
form of microstrips, with periodically modulated compo-
sitions and structures [15,18–20,30]. All of these inves-
tigations point towards a wide range of manipulation of
magnonic properties and have opened the pathway for
tailoring the dispersion of high-frequency SWs in a much
wider class of magnonic systems than considered so far.
Here, we introduce a pseudo-one-dimensional (1D)

magnonic crystal formed by an array of asymmetric
saw-tooth-shaped waveguides (ASWs) and study their
magnonic band structure by experimental and theoretical
methods. The topic of periodic SW waveguides studied so
far includes a microscopic waveguide with periodically
bent sections [31], periodic arrays of nanostrips [19],
a waveguide with variable edges [16,17] or thickness
[32], a ferromagnetic stripe microstructured using localized
ion implantation [33], or a periodic bias magnetic field [34]
and one-dimensional comblike structures [35]. In these
cases, the allowed and forbidden SWmodes were governed
by the periodic variation of dipolar coupling, magnetiza-
tion, or internal magnetic field. In our present study, the
MC offers a periodic modulation of both dipolar coupling
and internal magnetic field in two perpendicular directions,
thereby enhancing the number of magnetic parameters to
control the magnonic band structure. Here, we use the BLS
technique to investigate the magnonic band structures and
mode properties of the ASW arrays. We study how the
magnonic band gaps can be significantly reconfigured by
rotating an applied magnetic field by 20° from the SW
propagation channel, i.e. the waveguide axis. In a real
on-chip magnonic circuit, all the processing units are
integrated along with a predefined path for data flow.
Therefore, to achieve a band tunability by slightly rotating
the bias field is more feasible as far as the practical
implementation is concerned, as compared to rotating
the entire system or changing the physical structuring.
The PWM is employed to reproduce and analyze the mode
characteristics. Here, the edge corrugation basically engi-
neers the edge potential wells of the stripes, which can be
used to control the mode coupling in miniature magnonic
waveguides. Our findings show that this system may serve
as a possible component for a tunable SW waveguide and
SW signal processor, which are important components for
magnonic devices.

II. EXPERIMENTAL DETAILS AND DEFINITION
OF RELEVANT MAGNETIC FIELD AND

WAVE-VECTOR ORIENTATIONS

A 72 × 72 μm2 array of 30-nm-thick (nominal) ASWs
made of polycrystalline permalloy (Ni80Fe20) is fabricated
on thermally oxidized silicon substrate by means of e-beam

lithography, e-beam evaporation, and lift-off process. For
that, Si(001) substrate covered with 100-nm SiO2 is spin
coated with bilayer polymethyl methacrylate (495 and
950 K) positive-tone e-beam resist. On the resist-coated
substrate, using high-resolution e-beam lithography, a
corrugated nanostripe pattern is defined followed
by development in methyl isobutyl ketone (MIBK) and
isopropyl alcohol (IPA) (MIBK:IPA, 1∶3) solution.
Following this, on this substrate using e-beam evaporation
(base pressure ¼ 3 × 10−8 Torr), we deposit 30-nm-thick
Ni80Fe20 at a deposition rate of 0.2 Å=S. A 2-nm-thick SiO2

is deposited over theNi80Fe20 using the rf sputter-deposition
technique (base pressure 2 × 10−7 Torr, deposition under
Ar pressure ¼ 5 mTorr, deposition rate ¼ 0.3 Å=S, rf
power ¼ 60 W). Subsequently, the lift-off is done in
acetone using ultrasonic agitation to obtain the well-defined
Ni80Fe20 ASW array. The scanning-electron-microscopy
(SEM) image of the final structure is shown in Fig. 1(a).
The length of each stripe is 72 μm (average width, 350 nm),
and the nominal distance between the central axes of two
consecutive stripes (a) is 800 nm. Since the edges of each
stripe are patterned in an asymmetric saw-tooth-like struc-
ture, this gives rise to an additional periodicity along the
stripe axes (i.e. y axis) to the otherwise 1D array of simple
magnetic stripes with the periodic variation of the dipolar
stray field along the z direction.
Note that due to the asymmetry in the corrugated edges,

the edge-to-edge spacing between two ASWs is constant
along the stripe, restricting the periodicity in the dipolar

FIG. 1 (a) SEM image of the studied ASW array. The
coordinate axes are shown by the white arrows. The unit cell
considered for PWM calculations is marked by dashed box.
(b) Schematic of the BLS measurement geometry used, showing
the incident and scattered-light beams and the in-plane angle φ
between the magnon wave vector q and applied magnetic fieldH,
with both vectors lying in the sample plane. (c) Simulated static
magnetic configurations (shown in red-white-blue color map) for
φ ¼ 90° and φ ¼ 70° configurations (left and right panels,
respectively) for μ0H ¼ 85 mT. The magnetic field direction is
shown by blue arrows.
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stray field along the y direction. In that sense, the chosen
system may be termed as a pseudo-1D MC, which features
two different 1D MCs in two perpendicular directions. The
lattice constant (a) and Brillouin zone (BZ) edge (π=a)
along the y direction are 800 nm and 3.9 × 107 rad=m,
respectively.
BLS experiments are performed in the backscattering

configuration for the measurement of dispersion character-
istics of thermal magnons in this structure. This technique
relies on an inelastic light-scattering process due to the
interaction between incident photons and magnons.
Monochromatic laser light (wavelength λ ¼ 532 nm,
power ¼ 130 mW) from a solid-state laser is focused on
the sample surface. The diameter of the laser spot is about
40 μm, hence, smaller than the array dimensions. As the
laser beam is inelastically scattered from the magnons due
to conservation of momentum, the magnitude of the in-
plane transferred wave vector q depends on the incidence
angle of light θ according to q ¼ ð4π=λÞ sin θ. Cross-
polarizations between the incident and the scattered beams
are adopted in order to minimize the phonon contribution to
the scattered light. Subsequently, the frequencies of the
scattered light are analyzed using a Sandercock-type six-
pass tandem Fabry-Perot interferometer (JRS Scientific
Instruments). There, a frequency shift is observed along
with the laser frequency taking into account energy and
momentum conservation. The measurement geometry is
shown in Fig. 1(b). Throughout the experiment, the
direction of the wave vector (q) is enforced to be parallel
to the stripe, i.e. the y direction, by making the stripe axes
parallel to the light-scattering plane [see Fig. 1(b)], and the
BLS spectra are recorded for up to two BZs, i.e.
q ∼ 8 × 107 rad=m. The sample is subjected to an in-plane
magnetic field of H ¼ 85 mT=μ0 during the measurement,
which can be rotated by an angle φ with the ASWaxis (i.e.
along q) using a precision rotary mount. In this work, we
adopt two values of φ of 90° (also known as Damon-
Eshbach geometry) and 70°, which correspond to two
different sample magnetic configurations, as we discuss
later.

III. THEORETICAL APPROACH

We calculate the spectrum of magnonic excitations of the
ASW array using the PWM. This method is a popular tool
because of its conceptual simplicity and its applicability to
any type of lattice and any shape of scattering centers. We
solve the Landau-Lifshitz (LL) equation, i.e. the equation
of motion of the magnetization vector Mðr; tÞ, under the
impact of effective magnetic fieldHeff , which has primarily
three contributions: a uniform and constant applied mag-
netic fieldH, the exchange fieldHex, and the magnetostatic
field HMS. In the linear approximation, the component
MSðrÞ of the magnetization vector parallel to the static
magnetic field is constant in time, and its magnitude is
much greater than that of the perpendicular components

mðr; tÞ, i.e. jmðr; tÞj ≪ MSðrÞ, with Mðr; tÞ ¼ MSðrÞẑþ
mðr; tÞ. In a magnetically inhomogeneous medium (like a
MC), the spatial inhomogeneity of the material parameters
(exchange constant and spontaneous magnetization) as well
as the magnetostatic field must be taken into account.
Subsequently, we perform the Fourier transformation to
map all the periodic functions (in space and time) including
the static and dynamic parts of the magnetic fields and
magnetization components to the reciprocal space using
Bloch’s theorem [36]. In that way, the PWM transforms the
LL equation into an infinite set of algebraic equations,
which leads to an eigenvalue problem. In order to find the
eigenvalues (frequencies of SWs) and eigenvectors (ampli-
tude of the dynamical component of the magnetization
vector), the Fourier series has to be limited to the finite
number of elements. The eigenvalue problem is then solved
with standard numerical routines.
Here, we consider the lattice structure forming of

permalloy and air, with two lattice vectors given by a1 ¼
ay and a2 ¼ az. For the calculation, we assume the
magnetic field to be always oriented along the z axis,
i.e. for φ ¼ 90° geometry along the vertical line and for
φ ¼ 70° geometry along the line anticlockwise rotated by
ψ ¼ 20°. We, thus, rotate the in-plane components of the
coordinate system in the clockwise direction consistent
with a rotation of the magnetic field [Fig. 1(a)]. Therefore,
in generalized form, the lattice vector becomes a super-
position of two primitive vectors given by a1 ¼ a cosψ,
y þ a sinψz, and a2 ¼ −a sinψ , y þ a cosψz, where ψ ¼
0° (20°) for φ ¼ 90° (70°).
In the reciprocal space, the dynamic components of

magnetization and magnetostatic field are expressed using
Bloch’s theorem, i.e. as a product of a plane-wave envelope
function and a periodic function:

mðrÞ ¼
X

mqðGÞeiðqþGÞ:r;

whereG ¼ ðGy;GzÞ denotes the reciprocal lattice vector of
the considered structure; in the case of the ASW array, we
get G ¼ ½ð2πÞ=a�ðny cosψ − nz sinψ ; ny sinψ þ nz cosψÞ,
with ny and nz being integers. The Bloch wave vector
q ¼ ðqy; qzÞ, in this case, lies along the stripe axis. So, it
reads as q ¼ ðjqj cosψ ; jqj sinψÞ.
Being a periodic function of position in the MC, the

saturation magnetization (MS) and the squared exchange
length (lex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð2AÞ=μ0M2
S

p
, A is an exchange constant)

can be mapped onto the reciprocal space using the Fourier
transformation formulas:

MSðrÞ ¼
X

G

MSðGÞeiG;r;

l2exðrÞ ¼
X

G

l2exðGÞeiG;r;
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where the Fourier coefficients MSðGÞ and l2exðGÞ are
determined analytically. To simplify the problem, we
assume each ASW as a periodic sequence of tilted (at a
25° angle with respect to the y axis) rectangular elements
(with nominal dimensions 800 × 400 nm2), serially con-
nected with each other with small overlaps [see Fig. 1(a)].
This way, the ASWarray is reduced to a 2D lattice of tilted
rectangles minus the overlapped region. Although the
interelement exchange should be considered for more
accurate calculation, the large size of the elements with
respect to the exchange length of permalloy ensures that the
main contribution to the collective dynamics originates
from the collective dipolar field. The chosen material
parameters corresponding to permalloy are saturation
magnetization Ms ¼ 860 × 103 A=m, exchange constant
A ¼ 1.3 × 10−11 J=m, and g ¼ 2, while small nonzero
values of Ms and A are assigned to the air gap to avoid
any nonphysical frequency values. A satisfactory conver-
gence of the numerical solutions of the eigenvalue problem
is obtained by taking 882 plane waves.

IV. RESULTS AND DISCUSSION

Figure 1(c) shows the static magnetic configurations of
the sample with φ ¼ 90° and 70° (the left and right panels,
respectively) simulated using OOMMF software [37] by
dividing the samples into cuboidal cells of 4 × 4 × 30 nm3

volume. For φ ¼ 90°, the static magnetic state reveals a
series of ‘S’ states with the demagnetized regions near the
edges of each stripe, as shown by the y component of
magnetization encoded using a blue-white-red color map.
The φ ¼ 70° configuration, on the other hand, shows a
series of leaf states where the magnetization lies along the
diagonal of each element. Here, the demagnetized regions
pervade only near the smaller edge of the rectangular
element and are less pronounced as compared to the φ ¼
90° case. The modification in the local magnetization states
changes the dipolar coupling between the elements, which
eventually determines the SW character, as we show later.
For the geometry with φ ¼ 90°, the wave-vector evolu-

tion of spin-wave frequencies, together with few represen-
tative BLS spectra (measured and calculated) are presented
in Fig. 2. The calculated intensities are determined from the
square of the modulus of the fundamental harmonics of
magnetization in PWM, which is proportional to the signal
strength detected in BLS. In Fig. 2(c), the rich magnonic
band structure of the ASW array, as obtained from PWM
calculations for two BZs, is shown by the blue lines, where
the magnonic bands with predicted large scattering cross
sections are emphasized by bold green lines. The exper-
imental data (red solid circles) are overlaid on the calcu-
lated dispersion, which is in good agreement with the latter.
In the experiment, the BLS spectra are characterized by the
presence of five well-defined modes [Fig. 2(a)]. Amongst
them, modesM1,M2, andM3 are dispersive modes, while

M4 andM5 do not significantly depend on q. In addition, at
the wave vector near π=a (i.e. the edge of the first BZ),
mode M1 undergoes Bragg diffraction, inducing the open-
ing of a band gap of width approximately 1 GHz. The value
of this gap depends upon the lattice dimensions and the
cross talk between the consecutive ASWs.
In order to get closer insight into the wave-scattering

mechanisms, we calculate the SW mode profiles, i.e. the
modulus of the amplitude of the x component of the
dynamic magnetization, of the relevant experimental
modes. The spatial profiles of these modes are shown
for q ¼ 0, q ¼ π=a, and q ¼ 2π=a (i.e. in the center and
the edges of the BZs) in Figs. 3(a)–3(c), respectively.
Starting from the mode profile of M1 at q ¼ 0 [Fig. 3(a)],
we find that this mode is an extended mode along the ASW
axes, although with a nonuniform profile along the stripe
axes. A correlation between this profile with the corre-
sponding magnetic configuration shown in Fig. 1(c)
emphasizes that this mode actually resides where the local
magnetization is parallel to the external applied field, i.e.
the so-called barrier or center mode of a magnetic stripe
[38]. In the case of a uniform magnetic stripe, the modes are
governed by the spatially inhomogeneous internal magnetic
field formed by the edge potential wells due to demagnet-
izing effects, forming the well mode and barrier mode at the
edge and central regions, respectively. As the width of the
stripe is scaled down, the well mode and the barrier mode
start to couple, which may create noise in the propagating
signal. The corrugation at the edges lifts the demagnetized
regions away from the propagation channel, thereby
impeding the edge modes from occurring. In other words,
the corrugation can control the extent of the edge modes,
which will be useful for decoupling the center mode in

FIG. 2 (a) The Stokes side of BLS spectra taken at different
values of the in-plane transferred wave vector q (denoted in units
of 107 rad=m) for φ ¼ 90° geometry. The spectra are horizontally
flipped for convenience. The SW peaks are indicated by the
arrows. (b) Relative values of BLS intensities as calculated by
PWM for different values of q given in (a). (c) Magnonic band
structure in φ ¼ 90° geometry. Thin blue lines are PWM results.
Bold green lines emphasize intense excitations as predicted by
PWM. Red solid circles represent peaks in the BLS spectra. The
dashed vertical line is the boundary of first BZ. The band gap is
shown by the shaded region.
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miniaturized magnonic devices. The spatial profiles of
the higher-frequency modes M2 and M3 show that they
are also quantized extended modes, with quantization
number of 3 and 8, respectively, the nodal planes being
perpendicular to H. The modes M4 and M5, on the other
hand, show a high degree of hybridization recognized
by the presence of nodal planes in both parallel and
perpendicular directions to the local magnetic field.
Interestingly, the mode profiles of M4 and M5 foster
tunneling nodal planes through the rectangular elements,
still they do not exhibit any systematic dispersion with q
[see Fig. 2(c)]. The reason can be ascribed to the very high
quantization number of these modes, which reduces the
dynamic dipolar coupling between the rectangular ele-
ments, thereby prohibiting the mode propagation.
As we move to the mode profiles for q ¼ π=a [Fig. 3(b)],

we observe a significant reduction in the extended character
of M1. This is expected because at the BZ edge, as
mentioned earlier, its dispersion undergoes a change from
positive slope to negative slope. This substantially mini-
mizes its group velocity [v ¼ dð2πfÞ=dq] at the BZ edge,
i.e. its propagating character. The corresponding profiles
for M2 and M3, on the contrary, show a more pronounced
tunneling at the BZ boundary. The modes M4 and M5
continue to show an extended nature, with a slight change
in their hybridization characteristics.
With further increase in q, we see substantial changes

in the profiles of M1–M3. At the second BZ boundary
[Fig. 3(c)], mode M1 regains its extended character, due to
the aforementioned reason. The modesM2 and M3, on the
other hand, evolve into a profile with higher quantization

number. Basically, in the case of quantized modes with a
high degree of quantization, the wave-vector dispersion is
associated with their growth in terms of nodal planes.
In Fig. 4, the experimental and calculated frequencies are

presented for φ ¼ 70°. Note that for both values of φ, the
calculated band structure exhibits mirror symmetry with
respect to the boundary of the first BZ. This signifies that
the wave vector is always along one symmetry direction,
i.e. along the axes of ASW. As seen from Fig. 4(a),
primarily four modes are observed in the BLS spectra
for φ ¼ 70°. As compared to the φ ¼ 90° geometry, here
the frequencies of the modes are shifted to higher value,
except M4. This trait can be attributed to the reduced
demagnetized regions for φ ¼ 70°, which enhances the
internal magnetic field inside the stripe. Moreover, a
suppression of spin-wave propagation is seen for M1;
i.e. the group velocity is close to zero. Mode M2, on the
other hand, has first an almost constant frequency up to
about π=a and then it is dispersive; i.e. it has a finite slope
as a function of q. This behavior leads to a marked increase
in the band-gap width (approximately 1.8 GHz) as well as
an upshift in its frequency position. The dispersive char-
acter of M2 is reproduced in the PWM results, except
for the fact that the mode with highest BLS intensity [see
Fig. 4(b)] is at larger frequency than M2. In addition,
although experimentally, mode M2 evolves continuously
with q, theoretically, the evolution of the predicted BLS
intensity jumps to another frequency branch. Our findings
on SW propagation and band-gap features are different
from the results reported earlier for a strongly interacting
magnetic stripe array, where the wave vector (of constant
magnitude) was rotated in the azimuthal direction, while
keeping the direction of H fixed [39].

0 2

FIG. 3 Spatial profiles of the selected modes for (a) q ¼ 0,
(b) q ¼ π=a, and (c) q ¼ 2π=a for the geometry with φ ¼ 90°.

FIG. 4 (a) The Stokes side of BLS spectra taken at different
values of the in-plane transferred wave vector q (denoted in units
of 107 rad=m) for φ ¼ 70° geometry. The spectra are horizontally
flipped for convenience. The SW peaks are indicated by the
arrows. (b) Relative values of BLS intensities as calculated by
PWM for different values of q given in (a). (c) Magnonic band
structure in φ ¼ 70° geometry. Thin blue lines are PWM results.
Bold green lines emphasize intense excitations as predicted by
PWM. Red solid circles represent peaks in the BLS spectra. The
dashed vertical line is the boundary of first BZ. The band gap is
shown by the shaded region.
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An inspection of the spatial spin-precession profiles
of the experimentally observed modes presented in
Figs. 5(a)–5(c) for q ¼ 0, q ¼ π=a, and q ¼ 2π=a, respec-
tively, reveals that here also mode M1 is a quantized mode
with mode number 1, the nodal plane being perpendicular
to the external field direction. Moreover, the profile of M1
for φ ¼ 70° is due to a weaker coupling of magnetic
excitations between the constituent elements, thereby weak-
ening the SW propagation [see Fig. 5(a)]. As forM2, it is a
quantized mode with quantization number 8, similar toM3
in the case of φ ¼ 90° geometry. Nevertheless, its nodal
planes are confined in the rectangular elements at q ¼ 0,
then it extends substantially across the interelement chan-
nels giving rise to a propagating behavior, at the edge of first
BZ. At the second BZ boundary, the mode profile attains a
higher quantization degree. All these trends are consistent
with the dispersion behavior observed experimentally,
where initially its eigenfrequency is nearly independent
of q, which takes a positive slope as q approaches the BZ.
The other high-frequency modes are complex hybridized
modes, which show a very high quantization number and
have similar properties as for the geometry of φ ¼ 90°.
The above results demonstrate an active method of

magnonic band engineering in an ASW array by merely
rotating an external magnetic field with respect to the in-
plane wave vector. In a practical integrated magnonic
circuit, the external bias field for driving the magnons is
provided either by external fields coming from a permanent
magnet or by the Oersted field created by a current through
a loop which also requires a cooling system. Therefore,
orienting the magnetic field in a different direction is an

easier way compared to increasing the field value or
rotating the entire magnonic circuit. The variation in the
magnetic field direction essentially leads to a modulation in
the profile of a periodically varying SW channel, which
subsequently determines the SW frequency dispersion.
Figuratively, the SW energy incident on each rectangular
element is partly reflected because the SW width profile
does not fit into the narrow waveguide section at the
junction of the two elements. This property can be
implemented in dynamic spin-wave filters and magnonic
waveguides in the gigahertz frequency range. In addition,
the magnonic bands can be further tuned by changing the
structural parameters of each ASW, e.g., the dimensions of
the rectangular element, the interaction between the ASWs
(an increase in cross talk results in reduction of band gap),
the orientation and magnitude of magnetic field, and the
symmetry of corrugation.
Figure 6 provides an exemplary demonstration of how

the SW propagation can be manipulated in the ASW array.
For that, the SW response to microwave excitation is
simulated for the two φ values. Using OOMMF software,
SWs are launched at the left end of the considered structure
through a 400-nm-wide region. For excitation, we use a
time-varying field of “sinc” profile (frequency window of
30 GHz) applied along the stripe axes. Figures 6(a) and 6(b)
show the mode profiles at different SW frequencies for φ ¼
90° and φ ¼ 70°, respectively. The results reveal that the
transmission of the nodal planes at 6 and 8 GHz is blocked
when φ changes from 90° to 70°. On the contrary, at
9.3 GHz, the nodal planes are able to pass through for both
values of φ. This asserts the possible application of the
ASW array as a frequency-dependent dynamic filter. It is
noteworthy that for 6 GHz in Fig. 6(a), the nonuniformity
of the SW amplitude is not that pronounced as it is in the
PWM results [Fig. 3(a)]. Therefore, we infer that the

0 2

FIG. 5 Spatial profiles of the selected modes for (a) q ¼ 0,
(b) q ¼ π=a, and (c) q ¼ 2π=a for the geometry with φ ¼ 70°.

(a) (b)
6 GHz 6 GHz

8 GHz 8 GHz

9.3 GHz 9.3 GHz
Min

Max

FIG. 6 Amplitude profiles of different spin-wave modes excited
locally at the shaded region for (a) φ ¼ 90° and (b) φ ¼ 70°
geometry.
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obtained nonuniformity is a result of the pinned boundary
condition inherent in PWM.
Because of the lack of mirror symmetry in this system,

one may expect some impression of nonreciprocal SW
behavior with respect to the counterpropagating wave
vectors. The nonreciprocal behavior is indeed predicted
for a corrugated stripe (having mirror symmetry about its
axis) with lower dimensions [40]. To verify that in
our case, we measure the BLS spectra for two magnitudes
of wave vectors of counterpropagating SWs. The
results are presented in Figs. 7(a) and 7(b) for φ ¼ 90°
and φ ¼ 70°, respectively. Surprisingly, even for higher q
(¼1.9 × 107 rad=m), negligible asymmetry in SW fre-
quency values is observed for both φ values. We speculate
that the reason lies in the internal field profile. When the SW
propagates along either the positive or negative direction, it
simultaneously perceives the profile of small and large arms
of the rectangular element. Another possible reason may be
the feature dimensions, which are too large for any effect of
chirality to bevisible. Nevertheless, a thorough investigation
of the nonreciprocal behavior is of future interest.

V. CONCLUSIONS

In conclusion, we present a combined experimental and
theoretical study of the reconfigurable magnonic excita-
tions in a pseudo-one-dimensional magnonic crystal
composed of ASWarrays by varying the angle (φ) between
the wave vector (directed along ASW axes) and magnetic
field. The switching of the magnetic field from φ ¼ 90°
to φ ¼ 70° results in a transition in the internal magnetic
field distribution, from the S state to the “leaf” state.
Consequently, the magnonic band structure for φ ¼ 90°
supports propagating SW modes and is characterized by a
pronounced magnonic band gap. The frequency and size of
the gap is effectively modified by varying φ to 70°. Further
calculations of the spatial mode profiles reveal that the edge
potential well modes can be effectively tuned by manipu-
lating the edge corrugation. All these observations are

important from a fundamental scientific viewpoint as well
as in terms of magnonics where the tunability of spin waves
is considered for magnetic nanodevices operating in the
gigahertz frequency regime.
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