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We explore a photonic-integrated-circuit platform that implements optical-frequency measurements and
timekeeping with a perspective towards next-generation portable and spaceborne frequency references
and optical-clock networks. The stoichiometric-silicon-nitride waveguides we create provide an efficient
and low-noise medium for nonlinear spectral broadening and supercontinuum generation with fiber-based
optical-frequency combs. In particular, we demonstrate detailed control over supercontinuum emission to
target specific atomic-transition wavelengths and perform an optical-clock comparison using on-chip
supercontinuum sources. We report a clock-limited relative frequency instability of 3.8 × 10−15 at τ ¼ 2 s
between a 1550-nm cavity-stabilized reference laser and NIST’s calcium atomic-clock laser at 657 nm
using a two-octave waveguide-supercontinuum frequency comb.
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I. INTRODUCTION

Integrated photonic waveguides based on stoichiometric
silicon nitride (Si3N4, henceforth SiN) are a powerful
alternative to nonlinear fibers for generating broadband
supercontinuum (SC) [1–4]. Compared to most nonlinear
fibers, SiN waveguides offer more than an order-of-
magnitude reduction in both the required peak power
and nonlinear medium length while producing spectra with
nearly twice the bandwidth. Moreover, the SiN platform
enables chip integration of individual photonic components
to support complex multipurpose devices while still
offering both high efficiency and robust operation.
The photonic integration of different supercontinuum

sources is of particular benefit to optical-frequency metrol-
ogy experiments, as these often require low-noise combs
with frequency bandwidths spanning hundreds of terahertz.
Current frequency-comparison techniques include the use
of octave-spanning Ti:sapphire laser systems [5] and multi-
branch fiber frequency combs [6,7]. However, chip-
integrated devices are now poised to deliver many of the
best features of both systems. By eliminating additional
amplifiers, as has been a demonstrated goal for macroscopic
comb systems [8], and integrating most wavelength-specific
beam paths on a single chip, waveguide devices have the
potential to reduce measurement noise and increase sensi-
tivity, all in a compact form factor that promotes portability

FIG. 1. Proposed SiN photonic chip for optical-clock measure-
ments. A frequency comb excites multiple waveguides whose
dispersion profiles are tuned to produce supercontinuum light at
wavelengths corresponding to optical-clock standards. The wave-
guides are outcoupled and delivered in fiber to photodetectors
(PD) where the SC is overlapped with the appropriate clock laser
to obtain heterodyne beats. SiN design and fabrication capabil-
ities allow the integration of frequency-doubling components
such as periodically poled lithium niobate (PPLN) for self-
referencing [14].
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and low-maintenance operation. Miniature waveguide-
broadened combs, as shown in Fig. 1, would provide a
common platform for optical counting at nodes of a global
optical-clock network, enabling sensing in diverse areas of
physics, geodesy [9], astronomy [10], gravitational wave
detection [11], and navigation [12]. However, current atomic
clocks have relative instabilities of less than 10−17 at modest
averaging times [13], which places stringent requirements on
both the short-term and long-term stability of the frequency
comb sources.Whilewaveguide devices have been shown to
produce broad spectra, the frequency stability of such sources
has not been carefully assessed, and photonic-chip super-
continuum sources have not been used for precision mea-
surements of optical frequencies.
The SiN platform has advantages for implementing

such a device over other nonlinear optical materials like
silicon on insulator [15,16], silica [17,18], chalcogenide
glasses [19], and aluminum galium arsenide [20] because
of its high nonlinearity, complementary metal-oxide-semi-
conductor- (CMOS) compatible fabrication process, and
broad spectral coverage ranging from the visible to the
midinfrared [21,22]. Additionally, photonic waveguide
devices feature highly tunable dispersion, as well as high
confinement of the light, and offer a potential avenue for
performing metrology experiments using broadened combs
with repetition rates > 10 GHz such as low-power micro-
resonator combs [23], electro-optic combs [24–26], and
even some traditional mode-locked lasers [27].
In this paper, we demonstrate SiN waveguides designed

to support high-precision optical-frequency metrology
experiments as a key step towards the integrated all-in-
one clock-network device shown in Fig. 1. To show this, we
use the waveguide-generated SC to measure the relative
frequency stability of a 1550-nm cavity-referenced “clock”
laser versus the cavity-stabilized 657-nm laser used in the
NIST calcium thermal beam atomic clock [28,29]. The
generated SC spectrum spans from 650 nm to 2.6 μm and
provides a phase-coherent link between the 1550-nm laser
and the calcium clock laser which is over an octave in
frequency away from the pump. In addition to showing its
utility for metrology experiments, this measurement
emphasizes the high temporal coherence, high-efficiency
wavelength conversion, broad spectral bandwidth, and
potential for long-term stability achievable with SC gen-
eration in SiN waveguides.

II. WAVEGUIDE DESIGN

To design a suitable waveguide for a clock-comparison
measurement at 657 nm, numerical simulations of the pulse
propagation and subsequent spectral broadening are per-
formed using the generalized nonlinear Schrödinger equa-
tion as part of the PyNLO software package [30–32]. Included
in these calculations is a chromatic dispersion profile for each
waveguide geometry obtained using a finite-differencemode
solver implemented in the EMpy software package [33]. Our

physical understanding of supercontinuum control is pre-
sented below, while Fig. 2 highlights the precise agreement
between our numerical designs [Fig. 2(a)] and our generated
supercontinuua [Fig. 2(b)].
Dispersion engineering is an important feature of SiN

waveguides. The high degree of control over the dispersion
arises from the large refractive-index contrast between the
SiN core and the lower-index cladding layers to create strong
spatial confinement [35]. As a result, changing the wave-
guide geometry can be sufficient to counteract material
dispersion contributions and dramatically alter the output
spectrum. To support soliton propagation and to achieve the
broadest supercontinuum spectrum, it is important to have
anomalous dispersion around the pump wavelength [36].
However, dispersive wave generation providing local spec-
tral enhancement occurs in the normal-dispersion regime
where phase matching is achieved between the fundamental
soliton and a small-amplitude linear wave of different
frequency [36,37]. This phase matching is plotted in
Fig. 3(b) as the difference in wave number Δβ between
the soliton and linear wave at different wavelengths. The
dispersive wave locations, given by Δβ ¼ 0, can thus be
precisely tuned through modifications to the waveguide

(a)

(b)

FIG. 2. (a) Simulated and (b) experimental supercontinuum
spectra (intrawaveguide intensity scaled by coupling loss) vs
waveguide width obtained for the 1-cm-long dispersion-
engineered 600-nm air-clad SiN waveguides used in this work.
A 120-fs sech2 pump pulse centered at 1550 nm with a total
energy of 100 pJ is used to seed the waveguide. The narrow
spectral feature near 500 nm in the experimental data is due to
third harmonic generation [34].
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geometry. In fact, for the metrology experiment described in
this work, sufficient tunability is achieved through tuning the
waveguide width alone. Figure 2 fully explores the available
design space, both through simulation and experiment, for
this spectral tailoring by sweeping the waveguide width
while keeping all other parameters constant. It was sub-
sequently determined that, for an air-clad waveguide with a
thickness of 600 nm, a waveguide width of 2200 nm would
produce a dispersivewavewith the highest amount of optical
power near the calcium clock wavelength. The waveguide
geometry and corresponding transverse-electric (TE) mode
profile at 1550 nm is shown in Fig. 3(a), while the chromatic
dispersion profile is provided in Fig. 3(b).
With this degree of control over the generated spectrum

in the design stage, it is now possible to simultaneously
target other clock wavelengths in parallel waveguides. For
example, Fig. 2 shows that to reach the strontium lattice
clock at 698 nm, a waveguide width of 2300 nm should be
chosen. Optical-clock transitions below 600 nm, on the
other hand, are commonly accessed using subharmonics
of the natural transition wavelengths near 1100 nm (see
Fig. 1). While the spectra in Fig. 2 do not cover this region
well, it is straightforward to extend the dispersive wave
range by widening the waveguide and slightly increasing
the thickness of the SiN layer (see Supplemental Material

[38]). This “designability” is a key aspect allowing the
integration of several waveguides onto the same chip as
proposed in Fig. 1 in order to simultaneously target all
current optical clock standards while starting from a fiber-
based 1550-nm source [39]. For the same laser system
and coupling parameters used in this experiment, imple-
menting this chip would require approximately 150 mW
coupled power and 750 mW incident power. However,
recent waveguide designs with improved input coupling
(< 2 dB insertion loss) mean that less than 250 mW of
incident power would be needed in an optimized
design [34].
To realize the high level of supercontinuum control

noted above, the waveguides used in Figs. 2(b) and 3 are
fabricated by depositing low-pressure chemical vapor
deposition stoichiometric SiN with a thickness of 600 nm
above a 3-μm oxide undercladding layer (SiO2) on a silicon
wafer. The waveguide pattern is then written to the chip
using electron-beam lithography before a final etching
step yields the finished device. The air-clad waveguides
produced here are 1 cm in length, though, to further reduce
the pulse energy requirements for dispersive wave gener-
ation, longer waveguides could be used in the future.

III. METROLOGY EXPERIMENT AND RESULTS

To carry out our optical-clock counting experiment, we
use the system shown in Fig. 4. A commercial 1550-nm
frequency comb is amplified to an average power of
300 mW to produce 120-fs pulses at a 250-MHz repetition
rate. A 75% power splitter directs light to a lensed fiber for
input coupling to the waveguide with approximately −7 dB
of insertion loss. The remaining 25% of the amplifier
output is diverted to a 4-cm-long waveguide periodically
poled lithium niobate (PPLN) crystal to generate 780-nm
second-harmonic light for f-2f self-referencing. Output
coupling from the waveguide is accomplished using a 0.85-
NA visible-wavelength microscope objective that colli-
mates the light in free space.
The experimental SC spectrum showing the calcium-

optimized dispersive wave, as well as both the input and
PPLN spectra, is shown in Fig. 3(c). Because of additional
losses from recollecting the collimated output light in
multimode fiber, the power in the experimental data is
offset from the simulation. Also, though the doubled PPLN
light overlaps with a weak portion of the SC spectrum, f-2f
offset detection takes advantage of the coherent addition of
many comb teeth and, as a result, a beat note with a 34-dB
signal-to-noise ratio (SNR) at 300-kHz resolution band-
width (RBW) can still be detected.
Approximately 1 mW of cavity-stabilized calcium clock

light is delivered to the experiment through a Doppler-
canceled fiber link [40] that, when combined with the SC
output at a polarizing beam splitter before photodetection,
produces the rf beat fb shown in Fig. 4(b). Because the
short-wavelength dispersive wave contains more than 1 nW
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FIG. 3. Air-clad SiN waveguide design: (a) Waveguide cross-
section showing the fundamental electric-field TE mode profile
for λ ¼ 1550 nm. (b) Calculated dispersion profile (left axis) for
the waveguide including contributions from both the material
refractive index and waveguide geometry. At the pump wave-
length (dotted line), the dispersion is anomalous to facilitate
soliton compression and broadening. The phase mismatch Δβ
between the fundamental soliton and a low-amplitude linear wave
is also shown (right axis). A dispersive wave occurs in the
spectrum where Δβ ¼ 0. (c) Experimental supercontinuum
spectrum designed to produce a dispersive wave centered at
660 nm (blue). Also shown are the input comb spectrum (green,
offset), PPLN spectrum for self-referencing (purple, offset),
theoretical supercontinuum spectrum (dark yellow, offset from
experimental curve due to coupling losses), and calcium clock
wavelength at 657 nm (dashed vertical line).
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of optical power per mode, the rf beat readily has > 30 dB
SNR at 300 kHz RBW, which is an important practical
threshold for accurate stabilization, frequency division, and
counting [41]. Likewise, another beat note fa is obtained
from the waveguide output by combining it with the second
“clock” laser at 1550 nm.
All three detected rf beats: fa, fb, and f0, are shown in

Fig. 4(b). The heterodyne signals from single comb lines fa
and fb are given by

fa ¼ nfr þ f0 − ν1550;

fb ¼ mfr þ f0 − ν657; ð1Þ

where n and m are the comb mode numbers at the clock
laser frequencies ν1550 and ν657, respectively.
After f-2f beat detection, rf filtering, and digital

frequency division, the comb offset frequency is electroni-
cally subtracted from both fa and fb with a double-
balanced frequency mixer to obtain offset-free beats f0a
and f0b [42]:

f0a ≡ fa − f0 ¼ nfr − ν1550;

f0b ≡ fb − f0 ¼ mfr − ν657: ð2Þ

Following f0 subtraction, the comb is optically phase
locked to the offset-free 657-nm beat f0b and, in doing so,
the stability of the calcium reference cavity is transferred

across the entire comb bandwidth. Using a frequency
counter (Π type) to record the out-of-loop offset-free beat
f0a at 1550 nm yields the relative frequency stability of the
two reference cavities after scaling by the optical frequency
of 193 THz. The resulting Allan deviation, displayed as the
blue curve in Fig. 5, shows both the minimum relative
instability of 3.8 × 10−15 at τ ¼ 2 s and the long-term
relative cavity drift of 275 mHz=s. This result is consistent
with the expected individual stability (1–3 × 10−15 at
τ ¼ 1 s) of the two cavity-stabilized lasers and thus there
is no indication that our waveguide-generated SC is
introducing additional noise that limits the measurement.
As a comparison and consistency check, the absolute

drift rate of the 1550-nm cavity alone is measured by
locking the comb repetition rate to the offset-free 1550-nm
beat f0a while simultaneously counting the repetition rate fr
against a hydrogen maser (red curve in Fig. 5). Because f0a
in Eq. (2) is maser referenced, long-term drifts in fr can
only arise from shifts in the reference cavity frequency
ν1550. For short averaging times (τ < 10 s), the fractional
stability obtained from the measurement is limited by the

(b)

(a)

FIG. 4. (a) Experimental schematic (fiber path, solid lines;
free-space, dashed lines; electrical path, dotted gray lines). A
mode-locked frequency comb is spectrally broadened in a silicon-
nitride waveguide to produce a spectrum spanning two octaves.
Heterodyne beat frequencies fa and fb, shown in (b), are
obtained between the broadened comb and the cavity-stabilized
clock lasers while the comb offset frequency f0 is detected and
electronically subtracted from both fa and fb. The relative
stability of the optical references is then determined by recording
f0a ¼ fa − f0 with a frequency counter while the comb is phase
locked to f0b ¼ fb − f0.
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FIG. 5. Allan deviation showing the relative stability of the two
optical reference cavities (blue). At τ ¼ 2 s, the relative insta-
bility reaches a minimum value of 3.8 × 10−15, while for long
averaging times the relative cavity drift dominates and is
determined to be 275 mHz=s. The red curve shows the comb
repetition rate counted against a hydrogen maser while the comb
is locked to beat f0a. The maser stability alone (yellow) limits the
observed Allan deviation for short time scales but the drift of the
1550-nm reference cavity becomes apparent for τ > 100 s.
(b) Counter record for the Allan deviation of the relative cavity
instability [blue curve in (a)] with linear drift removed. Because
of ambient noise among the laboratories involved in these
measurements, glitches lasting several seconds appear sporadi-
cally in the counter record that are not readily detected in real-
time operation (gray regions). As a result, the short time scale
points in the Allan deviation are obtained from the highlighted
500 s of the complete counter trace.
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maser reference (yellow curve in Fig. 5), as expected, to
approximately 2 × 10−13=

ffiffiffi

τ
p

. However, for τ > 100 s, the
180 mHz=s linear drift rate of the cavity becomes apparent.

IV. CONCLUSION

Broadly tunable system design is a key strength of using
photonics technology for precision metrology experiments.
Because the SiN devices presented here can be chosen to
target narrow wavelength regions across the visible and near
infrared, there is a clear path towards the all-in-one frequency
comparison chip presented in Fig. 1. Furthermore, the
CMOS compatibility of SiN will allow an integration with
photodetection and feedback electronics for laser stabiliza-
tion in an extremely small and portable package.
Nevertheless, realizing such a chipwill first require improve-
ments to the coupling loss between the input fiber and the
waveguide. Fortunately, several different techniques have
already been demonstrated to improve the overall efficiency
and, consequently, to reduce the input laser power require-
ments [43–47]. Finally, we note that these SiN waveguide
devices should, in principle, be able to support higher
precision measurements than demonstrated here. Future
work will be needed to understand their fundamental noise
limitations in order to support ever-advancing optical clocks.
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