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Solid-state thermionic power generators are an alternative to thermoelectric modules. In this paper,
we develop an analytical model to investigate the performance of these generators in the nonlinear regime.
We identify dimensionless parameters determining their performance and provide measures to estimate an
acceptable range of thermal and electrical resistances of thermionic generators. We find the relation
between the optimum load resistance and the internal resistance and suggest guidelines for the design of
thermionic power generators. Finally, we show that in the nonlinear regime, thermionic power generators
can have efficiency values higher than the state-of-the-art thermoelectric modules.
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I. INTRODUCTION

Solid-state thermionic power generators can be viewed
as a bridge between vacuum-state thermionic convertors
and thermoelectric power generators. Like many other heat
engines, these devices can work either as power generators
where they convert input heat to electricity or coolers
where applied electricity is used to pump heat. Solid-state
thermionic coolers and power generators were proposed by
Mahan et al. [1,2] and Shakouri et al. [3,4]. The working
principles of solid-state thermionic convertors are very
similar to vacuum-state thermionic convertors. In vacuum-
state thermionic conversion, a cathode and an anode are
separated by vacuum. Electrons in the cathode are heated to
high energies. When they gain enough velocity in the out-
of-plane direction to overcome the energy barrier (the
cathode’s work function), they leave the cathode and enter
the vacuum. Some of these electrons are eventually
collected at the anode side and flow through the outer
circuit. Vacuum thermionic diodes were invented in 1904
and were used in radio and telephone communications.
However, it was only in 1956 that two distinct practical
versions of thermionic power generators were made by
Wilson [5] and Hatsopoulos and Kaye [6]. Efficiencies as
high as 16% and large power densities reaching 11 Wcm−2
were reported in early demonstrations [7].
The main drawback of vacuum-state thermionic

convertors is that they can operate only at high temperatures
(>1000 K). In solid-state thermionic convertors, the
vacuum is replaced by a solid, usually a semiconductor.
Solid-state thermionic convertors have several advantages to
vacuum-state thermionic convertors. First, the effective
barrier height is the difference between the cathode’s
work function and the semiconductor’s electron affinity.

Therefore, it is easy to design solid-state thermionic devices
with small barrier height and extend the operation temper-
ature to low temperatures. Second, the absence of vacuum
makes the fabrication process and access to the cathode and
anode for the purpose of heating and cooling, easier. Finally,
vacuum thermionic convertors suffer from the space-charge
effect. This effect is negligible in solid-state thermionic
convertors due to the extremely small size of the barrier
region and the fact that the chemical potential of the
semiconductors can be tuned by means of doping to
minimize the band bending (which is the equivalent of
the space-charge effect in vacuum-state devices). The main
disadvantage of the solid-state thermionic convertors is their
heat leakage by conduction through the semiconductor
which is more severe compared to thermal radiation in
vacuum-state thermionic convertors. This thermal leakage
was noted from the very beginning by Mahan andWoods [2]
who then proposed that only small temperature differences
should be imposed to each barrier, and multibarrier struc-
tures should be used. Shakouri et al. [3] proposed that tall
barriers in the electron path could be used to filter high-
energy electrons and increase the average energy per carrier
to increase the efficiency. In recent years, there has been
some renewed interest in solid-state thermionic power
generation using van der Waals heterostructures [8–10].
In this work, we develop an analytical model to inves-

tigate the operation limits of solid-state thermionic power
generators. We focus on tall barriers and large temperature
differences. The linear regime of small temperature
differences has been investigated before by Vining and
Mahan [11]. They showed that in the linear limit, thermo-
electric convertors outperform thermionic convertors.

II. MODEL

Consider a single-barrier structure. The cathode and
anode are separated by a semiconductor. The semiconductor*m.zebarjadi@virginia.edu

PHYSICAL REVIEW APPLIED 8, 014008 (2017)

2331-7019=17=8(1)=014008(7) 014008-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevApplied.8.014008
https://doi.org/10.1103/PhysRevApplied.8.014008
https://doi.org/10.1103/PhysRevApplied.8.014008
https://doi.org/10.1103/PhysRevApplied.8.014008


thickness is smaller than the electron mean free path,
ensuring ballistic transport. We define an internal resistance
for the structure R. Ideally this internal resistance should be
zero. In practice, it is never zero, and even for a purely
ballistic channel, it has the contribution of the cathode and
anode resistances, the interfacial resistances, and even the
outer circuit connecting wire resistances. Moss [12] inves-
tigated the importance of the internal resistance on the
performance of the thermionic generators. In the context of
vacuum-state thermionic generators, she concluded that
even a small internal resistance (fraction of an ohm) drops
the output power.
We also define a thermal resistance Rt, which includes

the thermal resistance of the barrier layer and the interfacial
resistance between the barrier, cathode, and anode layers.
Ideally, this resistance should be infinitely large. Since the
thickness of the barrier region is small, its thermal resis-
tance is also small. Therefore, a good design requires large
interfacial thermal resistances. Assuming the barrier is tall,
the electron population above the barrier can be approxi-
mated by theMaxwellian distribution and the current can be
described by the Richardson-Dushman current. In a typical
vacuum thermionic convertor, the cathode’s work function
is larger than the anode’s work function. There are two
distinct operating regions: (1) when the cathode’s work
function ϕc is larger than the anode’s work function ϕa plus
the total voltage (V ¼ IRþ IRl, Rl is the load resistance)
and (2) the opposite case when ϕc < ϕa þ V.
It can be easily shown that in the first case, the current is

independent of ϕa, and in the second case. it is independent
of ϕc.
In case 1, the reverse current from the anode to the

cathode is small, and the current is almost constant with
respect to voltage, while in case 2, the current drops
exponentially with respect to the voltage. We write our
equations for case 1, and we assume that the optimum
power with respect to current and voltage happens in this
regime. The electrical and thermal current, power, and
efficiency for (ϕc > ϕa þ V) can be written as [1,12]

J ¼ ART2
c exp

�
− eϕc

kBTc

�
− ART2

a exp

�
− eðϕc − VÞ

kBTa

�
;

ð1Þ

JQc ¼ ART2
c exp

�
− eϕc

kBTc

�
ðϕc þ 2kBTc=eÞ

− ART2
a exp

�
− eðϕc − VÞ

kBTa

�
ðϕc þ 2kBTa=eÞ

þ Tc − Ta

Rt
; ð2Þ

p ¼ P
A
¼ IRlJ ¼ ðV − IRÞJ; ð3Þ

η ¼ p
JQc

: ð4Þ

J is the electrical current density, I is the electrical current,
JQc is the thermal current density at the cathode-barrier
junction, p is the power density dissipated in the load, P is
the power delivered to the load, A is the cross section area,
and η is the efficiency of thermal to electrical energy
conversion. Tc is the cathode temperature (hot), Ta is the
anode temperature (cold), kB is the Boltzmann constant, e
is the electric charge, and AR is the Richardson constant
containing effective masses of the cathode and anode and
the average transmission function. To have zero current at
zero voltage and zero temperature gradient, AR should be
the same for both the cathode and anode current.
The first term in Eq. (1) is the current from the cathode to

the anode, and the second term is that from the anode to the
cathode. Similarly, in Eq. (2), the first term is the thermal
current from the cathode to the anode, and the second term
is the backflow from the anode to the cathode. The third
term in Eq. (2) is the lattice conduction term or the heat leak
via the barrier’s lattice and from the cathode to the anode.
Here we neglect Joule heating inside the barrier, as we
assume ballistic transport. Note that there is Joule heating
outside of the barrier in the cathode and the anode region,
but that is not of interest. As long as the electron-phonon
mean free path is larger than the barrier thickness, the Joule
heating within the barrier can be ignored.
To make the analysis simple, we define the dimension-

less parameters as listed below:

Φc ¼
eϕc

kBTc
; Φa ¼

eϕa

kBTa
; Va ¼

eV
kBTa

; θ ¼ Tc

Ta
;

JD ¼ J
ART2

a
; JQD ¼ eJQ

kBTaART2
a
; PD ¼ ep

kBTaART2
a
:

ð5Þ

We use subscript D to refer to dimensionless current and
power. Now we can rewrite Eqs. (1)–(4), in a dimensionless
format:

JD ¼ θ2 expð−ΦcÞ − expð−Φcθ þ VaÞ
¼ Jc − J0 expðVaÞ; ð6Þ

Ja ¼ J0 expðVaÞ; ð7Þ

Jc ¼ θ2 expð−ΦcÞ; ð8Þ

J0 ¼ expð−ΦcθÞ; ð9Þ

Va ¼ ln

�
Jc − JD

J0

�
; ð10Þ

JQD ¼ JcðΦcθ þ 2θÞ − J0 expðVaÞðΦcθ þ 2Þ

þ θ − 1

RtD
; ð11Þ
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RtD ¼ RtkBART2
a=e; ð12Þ

PD ¼ ðVa − JDRDÞJD; ð13Þ

RD ¼ ARTaARe
kB

: ð14Þ

RtD is the dimensionless internal thermal resistance, and the
RD is the dimensionless internal electrical resistance.
Similar equations can be written for the second case

where ϕc < ϕa þ V.
These equations can be solved numerically. However, it

is the purpose of this work to find analytical solutions.
Before we move on to analytical solutions, let us first look
at the numerical results to develop an understanding of the
performance of the device. Figure 1 shows the numerical
results for a given set of parameters. The values of the
parameters used are shown in the caption of Fig. 1.

III. RESULTS

Now let us discuss the optimum performance of the
device analytically. We note that the optimum power and
the optimum efficiency do not happen at exactly the same
current or voltage but at very close ones. We first optimize
the power with respect to the current. Taking the derivative
of Eq. (13) with respect to the current and setting it to zero,
we find the optimal condition to be

�
1

Jc − JD
þ 2RD

�
JD ¼ Va ¼ JDðRD þ RlDÞ: ð15Þ

Therefore, when power is maximum, the following
relation holds between the load resistance and the internal
resistance:

1

Ja
þ RD ¼ RlD: ð16Þ

To find the optimum current we use Eqs. (15) and (10)
and we find

Jc þ ð2JcRD − 1ÞJa − 2RDJ2a ¼ Ja ln

�
Ja
J0

�
: ð17Þ

This equation does not have an analytical solution.
However, the second-order term in Ja is small and can
be neglected. We then find at the optimum power:

Ja ≈
Jc

LWðx0Þ
; ð18Þ

x0 ¼ θ2 exp½ðθ − 1ÞΦc þ 1 − 2JcRD�: ð19Þ

Here, LW is the Lambert W function (see the Appendix).
Finally, the optimum current, corresponding load resis-

tance, optimum power, and corresponding efficiency can be
written as

JD ¼ Jcy; ð20Þ

y ¼ 1 − 1

LWðx0Þ
; ð21Þ

LWðx0Þ
Jc

þ RD ¼ Rl; ð22Þ

PDopt
¼ ½JCRD þ LWðx0Þ�Jcy2; ð23Þ

η ¼ ½JcRD þ LWðx0Þ�y2
ðΦcθ þ 2Þyþ ð2þ 1

JcRtD
Þðθ − 1Þ : ð24Þ

Two immediate conclusions can be drawn regarding the
acceptable range of the internal resistances. For electrical
resistance, noting that ðθ − 1ÞΦc > 0, we find that if
2JcRD ≪ 1, then the effect of internal resistance is very
small [Eq. (19)] and does not substantially drop the power.
The criteria can be written as R ≪ 0.5ðkBTa=eJRAÞ, where
JR is the Richardson current (in units of amperes) from the
cathode to the anode. If we use the theoretical Richardson
constant, AR of 120 Acm−2K−2, barrier height Φc of 5,
cathode and anode area A of 1 cm2, Ta of 300 K, and
Tc ¼ 400 K, we find R ≪ 1 × 10−7 ΩðRD ∼ 44Þ, which
means any internal resistance larger than 10−7 Ω lowers the

FIG. 1. Dimensionless current, power, and efficiency versus
voltage for θ¼3, RD¼RtD¼10000, Φc ¼ 15, and Φa ¼ 15.
The red line (Va ¼ Φcθ −Φa) is separating the two operating
regions discussed in the text. A schematic of the band diagram in
case 1 is shown as an inset of plot (a) and a schematic of the band
diagram in case 2 is shown as an inset of plot (b).
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output power from that of an ideal thermionic convertor and
cannot be neglected. The value of the maximum negligible
R can be increased by increasing the barrier height.
Increasing Φc from 5 to 10 and 15, increases the R
limit to 15 μΩ and 2.2 mΩ, respectively. The internal
resistance includes resistances of the layers (barrier,
cathode, and anode) and the interfacial resistances. The
resistance of the barrier layer is much smaller since the
thickness is small (less than 100 nm). The resistance of
the cathode and anode can also be kept small. The
resistance of a typical metal of thickness 1 mm and area
of 1 cm2 is R ∼ 10−8 Ωm × 10−3m=10−4m2 ¼ 10−7Ω.
Because of the low resistance of the barrier and electrodes,
the interfacial resistance might play an important role. It is,
therefore, crucial to keep the interfacial electrical resistance
low, for example, by aligning the work function of the
barrier and cathode to create a linear voltage drop over the
barrier layer and, therefore, to prevent a Schottky barrier.
Similarly, for the thermal resistance, we can conclude

that if JcRtD ≫ 1, then the lattice thermal conduction is
minimal and will not substantially drop the efficiency. This
condition is equivalent to Rt ≫ ðe=kBJRÞ. Using the same
parameters as before, we find Rt ≫ 9 × 10−6 m2 KW−1 or
Gt ≪ 0.1 MWm−2 K−1, which is extremely small and is
very challenging to obtain. If we take a typical material
with thermal conductivity of 1 Wm−1K−1 and thickness of
100 nm, then the equivalent Gt¼ðκ=LÞ¼10MWm−2K−1.
Of course, if we increase the thickness, we can lower the
conductance to an arbitrarily low value. However, we note
that the criterion for thermionic emission is that the
thickness should be smaller than the electron mean free
path. Therefore, it is not possible to lower the conductance
without breaking the thermionic conditions. We believe one
possible solution is to use weakly bonded materials such as
layered van der Waals heterostructures. In a recent work
[9], we show that for layered materials, one can achieve
very low conductance values. For only five layers of
black phosphorene (2.5 nm length) sandwiched between
gold contacts, we calculate a thermal conductance of
4 MWm−2K−1 for an ideal (defect-free) case. The value
can be substantially smaller in practice due to imperfec-
tions. One can further decrease it by purposely introducing
defects at the interfaces. As long as the defects do not block
electrical transport and do not break the ballistic transport
condition inside the barrier region, such an approach is an
acceptable way of increasing the interfacial thermal resis-
tance and, therefore, the efficiency. Other weakly bonded
structures also demonstrate extremely low thermal con-
ductance values. It was recently shown that interfacial
thermal conductance between seven layers of MoS2 and
c-Si is smaller than 1 MWm−2 K−1 [13]. In another work,
a graphene-WSe2-graphene structure is proposed for
thermionic power generation, and the thermal conductance
was estimated to be around 0.5 MWm−2K−1 [14].
Increasing the thermal resistance while maintaining a

low electrical resistance remains the biggest challenge
for solid-state thermionic devices.
Equations (23) and (24) show that there are only four

independent parameters determining the efficiency: RtD,
RD, Φc, and θ. This is similar to the case of thermoelectric
materials. Here, Φc, or more accurately, Φc þ 2, is the
average energy carried per carrier and the equivalent of a
dimensionless Seebeck coefficient. Similar to thermoelec-
tric materials, the parameters are related. In some cases,
they cannot be tuned independently, and in some other
cases, the optimum value of one parameter depends on the
other parameters. For example, as we increase the barrier
height (Φc), the average energy per carrier increases,
resulting in enhanced efficiencies. At the same time, as
the barrier height increases, the Richardson current
decreases, lowering the optimum power. Also, at lower
current values, larger thermal resistances are required to
obtain reasonable efficiency values (as discussed before,
JcRtD is the relevant parameter).
Figure 2 shows the efficiency divided by the Carnot

efficiency for θ ¼ 1.5 (or ηCarnot ¼ 33%) for three different
electrical resistances and versus thermal resistance and
barrier height. It also shows the optimum dimensionless
power for the same electrical resistance values. As RD
increases, the power drops as expected (note that the power
is independent of the thermal resistance). PD (dimension-
less power) of 0.01 is equal to power density of p ¼
0.01ðkBTaART2

a=eÞ. At room temperatures, this value is
p ¼ 3 kWcm−2. Therefore, we can judge that the power
values reported in Fig. 2 are, in fact, very large, 100 times
more than the reported values for vacuum-state thermionic
generators. The reason is the substantially lower barrier
heights. In terms of efficiency, as RD increases, the
optimum value of Φc slightly shifts to larger values, but
overall, it is somewhere between 3 and 5. So one can fix the
value ofΦc and try to optimize the values of the resistances.
Assuming the structure is fixed and the contact layers
(between cathode and barrier and between the barrier and

FIG. 2. Left: Efficiency at the optimum power calculated using
Eq. (24) for θ ¼ 1.5 (ηCarnot ¼ 33%) and versus three main
identified dimensionless parameters Φc, RtD, and RD. Right:
Optimum power (dimensionless) using Eq. (23) versus the
cathode’s barrier height for three different RD values.
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anode) are optimized to have the largest possible interfacial
thermal resistance and lowest possible interfacial electrical
resistance, the only parameter to adjust is the thickness of
the barrier. We can assume that both electrical and thermal
resistances increase linearly with increasing the thickness.
Figure 3 shows that for Φc ¼ 5, the efficiency is almost
independent of the choice of RD, and, therefore, we can
increase the thickness to increase the thermal resistance and
the efficiency. This insensitivity to thermal resistance can
be explained as follows. For this barrier height, Jc is 0.015,
which means that even for RD ¼ 10, the value of JcRD is
0.15, which is considered to be much smaller than 0.5 and
satisfies the criterion of 2JcRD ≪ 1. The behavior is
different for Φc ¼ 4. Here the efficiency slightly drops
as RD increases (due to smaller Jc values). As we increase
the RtD, RD also increases, and, therefore, the efficiency
may or may not increase depending on the slope
of RtD=RD.
Next, we show that it is also possible to find analytical

solutions for optimum efficiency. The optimum current that
results in the optimum efficiency can be estimated as

JD ¼ Jcy0; ð25Þ

βk ¼ ðΦcθ þ 2Þ
ð2þ 1

JcRtD
Þðθ − 1Þ ; ð26Þ

y0 ¼ 1 − 1þ βk
LWðx1Þ

; ð27Þ

x1 ¼ θ2ð1þ βkÞexp
�
JcRD

�
−2þ βk

�
−1þ 1

JcRD

��

þΦcðθ − 1Þ
�
: ð28Þ

Plugging in this current, we find efficiency to be

ηopt ¼
y0 lnðJaJ0Þ − JcRDy20

ð2þ 1
JcRtD

Þðθ − 1Þ þ y0ðΦcθ þ 2Þ : ð29Þ

When we plot the results of Eq. (29) we do not see much
difference between results of Eqs. (29) and (24), which
means the results reported in Fig. 2 stay more or less the
same if we try to optimize the efficiency instead of the
power. Since the results are so similar, we do not report
them here. If we look back at Fig. 1, we see that this
similarity is expected since the optimum power and
optimum efficiency occur at very close current values.
The only exception is when the cathode work-function
value is close to the anode one. In that case, optimum
efficiency and optimum power can occur at distinct
currents. Houston [15] numerically showed that at optimum
conditions, the following relation roughly holds between
the cathode and anode work function: Φc ¼ Φa. For
θ ¼ 1.5, which we use in our example, Houston criteria
means the work function of the cathode is 1.5 times that of
the anode. In this regime, our assumptions are correct.
Finally, we compare the performance of the thermionic

power generators with thermoelectric modules. If we set
θ ¼ 1.5 or ηCarnot ¼ 33%, the equivalent efficiency of an
ideal thermoelectric modules for ZT ¼ 1, 2, 3, ηTE=ηcarnot is
equal to 0.19, 0.30, and 0.37 respectively. Figure 2 shows
that using thermionic generators, and for the same θ,
efficiency values as high as 0.4ηcarnot are achievable. In a
large area of this graph, the efficiency values are higher
than 0.19. For example, if we set the cold side temperature
to 300 K and the hot side to 450 K, we can recover θ ¼ 1.5.
For this temperature range, there are only a few thermo-
electric materials available, and bismuth antimony telluride
is the best candidate [16]. The peak ZT value of p-type
bismuth antimony telluride is 1.8 [17]. However, the
average ZT of n-type and p-type bismuth antimony
telluride in this temperature range is much smaller and
close to 1, which means with the known thermoelectric
modules, the efficiency values higher than 20% of the
Carnot efficiency are not achievable in this temperature
range. But by using thermionic modules (Fig. 2), such
efficiency values are easily achievable. At the same time,
due to their smaller size, thermionic power generators own
larger power density values, and, therefore, they could be
potentially a better alternative to thermoelectric modules.
One remaining question is if the set of parameters used in
Figs. 2 and 3 is an achievable set or not. We note that for
barrier height of 5, the results are independent of electrical
resistance up to RD of 10 and even more. Therefore, we can
simply ask if RtD of 5 and more is possible. If we again use
the theoretical Richardson constant of 120 Acm−2 K−2 and
cold side temperature of 300 K, then RtD of 5 is equivalent
to thermal conductance of 1.8 MWm−2K−1. As discussed
before, it is challenging but not impossible to have such low
conductance values at small scales. Note that the value of
the conductance is higher for higher temperatures. For
example, for the same RtD of 5, the equivalent conductance
at 500 K is 5 MWm−2K−1. Also note that in practical
devices, AR can significantly deviate from the theoretical

FIG. 3. Efficiency at the optimum power calculated using
Eq. (23) for θ ¼ 1.5 and versus dimensionless thermal and
electrical resistances. Here we fix the barrier height close to
the optimum value identified from Fig. 3, which we fix the barrier
height to be 4 in the upper plot and 5 in the lower plot.
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Richardson constant, and it will depend on the transmission
function from the cathode to the anode significantly.
Therefore, a clever design can have larger AR to further
increase acceptable thermal conductance values.
Here we provide a discussion of the difference between

our results and those obtained originally by Mahan et al.
[2,18]. In their pioneering work, they assumed no internal
resistance, small voltage, and temperature differences over
symmetric barriers, allowing them to use Taylor expansions
and to address the problem within the linear transport
regime. Our focus is the alternative regime where tall
barriers and large temperature differences are of interest.
We also include the internal resistance which we believe
can substantially lower the performance of the device. One
question then is to what extent will our results tend to the
work of Mahan et al. Since we do not assume a symmetric
barrier, and instead, we assume the cathode work function
to be larger than the anode work function, it is not trivial
that we recover the results of Mahan et al. even in the linear
regime. However, upon plotting the results in this limit, we
find that our results are very similar to the results of Mahan
et al. Figure 4 shows a comparison for small values of
θ ¼ 1.05 and zero internal resistance. The difference
between our results and theirs increases as thermal resis-
tance increases, but as Fig. 4 shows, the differences are not
large. Interestingly, we observe that even when larger θ
values are used, our results are close to the predictions of
Mahan et al. Therefore, as long as the internal electrical and
thermal resistances are negligible, the formula of Mahan
et al. can be used to estimate the performance of thermionic
devices even at larger θ values. As we increase either θ, RD,
or Rt, the optimum value of the barrier height tends to
increase. The conclusion of Mahan et al. that the optimum
barrier height is around 2kBT, therefore, is valid only in the
linear regime. In the nonlinear regime and within reason-
able values of thermal and electrical resistances, the
optimum barrier height shifts to 3 to 5kBT. Finally, the

reader should note that the conclusion of Mahan et al. that
thermionic devices are not as good as thermoelectric
devices, is valid only in the linear regime and if thermal
resistance is dominated by the barrier lattice resistance. In
the case where the thermal resistance of thermionic devices
dominantly comes from the interfacial resistances, such a
conclusion cannot be drawn, and thermionic convertors can
be better than thermoelectric convertors.

IV. CONCLUSION

In summary, we provide guidelines for the design of
solid-state thermionic power generators. Although it is
known that large thermal resistances and small electrical
resistances are needed for these devices, here, we introduce
quantitative measures to estimate the acceptable range of
thermal and electrical resistances. If the internal electrical
resistance is low so that JcRD < 0.5, and if the internal
thermal resistance is large so that JcRtD>1, then the
performance is not affected, and there is no need to
push the resistance values any further. We show that similar
to the case of thermoelectric modules, there are four
independent parameters determining the efficiency:
Φc; RD; RtD, and θ. We discuss that these parameters are
related. In some cases, they cannot be independently tuned,
and in some other cases, their optimum value depends on
the other parameters. We find the analytical expressions for
the optimum load resistance as a function of the internal
resistance which can be used when designing thermionic
power generators for specific applications. When the
internal electrical resistance is zero and for small values
of thermal resistance, our results tend to those of Mahan
et al., even under large temperature differences. However,
we find that the optimum barrier height in the nonlinear
regime is larger than 2kBT predicted by Mahan et al. in the
linear regime. This optimum shifts to larger values for
larger resistances. Finally, we demonstrate that by choosing
the right parameters, thermionic generators can achieve
efficiencies higher than the state-of-the-art thermoelectric
modules.
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APPENDIX: LAMBERT W FUNCTION

Equation (17) after neglecting the second-order term can
be written as

θ2 exp½ðθ − 1ÞΦc þ 1 − 2JcRD� ¼
Jc
Ja

exp

�
Jc
Ja

�
: ðA1Þ

FIG. 4. Comparison of our results with those predicted by
Mahan et al. in the limit of zero internal resistance and small
temperature differences: θ ¼ 1.05 and RD ¼ 0. Solid lines result
from using Eq. (24) and dashed lines are plotted using Eq. (24)
of Ref. [1].
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The solution of this equation is the Lambert W function:

Jc
Ja

¼ LWfθ2 exp½ðθ − 1ÞΦc þ 1 − 2JcRD�g

¼ LWðx0Þ: ðA2Þ

For small temperature differences θ ∼ 1 and negligible
internal resistances, values of x0 are close to e ¼ 2.7.
The Lambert W function of e is equal to 1 [LWðeÞ ¼ 1],
and it decreases to values smaller than 1 as we decrease x0.
This means, x0 values smaller than e are not of interest,
since for such values, the leak current (Ja) is larger than the
cathode current (Jc). For large temperature differences and
tall barriers, the values of x0 can quickly increase. For
example, θ ¼ 2, Φc ¼ 10, and neglecting electrical resis-
tance gives x0 ¼ 239 × 497. If needed, we can use sim-
plified equations to estimate the LW function. We find that
using the following fits, one can accurately reproduce the
LW function. However, the final equation for efficiency
does not simplify enough to justify the use of these fits:

LWðxÞ ¼
�
lnðxÞ − ln½lnðxÞ� þ 0.3; 10 < x;

0.58 lnðxÞ þ 0.4; 2.7 < x < 10.
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