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Reconfigurable phononic circuits can be created by the selective fluid filling of holes in a solid phononic
crystal. For frequencies within a complete band gap of the bare phononic crystal, the filled holes become
cavities that sustain acoustoelastic defect modes. Those cavities couple evanescently with a strength that
depends on their separation. We investigate the dispersion relation and the transmission properties of
coupled-resonator acoustoelastic waveguides formed by a chain of cavities. While the dispersion relation is
strongly dependent on the separation between cavities, transmission properties are only weakly dependent
on the details of the phononic circuit for a fixed separation. Furthermore, depending on the polarization of
the source of waves, defect modes can be excited selectively. As a result, rather arbitrary phononic circuits
can be created, such as multiply bent waveguides or wave splitters.
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I. INTRODUCTION

Phononic crystals (PCs) are acoustic functional
composite materials or structures possessing spatial perio-
dicity [1,2]. They can exhibit elastic or acoustic band gaps
in certain frequency ranges, within which wave propaga-
tion is prohibited. One significant consequence of such
a unique property is the possibility of controlling and
manipulating the propagation of acoustic and elastic
waves in integrated technological circuits. Consequently,
numerous applications of PCs were proposed, such as
filtering, multiplexing [3,4], sound isolation [5], frequency-
dependent waveguiding [6,7], and mass sensing [8]. An
important key to such applications is the confinement and
guidance of elastic energy through the use of defects in
perfect PCs. Guidance in a sonic or phononic crystal is
indeed not limited to linear lines of defects [9]. Using a
mechanism based on the coupling of the evanescent fields
arising from defect cavities or resonators, rather arbitrary
circuits can be defined [10,11], similar to coupled-resonator
optical waveguides in photonic crystals [12]. In such
waveguides, the dispersion relation is ultimately deter-
mined by the coupling strength between resonators,
allowing its fine-tuning by varying their separation.
Although PCs provide a promising approach for con-

trolling the propagation of acoustic waves, there are few
real-life applications, and experimental realizations of
PC-based devices remain scarce. Actually, most PCs are
characterized by a passive response and operate in fixed
frequency ranges. Topology or material parameters of the
fabricated structures are hardly tunable or reconfigura-
ble [13], limiting their possible applications. Tunable

manipulation of acoustic or elastic waves has thus become
a fast-developing topic. Numerous works have been
devoted to the design and development of tunable PCs,
for example, by using material [13] or geometric non-
linearities [14]. A similar principle, utilizing magnetoelas-
tic materials [15], was applied to designing a tunable and
also reconfigurable solid-solid 2D PC. An external mag-
netic field was used to change the material properties at
will. Such approaches require, however, either magnetoe-
lastic materials or materials with particular nonlinearities.
Reconfigurability can, in principle, be achieved rather

easily by using solid-fluid or sonic crystals [16]. Solid-fluid
PCs have been considered quite often in the literature,
especially in relation to experiments [2]. Different wave
equations are used for different regions of space, but they
are coupled at the fluid-solid interface [17]. Fluid-solid
interaction, for instance, was shown to affect the propaga-
tion of acoustic and elastic waves, and even to introduce
extra gaps into the band structure [18]. A basic feature of a
fluid is that it is shapeless though flowing. This feature
makes fluid-solid systems potentially reconfigurable. In
other words, acoustic waves in a fluid medium can be
manipulated by changing the properties of elastic waves in
solid inclusions. Conversely, the propagation of elastic
waves in a solid matrix can be controlled through changing
the properties of fluid fillings [19,20]. In a solid-fluid PC,
fluid filling can thus provide the means for tunability and
for reconfigurability. Specifically, fluid-filled holes can
confine wave energy to the fluid regions, and thus they
behave similarly to defect cavities that can couple via the
solid matrix.
In this work, we aim to demonstrate theoretically that

coupled-resonator waveguides based on a solid matrix and
fluid fillings provide a natural basis for reconfigurable
phononic circuits. We first discuss the dispersion relation in
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the case of coupled cavities created by filling holes with
liquid in a holey PC presenting a complete band gap.
Numerical simulations are performed using the finite-
element method. Modal displacements—in the solid
matrix—and pressure distribution—in the fluid-filled
holes—are presented and are used to discuss the physical
mechanism behind waveguiding. Different waveguides are
then designed through filling holes to form phononic
circuits, and their transmission properties are investigated.
It is found that the transmission of wave energy along the
circuit is rather independent of its particular shape but
strongly depends on the polarization of the source.

II. DISPERSION RELATIONS

In this section, we discuss the dispersion relation of the
coupled-resonator acoustoelastic waveguide (CRAEW).
The derivation follows the one for equivalent purely elastic
structures [11] but extends it to coupled acoustoelastic
wave propagation. Numerical simulations are performed
with the finite-element method, taking explicitly into
account acoustoelastic coupling [21]. The supercells used
in the case of an isolated cavity and in the case of a
CRAEW are depicted in Fig. 1. Periodic boundary con-
ditions are applied on pairs of opposite boundaries of the
supercell. Phononic band structures are shown in Fig. 2,
and some remarkable Bloch waves are displayed in Fig. 3.
For concreteness, we consider isotropic aluminum the

solid matrix (mass density ρs ¼ 2700 kg=m3, Poisson’s
ratio ν ¼ 0.33, and Young’s modulus E ¼ 68.9 GPa) and
water the fluid that can fill certain holes (mass density
ρf ¼ 1000 kg=m3 and sound velocity c ¼ 1490 m=s).
A two-dimensional square-lattice phononic crystal is
chosen for the following examples. The radius r of the
hole is set by r=a ¼ 0.45, with a being the lattice constant.
For this value, a complete band gap is known to appear

for 1535 m=s < fa < 2206 m=s, with f being the fre-
quency [22].
The defect modes created by locally filling one hole with

water are the basic building blocks of a CRAEW. They can
be analyzed with the supercell consisting of 7 × 7 circular
holes depicted in Fig. 1(a). The size of the supercell is large
enough to guarantee that coupling between adjacent defects
can be neglected. The resonant frequencies of the six defect
modes are listed in Table I. Figure 3 shows the acoustic and
elastic polarization of those six defect modes, noted as Sn
with n ¼ 1; 2;…; 6. Each defect mode has a unique pattern
for the distribution of the displacement fields in the solid
matrix and of the pressure in the fluid. The displacement
fields are such that the amplitude of the vibration decays
exponentially away from the defect, thanks to the presence
of the complete band gap. Deformations are located mainly
at the lumps for modes S1 and S2, and at the thin connectors
for modes S3–S6. Modes S4 and S5 are actually frequency
degenerate. The different symmetries of the defect modes
with respect to the vertical and horizontal axes are listed in
Table I. These symmetries are important for understanding
the coupling of defect modes with waves incident from the
solid matrix.
A CRAEW is formed by considering a sequence of

defect cavities separated by a distance Λ that is an integral
number of lattice constants. When Λ is not too large, as
shown in Fig. 1(b) for the case Λ ¼ 2a, the defect modes

(a) (b)

FIG. 1. Supercells used for the calculation of the band struc-
tures of (a) a cavity formed by a single point defect in the two-
dimensional square-lattice PC and (b) a CRAEW created in
the same PC. The blue, gray, and white parts represent water,
aluminum, and the vacuum, respectively. The lattice constant, or
the distance between adjacent holes, is a.

(a) (b)

FIG. 2. Dispersion relation for a linear chain of water-filled
cavities in a square-lattice phononic crystal of holes in aluminum,
forming a CRAEW. (a) Dispersion for cavity separation Λ ¼ 2a.
The result of finite-element computation with the supercell of
Fig. 1(b) is shown as blue circles. Horizontal black lines mark the
resonant frequencies for the isolated cavity. The gray areas
indicate the passing bands for a perfect phononic crystal. The
complete band gap extends for 1535 m=s < fa < 2206 m=s,
with fa being the reduced frequency. The red lines show the
CRAEW dispersion relation as obtained with the model of
Eq. (1). The dispersion curves are numbered with respect to
each defect mode. (b) Comparison of the CRAEW dispersion
relation for cavity separation Λ ¼ 2a (the red lines) and Λ ¼ 3a
(the green lines). The fitting coefficients are given in Table I.
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can couple with each other though the evanescent fields
emanating from them. A channel for guided waves can thus
be created for frequencies within the complete band gap.
The phononic band structure of the CRAEWalong the Γ-X
direction of the first Brillouin zone is shown in Fig. 2 for
the cases Λ ¼ 2a and Λ ¼ 3a. Guided modes are formed
around the resonances of the isolated defect with smooth
dispersions. The polarizations of those guided Bloch waves
at the Γ point, denoted as Cn (n ¼ 1; 2;…; 6), are shown in
Fig. 3. They are in good correspondence with the corre-
sponding modes of the isolated defect. In other words,
wave guidance in a CRAEW comes about owing to the
excitation and coupling of similar defect modes.
The dispersion relation of CRAEW modes is very

smooth. This property can actually be associated with
the rapid decrease with distance of the coupling strength
between adjacent cavities, as described by the theoretical
model of a linear chain of coupled cavities [11]. The
Hamiltonian of the CRAEW is a sum of the Hamiltonians
of isolated cavities plus an interaction Hamiltonian

describing the interaction of coupled cavities in a quantum
treatment [23]. The dispersion can be expressed directly as
the Fourier series

ω ¼ Γ0 þ
X∞
m¼1

2Γm cosðkmΛÞ; ð1Þ

where ω ¼ 2πf is the angular frequency and k is the wave
vector. The Fourier coefficients Γm can be interpreted as
representing the coupling strength between defects sepa-
rated by a distance mΛ.
Table I lists the numerical values obtained by fitting the

computed CRAEW dispersion relations with Eq. (1). The
Fourier series are found to converge very quickly. When
compared to the coupling of neighboring cavities for the
case of pure shear waves [11], the coupling of fluid cavities
in solid PCs remains relatively small. Figure 2(a) compares
the dispersion of CRAEW for Λ ¼ 2a obtained numeri-
cally with the fit in Eq. (1). Numerical and theoretical

(a) (b) (c)

(d) (e) (f)

(g)

FIG. 3. Displacement and
pressure fields of the six de-
fect modes of the acoustoe-
lastic phononic crystal,
shown at the Γ point of the
first Brillouin zone. (a)–(f)
Letters Sn and Cn are for
the nth defect mode for the
isolated cavity and the
coupled-resonator wave-
guides with cavity separation
Λ ¼ 2a, respectively. The
pressure distribution in water
is shown as an inset in the
isolated-cavity case. (g) Dis-
placement field of mode C2

for cavity separationΛ ¼ 3a.

TABLE I. Parameters of the dispersion model for linear chains of coupled acoustoelastic cavities. Symmetry (S) or antisymmetry (A)
with respect to the vertical and horizontal axes are given in that order for each of the six defect modes. The third row shows the resonant
frequencies of the isolated cavity. Reduced frequencies, fa, and expansion coefficients, Γma=ð2πÞ, are given in units of m/s. Expansion
coefficients are determined for Λ ¼ 2a and Λ ¼ 3a, and they are obtained by fitting the computed dispersion with the model in Eq. (1).

Mode n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6
Symmetry AA SS SS SA AS SS

Isolated cavity fa 1656.77 1691.85 1882.55 2021.08 2021.17 2179.24

Λ ¼ 2a Γ0a=ð2πÞ 1656.27 1691.68 1882.95 2023.70 2022.68 2181.91
Γ1a=ð2πÞ −2.95 −1.96 5.80 −19.15 9.57 −2.93
Γ2a=ð2πÞ −1.06 0.49 0.64 −0.29 0.58 0.072
Γ3a=ð2πÞ −0.34 0.02 0.04 0.01 0.10 −0.05

Λ ¼ 3a Γ0a=ð2πÞ 1656.31 1691.74 1882.58 2021.78 2021.26 2179.29
Γ1a=ð2πÞ 2.58 −4.29 −2.46 −7.96 3.51 0.41
Γ2a=ð2πÞ −0.20 −0.03 0.07 −0.07 0.05 0.00
Γ3a=ð2πÞ 0.02 0.00 −0.00 −0.00 0.00 −0.00
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results match very well with only the first four Fourier
coefficients considered, meaning that couplings need only
be considered up to the third-nearest-neighboring cavity.
If the separation between cavities is increased to Λ ¼ 3a,
the dispersion generally gets even smaller, as shown in
Fig. 2(b). The fitted Fourier coefficients are listed in
Table I in this case also. Except for the particular case
of mode S2, the Fourier coefficients are generally smaller
compared to the case Λ ¼ 2a. The polarization of mode S2
at the Γ point is shown in Fig. 3(g) for Λ ¼ 3a for the sake
of completeness.
The results in this section suggest the possibility of

creating reconfigurable phononic circuits based on
CRAEWs. Indeed, different CRAEWs can be designed
based on the coefficients listed in Table I. In the following,
we will specifically consider the case Λ ¼ 2a for the
design of phononic circuits. Similar results and conclusions
would be obtained for larger separations, such asΛ ¼ 3a. It
should be noted that, for line-defect waveguides formed
when Λ ¼ a, the guiding mechanism is different [2,9].
Specifically, the interaction between different guiding
bands would be much stronger and would lead to their
interference and the opening of mini–band gaps for guided
waves. The guided bands considered in this paper are
isolated so that the circuits support single-mode guided
propagation.

III. PHONONIC CIRCUITS

In this section, we consider phononic circuits created by
filling with a fluid certain holes of a solid phononic crystal.
Computations are performed for a finite phononic crystal
with 19 × 19 primitive cells, as shown in Fig. 4. Phononic
circuits are characterized by the transmission of waves
through them. We first consider different variations on the
theme of the coupled-resonator acoustoelastic waveguide,
with or without bends, before moving on to a simple wave
splitter.
Figure 4 depicts three different waveguides for which

fluid-filled cavities are separated by the distance Λ ¼ 2a.
The fluid cavities are distributed in three different circuits:
(a) a straight circuit formed by a sequence of ten cavities,

(b) a circuit formed by a sequence of 13 cavities with two
bends, and (c) a circuit formed by a sequence of 17 cavities
with eight bends. In the following, we refer to them as the
straight waveguide, the two-bend waveguide, and the eight-
bend waveguide, respectively.
Transmission through a circuit is estimated as follows.

A line source for elastic waves polarized along either the
x axis (longitudinal excitation) or the y axis (shear excita-
tion) is positioned along segment Sl at the left side of the
waveguide. Excitation along the z axis is not considered, as
vertical shear waves in the solid do not couple to pressure
waves in the fluid for the two-dimensional case considered
here. The length of the source segment Sl is exactly one
lattice constant a. The amplitude of the displacement at the
line source is notedU0. Low-reflection boundary conditions
are applied on all other external boundaries of the compu-
tation domain. By sweeping the reduced frequency, we
evaluate the transmission TðfaÞ in decibel units by

TðfaÞ ¼ 20 log10

�R
Sr
UdsR

Sl
U0ds

�
; ð2Þ

where U is the total displacement along Sr, a receiver
segment placed at the right exit of the waveguide. Instead
of displacement, it would be perfectly possible to compute
the flux of the Poynting vector at input and exit boundaries.
This flux, however, would be a superposition of right- and
left-traveling guided waves, owing to the remaining small
reflections at the boundaries, so the result would not
simply represent directional energy-flux propagation.
Nevertheless, all transmissions in this paper respect the
principle of conservation of energy.
The transmissions for the different waveguides are

shown in Fig. 5 as a function of reduced frequency. Five
passing frequency ranges, labeled I–V in the figure, are
clearly observed inside the complete band gap. These
passing frequency ranges coincide with the CRAEW
dispersion bands in Fig. 2(a): Range I can be identified
with the band for Bloch wave C1, II with C2, III with C3,
and V with C6. Range IV can be identified with a mixture
of Bloch waves C4 and C5, as we will argue later. It is
apparent that there are no significant differences in the
extent of passing frequency ranges for different circuits,
though the precise oscillations inside the passing bands are
characteristic of each circuit. These oscillations are caused
by the interference of waves traveling along the waveguide
and depend on its total length. For frequencies between
passing bands, transmission is generally very low but again
depends on the total length of the waveguide: the longer the
coupled-resonator waveguide, the smaller the transmission.
These results indicate that rather arbitrary waveguides
can be defined based on the CRAEW principle, i.e.,
waveguides with arbitrary bends.
Comparing transmissions in Fig. 5, we find that passing

frequency ranges II, III, and V are dominantly excited by

(a) (b) (c)

FIG. 4. Cross sections of coupled-resonator acoustoelastic
waveguides formed by filling holes with water in different
circuits on a finite phononic crystal with 19 × 19 cells. (a) Straight
waveguide. (b) Two-bend waveguide. (c) Eight-bend waveguide.
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the wave source of longitudinal polarization, while ranges I
and IV are dominantly excited by the wave source of shear
polarization. Animations of the pressure distribution along
the eight-bend waveguide as a function of frequency and
polarization of the source can be viewed in Videos 1 and 2
for a lattice constant a ¼ 20 mm. The pressure distribution
along the eight-bend waveguide is shown in Fig. 6(a) at
fa ¼ 1882 m=s (range III) for longitudinal excitation and
in Fig. 6(b) at fa ¼ 2004 m=s (range IV) for shear
excitation. Pressure patterns similar to Bloch waves S3,
and to a mixture of Bloch waves S4 and S5, respectively,
are clearly observed. As Bloch waves S4 and S5 are of
orthogonal polarization, there is a superposition of two
independent transmission channels in the common fre-
quency range of bands C4 and C5 in Fig. 2(a). These results
suggest that the different defect modes can be independ-
ently generated and controlled by selecting excitation
frequencies and polarization. As a perspective, it seems
also likely that wave sources perfectly adapted to each

defect mode could be defined. In the case of perfect
adaptation, unit transmission from the source to the last
cavity might be achievable. Obviously, the wave sources that
we consider, having uniform displacement amplitude along
the straight boundary Sl, are not optimal in this respect.
Transmission for the bare phononic crystal, i.e., that

without any filled cavity, is added to Fig. 5 for comparison.
It is found that the transmission for waveguides can be
smaller than for the bare crystal, especially in the case of
the shear wave source. This observation can be explained
using the complex band structure [24] in comparison with
the transmission [25]. We have verified that the complex
band structure is significantly modified for certain

I
II III IV V

I

II III
IV

V

(a)

(b)

FIG. 5. Transmission as a function of frequency through
the coupled-resonator acoustoelastic waveguides of Fig. 4 for
(a) a longitudinal wave source and (b) a shear wave source.
Transmission is shown for the straight waveguide (the green line),
the two-bend waveguide (the red line), and the eight-bend
waveguide (the blue line). I–V represent the five passing
frequency ranges. For comparison, transmission through the bare
phononic crystal is also plotted with dashed lines, with source and
receiver positioned as in the case of waveguides.

VIDEO 1. Animation of the pressure distribution along the
eight-bend waveguide as a function of frequency for a longi-
tudinal wave source.

VIDEO 2. Animation of the pressure distribution along the
eight-bend waveguide as a function of frequency for a shear wave
source.
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frequencies when certain hollow cavities are filled with
water. For example, the smallest imaginary part, which
plays a dominant role in the determination of the attenu-
ation inside a Bragg band gap [26], undergoes fast changes
as a function of frequency and polarization.
When different defects are combined, it is known that

various acoustic devices can be designed, such as the
acoustic wave splitter [27]. Here, based on the CRAEW
principle, the design of the elastic wave splitter illustrated
in Fig. 7 is discussed. The phononic circuit is composed of
one straight part and two asymmetric bent parts with
different lengths. A wave source of longitudinal vibrations
is placed at the left side of the waveguide. Elastic waves
first propagate along the straight part, and they are then
evenly split into the two bent waveguides. An animation
of the pressure distribution along the wave splitter as a
function of frequency can be viewed in Video 3 for a lattice

constant a ¼ 20 mm. The wave-splitting function is illus-
trated in the inset of Fig. 7 by the pressure distribution at
reduced frequency fa ¼ 1882 m=s. Similar to the results
obtained for different circuits in Fig. 5, the transmissions
measured at the two ends of the splitter are almost the
same in the passing frequency ranges, and slightly different
outside of them owing to different circuit lengths. The
splitter circuit ensures that wave amplitude is equally split
at the junction. However, the outputs at the two ends may
differ slightly in amplitude because the lengths of the two
waveguides following the splitter are unequal: reflections
at the ends hence interfere with incoming waves with
different phases. It is worthwhile noting that this difference
would disappear if there were no reflection at the ends.
Reciprocally, it can be noted that if different signals of the
same frequency were sent from the ends of the splitter, they
would be combined into the straight waveguide.
Before concluding the paper, let us discuss some

practical aspects of phononic circuits composed of
CRAEWs. First, we consider two-dimensional infinite
phononic crystals, but the idea can be extended straight-
forwardly to two-dimensional phononic crystal slabs. The
main effect we can expect is a reduction of the width of
the complete band gap and its dependence on the slab
thickness. Furthermore, the independence of in-plane and
out-of-plane polarized waves would be lost. Second, the
domain of application is typically dependent on the lattice-
constant value. On the theoretical side, all band structures
and transmission spectra simply scale with the lattice
constant as indicated by the reduced-frequency definition,
at least for lossless materials. In practice, however, trans-
mission through a circuit is sensitive to acoustic wave
damping in the fluid-filled holes. The viscosity of water is
frequency dependent and can be accounted for using a
viscous-fluid model [28]. With damping taken into

VIDEO 3. Animation of the pressure distribution along the
wave splitter as a function of frequency for a longitudinal wave
source.

(a) (b)

FIG. 6. Normalized pressure distribution for (a) a longitudinal
wave source at the reduced frequency fa ¼ 1883 m=s and (b) a
shear wave source at fa ¼ 2004 m=s. The color scale goes from
negative (blue) to positive (red). (Insets) Displacements around
selected cavities.

FIG. 7. Transmission as a function of frequency through a wave
splitter composed of a straight waveguide separating into two
bent waveguides for a longitudinal wave source. Transmissions
at the end of the upper (red line) and lower (blue line) bent
waveguides are displayed. (Inset) The normalized pressure
distribution at reduced frequency fa ¼ 1882 m=s. The color
scale goes from negative (blue) to positive (red). For comparison,
transmission through the bare phononic crystal is also plotted
with dashed lines, with the source and the receiver positioned as
in the case of the splitter circuit.
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account, the transmission spectrum depends on the lattice
constant a, as shown in Fig. 8 for the case of the straight
waveguide. It is seen that damping has a limited influence
on transmission for lattice constants larger than 20 μm. For
smaller lattice constants, e.g., in micron-scale phononic
circuits, viscous damping increases rapidly. It can be
further remarked that viscous damping is more pronounced
in passing frequency ranges than outside of them. This is
readily explained by observing that guided waves in
CRAEWs have a very flat dispersion, corresponding to
small group velocities. Indeed, it is known that spatial
decay on propagation is proportional to intrinsic material
loss and inversely proportional to the group velocity [29].
In this paper, we observe that damping in water intro-

duces a frequency dependence that becomes relevant at a
small scale, typically when a < 20 μm. This result implies
that the phononic circuits we describe could operate from
small frequencies up to about 100 MHz, covering the
typical range of ultrasonic applications, such as medical
ultrasound, nondestructive evaluation, etc. Selective fluid
filling of holes is a technical problem that can be tackled in
different mechanical or chemical ways, depending on the
hole size. Spotting machines can, for instance, be used to
form picoliter-volume droplets and infiltrate them into
individual holes with diameters on the order of 10 μm.
Furthermore, techniques that have been developed in the
field of optofluidics to infiltrate submicron holes in
photonic crystal devices [30,31] could also be applied to
reconfiguring phononic circuits.

IV. CONCLUSIONS

In this paper, coupled acoustoelastic wave propagation
in circuits formed by evanescent coupling of chains of
defect cavities is studied. Defect cavities are introduced by
filling a number of selected holes with a liquid in a two-
dimensional square-lattice PC composed of periodic cir-
cular holes in a solid matrix. The localized defect modes
appearing inside the complete band gap of the perfect PC
are the building blocks of a CRAEW. The consideration of

fluid filling naturally confers reconfigurability to the
circuits and reusability of the solid matrix. Reciprocally,
the solid matrix, in which the phononic circuit is defined,
ensures its durability and stability.
When a linear chain of such defect cavities is con-

structed, evanescent coupling of the cavities gives rise to
guided modes that are finely confined along the chain and
whose dispersion relation can be tuned by varying the
separation between defects and, ultimately, by varying the
acoustic properties of the fluid, though only water is
considered in this paper. Different waveguides with up
to eight bends are considered and it is found that trans-
mission of well-confined waves is achieved, regardless of
the details of the circuits. Outside passing frequency
ranges, transmission though circuits may even be smaller
than through the bare PC, owing to the generation of
evanescent waves originating from defect cavities. As an
example of a potential wave device, a 50∶50wave splitter is
designed based on the combination of different CRAEWs.
Finally, transmission damping arising from fluid viscosity
is estimated as a function of the lattice constant.
This work provides prospects for reconfigurable and

tunable manipulation of acoustoelastic wave propagation.
Consideration of more complex phononic circuits than
those examined in this paper is straightforward basing on
the CRAEW concept. By using different kinds of fluids
or by using a fluid whose properties can be tuned
by external means, the phononic circuit could, furthermore,
be made tunable. Active—or even smart—manipulation of
elastic waves could be achieved.
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