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Quantum annealing is an optimization technique which potentially leverages quantum tunneling to
enhance computational performance. Existing quantum annealers use superconducting flux qubits with
short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an
alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable
coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately
50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting
and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight
into the available design space for next-generation quantum annealers with improved coherence.
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I. INTRODUCTION

Quantum annealing [1–4] is a heuristic technique for
finding the low-energy configurations of complicated Ising
models. It has received considerable interest as a potential
new computing paradigm for solving classical optimization
problems [5], which are important for a wide range of
applications in science and industry. Existing quantum
annealers, despite rapid progress in system size and
intensive efforts to benchmark performance, have yet to
demonstrate improved scaling over classical methods
[6–14]. While continued efforts to scale and improve
existing quantum-annealing architectures will provide a
clearer picture of their potential capabilities, it is also
worthwhile to consider their limitations and explore alter-
native approaches which may be more amenable to
quantum-enhanced performance.
Commercial quantum annealers developed by D-Wave

Systems are based on niobium flux qubits with relatively
short coherence times and are designed to implement
stoquastic Hamiltonians [15] with pairwise Ising couplings
limited to a “Chimera” connectivity graph [16,17].
Experience with the D-Wave platform suggests that it
could benefit from higher connectivity, increased precision
in setting parameters, and greater control over the annealing
schedule. In addition, increased qubit coherence, non-
stoquastic Hamiltonians, and multiqubit interactions [18]
may also be instrumental in achieving quantum-enhanced
performance. In this work, we focus on the challenge of

improving the coherence of coupled qubits in a quantum
annealer.
Superconducting flux qubits [19,20] are well suited to

quantum annealing because they can be used to approx-
imately realize the transverse Ising model Hamiltonian
ĤI ¼ ðℏ=2ÞPiðϵiσ̂zi þ Δiσ̂

x
i Þ þ

P
i<jℏJijσ̂

z
i σ̂

z
j, where ℏϵi

and ℏΔi play the roles of the Zeeman energies due to the
z and x components of the local field seen by the ith
spin, and Jij is the Ising interaction between spins i and j.
Here, the two eigenstates of the Pauli operator σ̂zi corre-
spond to “persistent-current” states of qubit i, which can be
viewed as clockwise and counterclockwise currents of
magnitude Ip circulating around the qubit loop. For a
quantum-annealing device based on the transverse Ising
model, the parameters ϵi and Jij are used to encode a
classical problem, while nonzero Δi are the source of the
quantum fluctuations which drive the annealing process.
In general, all of these parameters must be tunable. In a
flux-qubit-based implementation, a coupler mediates an
interaction between qubits i and j, and the parameters ϵi,
Δi, and Jij are tunable via local magnetic flux biases.
The coupler elements [18,19,21–31] are themselves also

flux qubits, though operated in a regime where they can be
described as a simple flux-tunable effective inductance Leff .
In this language, the coupling energy between two qubits,
each with persistent current Ip and mutual inductance M
with the coupler, is given by J ¼ I2pM2=Leff. The quantity
1=Leff is also referred to as the coupler susceptibility [28].
The most significant design parameter to affect the

coherence of a quantum annealer is the choice of Ip.
Flux qubits with large persistent current have a naturally
strong coupling as J ∝ I2p, but their coherence times are
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severely limited by flux noise: their sensitivity to flux
noise is proportional to Ip and can limit both the energy-
relaxation time and the dephasing time [32,33], which for
1=f flux noise roughly scale as 1=I2p and 1=Ip, respectively.
In the D-Wave system, the qubits are designed with large
persistent currents Ip ∼ 3 μA [16] in order to achieve large
coupling strength with modest values of coupler suscep-
tibility and M. In contrast, we recently demonstrated that
it is possible to produce robust, long-lived flux qubits
with small persistent currents Ip ∼ 50 nA [32]. In order to
realize strong coupling between qubits with small Ip, it is
necessary to compensate by increasing either M or the
coupler susceptibility. Although this approach increases
the qubit’s sensitivity to flux noise in the coupler loop and
requires more precise control over the coupler flux bias, it
nevertheless allows for a significant improvement in qubit
coherence.
In this work, we demonstrate tunable coupling between

qubits with persistent currents reduced by nearly 2 orders
of magnitude compared to existing quantum annealers.
While coupled flux qubits with low persistent currents
have been previously demonstrated [24], no work to date
has investigated the implications that this design choice
has on qubit coherence for quantum annealing. We
present a systematic study of the coherence of coupled
flux qubits in the context of quantum annealing. In
particular, we investigate the effect of flux noise in the
coupler loop on qubit coherence. Our results are in good
agreement with simulations based on the full Hamiltonian
of the coupled-qubit system, as well as a semiclassical
model. This work serves as a proof of principle and
provides a framework for evaluating coherence in future
quantum-annealing architectures.

II. EXPERIMENTAL SETUP

A circuit diagram of our coupled-qubit device is
shown in Fig. 1(a). Two capacitively shunted three-junction
flux qubits, qubit A and qubit B, are each galvanically
coupled to a rf-superconducting quantum-interference-
device (rf-SQUID) coupler via a shared inductance of
M ¼ 34 pH, as shown in Figs. 1(b)–1(d). The devices
are controlled by the externally applied magnetic fluxes
ΦA, ΦB, and ΦC. For simplicity, our experiments use
qubits with a single superconducting loop instead of the
multiloop qubits that are required for independent Δ
tunability. We characterize the qubits using standard dis-
persive measurements [34], with each qubit coupled to a
separate readout resonator which is probed through a
shared transmission line.
The transition frequency between the coupler ground

and first excited state ω01
C =2π is designed to be approx-

imately 20 GHz, which is significantly larger than the
qubit transition frequencies at approximately 5 GHz.
Therefore, the coupled-qubit system can be described by

the approximate low-energy Hamiltonian H ≈HðAÞ
q þ

HðBÞ
q þHint [26], where

HðiÞ
q ¼ ℏ

2
½ϵiðΦA;B;CÞσ̂ðiÞz þ ΔiðΦA;B;CÞσ̂ðiÞx �; ð1Þ

Hint ¼ ℏJðΦA;B;CÞσðAÞz σðBÞz : ð2Þ

The effective parameters ϵi, Δi, and J are determined not
only by the circuit parameters of the individual qubits and
coupler but also by their couplings and can depend on all
three flux biases. For each qubit, the degeneracy point is
defined as the bias where ϵi ¼ 0. A table of device
parameters can be found in Appendix A.
The qubits are designed with shunt capacitance Csh ¼

50 fF, loop inductance Lq ¼ 110 pH, and Ip ¼ 45 nA.
All device components are patterned from a high-
quality evaporated aluminum film on a high-resistivity
silicon wafer, except for the superconducting loops and
Josephson junctions, which are deposited using double-
angle evaporation of aluminum [32]. Spectroscopy plots
showing the energy difference between the ground and
first excited state for qubit A and qubit B are shown in
Figs. 2(a) and 2(b) as a function of the reduced flux
fi ≡Φi=Φ0 in the qubit loop, with the coupler biased at
fC ¼ 0. At this coupler bias, ΔA=2π ¼ 5.042 GHz
and ΔB=2π ¼ 5.145 GHz.
Figure 2(c) shows how the transition frequency of qubit

B depends on the coupler bias. This dependence originates

(c)

(b)

(d)

1 mm

100 μm 10 μm

FIG. 1. Coupled-qubit geometry. (a) Device schematic. Qubit A
(left loop) and qubit B (right loop) are capacitively shunted three-
junction flux qubits coupled through a shared inductance with a
rf-SQUID coupler (center loop). On-chip bias currents I1, I2, and
I3 control the external fluxes ΦA, ΦC, and ΦB through the qubit
and coupler loops. (b) Optical micrograph of the aluminum (light
gray) device on a silicon (dark gray) substrate. (c) Optical image
showing the qubits, coupler, and flux bias lines. (d) SEM image
of the galvanic connection between qubit B (lower right) and the
coupler (upper left).
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from the circulating current in the coupler loop hICi, which
couples to the qubit through the shared inductance M.
Thus, the coupler induces an offset flux in the qubit loop,
which shifts the effective qubit bias as indicated by the
dashed line in Fig. 2(b). Treating the interaction classically,
the offset flux is given by δfB ¼ MhICi=Φ0. Assuming that
the coupler remains in its ground state, hICi and Leff are

related to the coupler ground-state energy EðCÞ
0 as

hICi≡ ∂EðCÞ
0

∂ΦC
;

1

Leff
≡ ∂hICi

∂ΦC
¼ ∂2EðCÞ

0

∂Φ2
C

: ð3Þ

By fitting our results to theory, we extract the rf-SQUID
coupler loop inductance LC ¼ 470 pH and junction critical
current I0C ¼ 730 nA, giving β≡ 2πLCI0C=Φ0 ¼ 1.04. hICi
and 1=Leff vary with fC, and for these coupler parameters,
they range from −700 to 700 nA and 1=ð1070 pHÞ to
1=ð−48 pHÞ, respectively. Note that the slope of hICi with
respect to flux determines the sign of Leff and, thus, the
sign of J. Therefore, Fig. 2(c) can be seen as a map of
the regions of antiferromagnetic (J > 0), ferromagnetic
(J < 0), and zero coupling.

III. COUPLING STRENGTH

Two-qubit coupling is shown in Fig. 3 focusing primarily
on the ferromagnetic coupling regime. Figures 3(a)–3(f)
show spectroscopy of both qubits as the transition fre-
quency of qubit A is tuned through resonance with that of
qubit B, which is held at a fixed bias. When the qubits are
resonant, their levels hybridize and split in frequency by
2jJj, shown here for three coupler biases corresponding to
different values of coupling strength J. Figure 3(g) shows
the qubit frequencies for maximal coupling, as fA is tuned
over a much larger range. At this coupler bias, we measure
a maximal coupling strength of jJj=2π ¼ 94 MHz. From
this measurement and our experimental bound on the
minimum coupling (see Appendix E), we place a lower
bound of 425 on the coupler on:off ratio. Finally, Fig. 3(h)
shows the dependence of jJj on the coupler bias, which
agrees well with simulations of the full-circuit Hamiltonian,
as well as a semiclassical model (see Appendix B).
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FIG. 2. Qubit spectroscopy. Dashed black traces: Semiclassical
model. Solid green traces: Simulations of the full-circuit
Hamiltonian. (a) Spectroscopy of qubit A vs fA, with fB ¼
fC ¼ 0. (b) Spectroscopy of qubit B vs fB with fA ¼ fC ¼ 0.
The yellow dashed line represents the starting point and range
of qubit frequencies in the following panel. (c) Spectroscopy of
qubit B vs fC for fA ¼ 0 and fB ¼ 0.516. The regions of
antiferromagnetic (AFM), ferromagnetic (FM), and zero coupling
are indicated. The inset shows detailed data for the FM region.
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FIG. 3. Qubit-qubit coupling. Dashed black traces: Semiclassical
model. Solid green traces: Simulations of the full-circuit
Hamiltonian. (a)–(f) Spectroscopy of qubit-level crossings for
different coupling strengths. Panels (a)–(c) and (d)–(f) show
measurements using resonator A and resonator B, respectively.
In each panel, we scan fA while holding fB at a fixed bias
point approximately 10 mΦ0 away from degeneracy. The left,
middle, and right panels correspond to zero (fC ¼ 0.402), inter-
mediate (fC ¼ 0.48), and maximum (fC ¼ 0.5) coupling, as in-
dicated by the insets. (g) Avoided level crossings as qubit A (red)
is tuned across qubit B (blue) with fC ¼ 0.5. (h) J vs coupler bias.
Error bars are derived from the error of fitting the qubit spectroscopy
to a double Gaussian function.
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IV. QUBIT COHERENCE

In Fig. 4, we show how the properties of an individual
qubit depend on the coupler bias. Here, we present data for
qubit B, with fA set to zero. Figures 4(a) and 4(b) display
ΔB versus fC. For each value of fC, we sweep fB and
perform qubit spectroscopy to find the minimum qubit
frequency, ωmin

B ðfCÞ≡ ΔBðfCÞ. The dependence of ΔB on
fC can be understood semiclassically as loading of the
qubit inductance by the effective inductance of the coupler,

Lloaded
q ¼ Lq −

M2

Leff
; ð4Þ

as illustrated by the dashed lines in Figs. 4(a) and 4(b).
In Figs. 4(c) and 4(d), we show how the qubit energy-

relaxation time T1 depends on fC. For each coupler bias
point, qubit B is biased on degeneracy (at the point of

minimum qubit frequency). The error bars correspond to
the standard error for fitting the decay curve at each coupler
bias point to an exponential function. In addition to any
dependence on the coupler bias, T1 also fluctuates on slow
time scales [32,35], and the gray band indicates the typical
range of T1 fluctuations when the coupler is biased away
from degeneracy (see Appendix D). When the coupler is
biased near degeneracy, we observe a reduction in T1

substantially below the range of temporal fluctuations.
Finally, Figs. 4(e) and 4(f) show the dependence of the

qubit dephasing times on fC, for the same bias conditions
as above. Here, we report the 1=e decay times TRamsey

2 and
Techo
2 for Ramsey interferometry and spin-echo experi-

ments, respectively. When the coupler is biased away from
degeneracy, TRamsey

2 is essentially constant with respect to
fC. There is some variation in Techo

2 , which is roughly
consistent with the range of values expected from the
observed fluctuations in T1.
Interestingly, we observe a sharp reduction in the

coherence times as the coupler bias approaches degeneracy
and a full recovery when the coupler is biased exactly on
degeneracy. This effect can be understood as the result
of the first-order sensitivity ofΔB to the coupler bias, which
is given by ∂ΔB=∂ΦC, the slope of the data in Figs. 4(a)
and 4(b). By fitting the measured dependence of ΔB on fC
and assuming a 1=fα spectral density of fluctuations with
α ¼ 0.91 [36], we see excellent agreement between our
model and the coherence measurements for a flux-noise
amplitude of 15 μΦ0=

ffiffiffiffiffiffi
Hz

p
, as indicated by the curves in

Fig. 4(f). Using the same amplitude and exponent, we
calculate an upper limit on qubit T1 due to flux noise in
the coupler loop, as shown in Figs. 4(c) and 4(d). In
Appendix D, we speculate on why the estimated flux-noise
amplitude is larger than the previously reported values for
flux qubits made with the same fabrication process [32] and
the potential implications for future quantum-annealing
architectures designed to optimize for both coherence and
coupling.
This work represents an important step toward designing

quantum annealers with improved coherence. We demon-
strate tunable coupling between flux qubits with substan-
tially lower persistent currents than existing commercial
devices, thereby reducing the qubit sensitivity to flux
noise in their respective loops. This approach requires an
increased coupler susceptibility, which increases the qubits’
sensitivity to flux noise in the coupler loop. We examine
this effect by measuring qubit coherence across the full
range of coupler biases, using standard measurement
techniques borrowed from the gate-based quantum-
computing community, which have yet to be applied to
commercial quantum annealers. Looking forward, our
approach can be extended to achieve larger coupling
strength, symmetric bipolar coupling, and σ̂xσ̂x interactions
[37], while maintaining low persistent currents. Our results
provide insights into the available design space and suggest
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show the expected dependence due to 1=fα-flux noise in the
coupler loop with the same amplitude and exponent as above.

STEVEN J. WEBER et al. PHYS. REV. APPLIED 8, 014004 (2017)

014004-4



the type of system-level analysis that is necessary when
designing quantum annealers with improved coherence.
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APPENDIX A: TABLE OF SAMPLE
PARAMETERS

Table I shows a list of sample parameters extracted
from two different models of the coupled-qubit system—
a semiclassical model, where the individual qubits and
coupler are treated quantum mechanically but their
interactions are treated as a classical mutual inductance,
and a quantum model of the full galvanically coupled
circuit. Using the semiclassical model, we perform an
optimization routine to determine the set of parameters
which best fit the results in Figs. 2–4. The quantum
model includes some effects, such as cross-capacitance
between the qubits and coupler, which are not included in
the semiclassical model. Therefore, it is necessary to
make small adjustments to the parameters extracted from

the semiclassical model in order to achieve good agree-
ment between the quantum model and the measured
results, as indicated in Table I.

APPENDIX B: SEMICLASSICAL MODEL

Figure 5 shows a circuit diagram for the full galvanically
coupled circuit. To simulate the energy levels of the full
system, we diagonalize the circuit Hamiltonian using
similar techniques to our previous work [32]. These
techniques are described in detail in a separate forthcoming
publication [38].
In this section, we explain how to map the full circuit

onto a simpler and more computationally convenient
semiclassical model. In this model, the individual qubits
and coupler are treated quantum mechanically, but their
interactions are treated as a classical mutual inductance.
Using this simplified model, we derive expressions for the
coupling strength J, as well as the shifts in the qubit
parameters Δ and ϵ due to interaction with the coupler.

1. Comparing mutually inductive coupling
to galvanic coupling

To build up the model of the coupled-qubit system, we
first consider a simpler system depicted in Fig. 6(a). Here,
two loops of inductance LA;B threaded by magnetic flux
ΦA;B are coupled through a mutual inductance M.
Defining the flux vector Φ, the mutual inductance matrix

M, and the self-inductance matrix L as

Φ≡
�ΦA

ΦB

�
; M≡

�
0 −M

−M 0

�
; L≡

�
LA 0

0 LB

�
;

ðB1Þ

the classical potential energy of the system is given by

U ¼ 1

2
ΦðL−1 þ L−1ML−1ÞΦ ðB2Þ

¼ 1

2

Φ2
A

LA
þ 1

2

Φ2
B

LB
þM

ΦA

LA

ΦB

LB
; ðB3Þ

where the first two terms correspond to the energies of
the individual loops, and the third term represents their
interaction energy. The system can be reexpressed in terms
of the classical circulating currents IA;B ¼ ΦA;B=LA;B,
which yields

U ¼ 1

2
LAI2A þ 1

2
LBI2B þMIAIB: ðB4Þ

Next, we compare this result for two mutually coupled
loops to the case of two galvanically coupled loops, as
depicted in Fig. 6(b). Here, the inductance matrix can be
approximately defined as [40]

TABLE I. Table of sample parameters.

Parameter
Semiclassical

model
Full galvanic
circuit model

Common junction
params.

Jc (μA) 2.78 2.78
Sc (fF=μm2) 50 50

Qubit A IA;sm0 (nA) 78 78

IA;lg0 (nA) 206 206

CA
sh (fF) 53 53

LA
q (pH) 115 115

Qubit B IB;sm0 (nA) 78 78

IB;lg0 (nA) 209 209

CB
sh (fF) 53 53

LB
q (pH) 115 115

Coupling M (pH) 39 43
IC0 (nA) 727 736
LC (pH) 467 542
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L≡
�

LA −M
−M LB

�
; ðB5Þ

and the potential energy is given by

U ¼ 1

2
ΦL−1Φ ðB6Þ

¼ 1

2

Φ2
A

LA −M2=LB
þ Φ2

B

LB −M2=LB

þM

�
1 −

M2

LALB

�−1ΦA

LA

ΦB

LB
: ðB7Þ

Note that this is equivalent to Eq. (B3) after the following
substitutions:

~LA;B ≡ LA;B −
M2

LB;A
; ~M≡M

�
1 −

M2

LALB

�
: ðB8Þ

Thus, the galvanically coupled circuits employed in this
work can be approximately mapped onto simpler mutually
coupled circuits using the renormalized inductances ~L
and ~M.

2. Directly coupled qubits

Now, suppose that each loop in the circuits discussed
above is replaced with a flux qubit [Figs. 6(c) and 6(d)]
described by the Hamiltonian Hq=ℏ ≈ ðϵσ̂z þ Δσ̂xÞ=2.
In the persistent-current basis, the eigenstates of the Pauli
operator σ̂z denoted j�zi correspond to clockwise- and
counterclockwise-circulating currents

I ≡ h�zjÎj�zi ¼ h�zjIpσ̂zj�zi ¼ �Ip; ðB9Þ

where Î is the current operator, and Ip is magnitude of the
qubit persistent current. The interaction term from Eq. (B4)
can be expressed as

Hint ¼ ~MIApIBpσ̂
ðAÞ
z σ̂ðBÞz ; ðB10Þ

which takes the form Hint ¼ Jσ̂ðAÞz σ̂ðBÞz , where the coupling
strength J is given by

ℏJ ¼ ~MIApIBp: ðB11Þ

A simple intuitive picture for this expression emerges
when the qubits are biased such that ϵ ≫ Δ. In this regime,
qubit energy eigenstates are approximately equal to the
persistent current states j�zi with energy eigenvalues
�ℏϵ=2 ¼ IpðΦext −Φ0=2Þ, where Φext is the external
magnetic flux through the qubit loop, andΦ0 is the magnetic
flux quantum. Here, the σ̂zσ̂z interaction is longitudinal
with respect to the energy eigenbasis. The coupling can be

12

3

4

5 6

7

8

9

FIG. 5. Schematic diagram of the full
galvanic circuit. The nodes of the circuit
labeled 1–9 are used to define its canoni-
cal flux and charge variables [39].

(a)

(c) (d)

Φext

E
ne

rg
y

|+z 

|-z 

|-z 

|+z 

Δ

Φ /2

FIG. 6. Direct coupling. (a) Circuit schematic for two loops
of inductance LA;B coupled through a mutual inductance M.
(b) Circuit schematic for two loops which are galvanically
coupled through a shared inductance M. (c) Circuit schematic
for two flux qubits with persistent currents IA;Bp coupled through a
mutual inductance ~M. (d) Illustration of the energies of the
ground (blue) and first excited (red) states of a flux qubit as a
function of the external flux Φext through the qubit loop. At the
degeneracy point (Φext ¼ Φ0=2), the ground and excited states
are separated in energy by ℏΔ. When biased away from
degeneracy, the qubit states are approximately persistent current
states j�zi.
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understood by considering the effect of the persistent
current in one qubit loop on the flux through the other
qubit loop. For example, qubit A induces a state-dependent
offset δΦB ¼ � ~MIAp in the flux through qubit B and, thus, a
state-dependent frequency shift of

δωðBÞ
01 ≈�ϵδΦB ¼ �2J: ðB12Þ

Note that the coupling measurements reported in the
main text are performed in the Δ ≫ ϵ regime, where the
σ̂zσ̂z interaction is transverse with respect to the energy
eigenbasis. In this case, the coupling manifests as an
avoided crossing between the j01i and j10i states, which
are shifted from their bare energies by �ℏJ.

3. Mediated coupling

As a next step in building up the semiclassical coupling
model, we consider the case of two qubits coupled through
a mutual inductance ~M to an intermediate loop of induct-
ance L [Fig. 7(a)]. Returning to the longitudinal coupling
picture (ϵ ≫ Δ), the persistent current in qubit A induces a
state-dependent offset flux δΦC ¼ � ~MIAp in the coupler
loop, which changes the current circulating in the loop by
δhICi ¼ δΦC=L and, thus, induces an offset of

δΦB ¼ δΦC

~M
L

¼
~M2

L
IAp ðB13Þ

in the flux through qubit B. Note that this expression
takes the same form as for the directly coupled qubits
but with the substitution ~M → ~M2=L≡Meff . Then,
in analogy to Eq. (B11), the coupling strength is
given by

J ¼
~M2

L
IApIBp ¼ MeffIApIBp: ðB14Þ

Finally, we consider the case where the intermediate
loop is replaced with a rf-SQUID coupler [Fig. 7(b)].
In the following discussion, we make the assumption
that transition frequency between the coupler ground
and first excited state is much larger than the qubit
frequencies and that the coupler is always operated in its
ground state. In general, the coupler ground-state energy
E0 varies with applied flux fC, as illustrated in Fig. 7(c).
For the coupler parameters considered in this work, the
circulating current in the coupler loop is approximately
equal to the slope of the coupler energy with respect to
the flux hICi ≈ ∂EC

0 =∂ΦC, as illustrated in Fig. 7(d),
where we compare this quantity with the expectation
value of the current operator hgjÎjgi for the coupler
ground state jgi.
We then define the “quantum inductance” for the coupler

(as in Refs. [28,41,42] and in analogy to the “quantum
capacitance” described in the charge qubit [41,43,44] and
semiconducting qubit [45–50] literature) as
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FIG. 7. Mediated coupling. (a) Circuit schematic for two flux qubits with persistent currents IA;Bp which each couple through a mutual
inductance ~M to an intermediate loop of inductance L. (b) Circuit schematic for a similar configuration but with the intermediate loop
replaced with a rf-SQUID coupler. (c) Illustration of the energies of the ground (blue) and first excited (gray) states of a rf-SQUID
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1

Leff
≡ ∂hICi

∂ΦC
≈
∂2EðCÞ

0

∂Φ2
C

: ðB15Þ

Note that unlike a physical inductance, this quantum
inductance can take both positive and negative values.
Following the same logic as above, we can now express the
coupling strength as

J ¼
~M2

Leff
IApIBp: ðB16Þ

Given a set of qubit and coupler parameters, it is
straightforward to calculate J using Eq. (B16). We
determine Leff by numerically diagonalizing the coupler
Hamiltonian to solve for its ground-state energy E0 as a
function of ΦC. We separately determine Ip by numeri-
cally solving for the energy eigenstates jψ ji of the qubit
Hamiltonian, from which we calculate the matrix ele-
ments of the current operator hψ jjÎjψki expressed in the
energy eigenbasis. When the qubit is biased on degen-
eracy (ϵ ¼ 0), the Ip is given by the off-diagonal matrix
elements.
Note that Eq. (B16) is the same expression for the

coupling strength used by D-Wave in Refs. [26,28], with
the coupler susceptibility χ defined as the inverse of the
effective inductance. However, their approach differs in
that instead of diagnolizing the coupler Hamiltonian to
solve for χ, D-Wave chooses to approximate χ as the first-
order (linear) susceptibility, which can be expressed using a
simple analytic formula. This approach works sufficiently
well for the coupler parameters of existing D-Wave
devices, but the linear approximation breaks down for
larger coupler susceptibilities and coupling strengths, as
discussed in Ref. [18].

4. Qubit flux offset due to the coupler

The semiclassical model can also explain the shifts in
qubit parameters due to their interaction with the coupler.
For concreteness and to follow the presentation of the main
text, we focus on qubit B. First, we consider the effect of
the coupler on the qubit flux bias. This effect explains the
dependence of the qubit frequency on the coupler bias
shown in Fig. 2(c).
As shown in Fig. 7(d), the circulating current in the

coupler loop hICi varies with the coupler bias ΦC. This
circulating current couples into the qubit loop through the
mutual inductance M and, therefore, threads a flux

δΦB ¼ ~MhICi ðB17Þ

through the qubit loop. For a flux qubit described by the
Hamiltonian Hq=ℏ ≈ ðϵσ̂z þ Δσ̂xÞ=2, this flux offset cor-
responds to a shift in ϵ of

δϵ ¼ 2

ℏ
IpδΦB ¼ 2

ℏ
~MIphICi: ðB18Þ

5. Inductive loading model

The coupler also affects the value of Δ, the qubit
frequency when biased at its degeneracy point, as
shown for qubit B in Figs. 4(a) and 4(b). This effect
can be modeled semiclassically as inductive loading of
the qubit inductance by the effective inductance of the
coupler.
A circuit schematic for the inductive loading model is

shown in Fig. 8 [51]. Here, we consider the impedance
looking out from the Josephson junction to calculate loaded
qubit inductance

Lloaded
B ¼ LB −M þ

�
1

Leff −M
þ 1

M

�
−1

¼ LB −
M2

Leff
: ðB19Þ

Note that this expression for the loaded inductance is
the same as the renormalized inductance derived in
Eq. (B8). To calculate the semiclassical theory curves
for ΔB versus fC [Figs. 4(a) and 4(b)], we first simulate
the coupler to determine LeffðfCÞ [Fig. 7(d)]. Then, for
each value of fC, we determine ΔB by simulating the
qubit energy levels using Lloaded

B for the qubit loop
inductance.

APPENDIX C: VARIATIONS OF T1 IN TIME

In addition to any systematic dependence of T1 on the
qubit and coupler biases, we also observe T1 variations in
time. These variations are possibly related to quasiparticle
fluctuations, as described in Ref. [35]. Although T1

fluctuations are not a primary focus of this work, they
affect the interpretation of the data shown in Figs. 4(c)
and 4(d). In Fig. 9, we show the results of repeated T1

measurements for qubit B, with the coupler biased away
from degeneracy. The range of observed T1 values over the
14-h measurement time is represented as a gray band in
Fig. 4(c).

Coupler Qubit B

FIG. 8. Inductive loading model. Circuit schematic used to
model the loading of the qubit inductance due to the coupler Leff.
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APPENDIX D: MODELING THE EFFECT OF
FLUX NOISE ON QUBIT COHERENCE

1. Definition of noise spectral density

In this work, as in Ref. [32], we choose to characterize
noise by the symmetric power spectral density

SλðωÞ ¼
Z

∞

−∞
dτ expð−iωτÞ 1

2
hλ̂ð0Þλ̂ðτÞ þ λ̂ðτÞλ̂ð0Þi; ðD1Þ

where λ̂ is an operator representing a fluctuating parameter
λ. The two dominant noise mechanisms for the coupled-
qubit system presented here are flux noise in the qubit loop
and the coupler loop λi ¼ ΦB, ΦC. For 1=f-like noise, the
noise amplitude Aλ is given by [52]

SλðωÞ ¼ A2
λ

�
2π × 1 Hz

ω

�
γ

; ðD2Þ

where γ ∼ 1.

2. Energy-relaxation due to 1=f γ-flux noise

We analyze the data for T1 of our qubit-coupler system
using the Fermi golden rule model presented in Ref. [32],

1

T1

¼
X
λ

2
jhejD̂λjgij2

ℏ2
SλðωÞ; ðD3Þ

where the sum is taken over decay mechanisms, SλðωÞ is
the power spectral density of the noise responsible for
each decay mechanism, and the operator D̂λ is the transition
dipole moment which couples our system to each noise
source.
For the coupled system considered here, T1 can be

decomposed into contributions from the qubit TQ
1 and the

coupler TC
1 , where

1

T1

¼ 1

TQ
1

þ 1

TC
1

: ðD4Þ

The qubit contribution dominates away from the coupler
degeneracy, and both processes contribute when the system
is biased near the coupler degeneracy.

In our analysis, we assume that the coupler is flux
noise limited on its degeneracy, and its decay rate is, thus,
given by

1

TC
1

¼ 2
jhejÎCjgij2

ℏ2
SΦC

ðωÞ; ðD5Þ

where jgi and jei are the ground and first excited state of
the coupled system

Ĥ ¼ ĤQ þ ĤC þMÎQÎC: ðD6Þ

The quantum operators ĤC and ÎC (ĤQ and ÎQ) are the
Hamiltonian and loop current operator of the bare coupler
(qubit), respectively, and the exact value of the matrix
element hejÎCjgi can, thus, be calculated from the device
parameters listed in Appendix A and the full quantum
model of the bare qubit and coupler. As described in
Appendix E, the amplitude and exponent of the flux-noise
power spectral density in our coupler loop are then chosen
to fit the measured values of T1, T

Ramsey
2 , and Techo

2 on
coupler degeneracy.

3. First-order sensitivity to flux noise

The sensitivity κλ of the qubit frequency to a parameter λ
determines the effect of fluctuations in λ on qubit dephas-
ing. In the two-level approximation of the flux qubit, the
qubit transition frequency is given byω01 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ Δ2

p
, and,

to first order,

κλ ≡ ∂ω01

∂λ ≈
∂ω01

∂ϵ
∂ϵ
∂λþ

∂ω01

∂Δ
∂Δ
∂λ ¼ ϵ

ω01

κϵ;λ þ
Δ
ω01

κΔ;λ;

ðD7Þ

where κϵ;λ ≡ ∂ϵ=∂λ and κΔ;λ ≡ ∂Δ=∂λ.
In the measurements presented in Fig. 4, we characterize

the coherence of qubit B when biased near its degeneracy
point (ϵB ¼ 0). At this bias point, κϵB;ΦB

and κϵB;ΦC
are zero.

Since ΔB depends only weakly on ΦB, the dominant first-
order noise mechanism is κΔB;ΦC

, the sensitivity of ΔB to
the coupler flux.
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(b) Histogram of measured T1 values.
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4. Decoherence due to 1=f γ-flux noise

Here, we consider the effect of 1=f-like flux noise, as
defined in Eq. (D2), on qubit coherence. In general, this
type of noise causes phase decay of the form exp½−χNðtÞ�,
where [53]

χNðτÞ ¼
1

2π
τ2
X
λ

κ2λ

Z
∞

0

dωSλðωÞgNðω; τÞ; ðD8Þ

where τ is the free evolution time, and gN is a filter function
which depends on the qubit pulse sequence. For the
Ramsey (N ¼ 0) and Hanh echo sequences (N ¼ 1)
considered in this work,

g0ðω; τÞ≡ g0ðωτÞ ¼
�
sinðωτ=2Þ
ðωτ=2Þ

�
2

; ðD9Þ

g1ðω; τÞ≡ g1ðωτÞ ¼
�
sinðωτ=4Þ
ðωτ=4Þ

�
2

sin2ðωτ=4Þ: ðD10Þ

Substituting Eq. (D2) into Eq. (D8) and making the
additional substitution ωτ → z gives

χNðτÞ ¼
ð2π × 1 HzÞγ

2π
τ1þγ

X
λ

κ2λA
2
λ

Z
∞

0

dz
zγ

gNðzÞ; ðD11Þ

where we assume that the fluctuations in each parameter λ
share a common noise exponent γ.
We define the 1=e dephasing rates ΓN;λ, for each

dephasing channel as

ΓN;λ ¼
�
ð2πÞγ−1κ2λA2

λ

Z
∞

0

dz
zγ

gNðzÞ
�
1=ð1þγÞ

≡ ½κλAλη
1=2
N �2=ð1þγÞ; ðD12Þ

where the numerical factors η0, η1 depend on the noise
exponent γ and the Ramsey and echo filter functions and
are defined as

ηN ¼ ð2πÞγ−1
Z

∞

0

dz
zγ

gNðzÞ: ðD13Þ

As discussed in Ref. [53], for the case of γ ¼ 1, these
factors are given by

η0 ≈ ln

�
1

ωlowt

�
ðD14Þ

η1 ¼ lnð2Þ; ðD15Þ

where ωlow is the lower cutoff frequency set by the total
time of all experimental iterations, and t is the typical free
evolution time during a single experimental iteration. Note
that η1 is completely independent of the cutoff frequency,
thus, avoiding any ambiguity in choosing ωlow and t when

analyzing the echo experiments, while η0 varies only
weakly with ωlowt for realistic measurement settings.
For γ ≠ 1, we determine the numerical factors through

numerical integration of Eq. (D13), as discussed in
Ref. [54]. For the Ramsey sequence,

η0 ¼ ð2πÞγ−1
Z

∞

ωlowt

dz
zγ

�
sinðz=2Þ
z=2

�
2

ðD16Þ

and for the echo sequence,

η1 ¼ ð2πÞγ−1
Z

∞

0

dz
zγ

�
sinðz=4Þ
z=4

�
2

sin2ðz=4Þ: ðD17Þ

Figure 10(a) shows
ffiffiffiffiffiffiffi
η0;1

p
as a function of γ for

ωlow=2π ¼ 3 mHz and τ ¼ 200 ns.

5. Estimating the flux-noise amplitude
in the coupler loop

We now combine the results of the previous sections
with our qubit coherence measurements to estimate the
flux-noise amplitude and exponent in the coupler loop. We
first consider the Ramsey and echo results presented in
Figs. 4(e) and 4(f). We define the total 1=e decay rates for
the Ramsey and echo experiments as Γ0 ≡ 1=TRamsey

2 and
Γ1 ≡ 1=Techo

2 , respectively. We separate the decay rates into
two contributions: ΓN;ΦC

due to flux noise in the coupler
loop and ΓN;other, which includes the effect of T1 as well as
any additional dephasing.
When the coupler is biased far from degeneracy, ΓN;ΦC

is negligible and, thus, ΓN ¼ ΓN;other. For simplicity, we
model ΓN;other as an exponential decay [55]. For arbitrary
coupler bias, the total phase decay takes the form

exp½−ΓN;otherτ − ðΓN;ΦC
τÞ1þγ�: ðD18Þ

Thus, we can determine ΓN;ΦC
from the measured values

of ΓN and ΓN;other through the relation

ΓN;ΦC
¼ ΓN

�
1 −

ΓN;other

ΓN

�
1=ð1þγÞ

: ðD19Þ

Finally, from Eq. (D12), the spectral density of flux noise
in the coupler is given by

AΦC
¼ κ−1ΦC

η−1=2N ðΓN;ΦC
Þð1þγÞ=2; ðD20Þ

where κΦC
≈ κΔB;ΦC

is experimentally determined from the
slope of ΔB vs ΦC [Figs. 4(a) and 4(b)].
In Fig. 10(b), we plot the value of AΦC

that fits best to
our Ramsey and echo measurements using Eq. (D20) and
to our T1 measurements using Eq. (D5), for different
values of γ. Although we are unable to choose values of
AΦC

and γ that fit perfectly with all three measurements,
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they are roughly bounded within the triangular region
between the three curves in Fig. 10(b), where 10 μΦ0=ffiffiffiffiffiffi
Hz

p
<AΦC

<19μΦ0=
ffiffiffiffiffiffi
Hz

p
and 0.86 < γ < 0.96. For con-

creteness, when plotting theory curves in the main text, we
choose γ ¼ 0.91 and AΦC

¼ 15μΦ0=
ffiffiffiffiffiffi
Hz

p
, which results in

reasonably good agreement with all three measurements.
This estimate for the flux noise in the coupler loop is

substantially larger than the value previously reported for
flux qubits made with the same fabrication process, where
we measure a flux-noise amplitude of 1.4 μΦ0=

ffiffiffiffiffiffi
Hz

p
[32].

The most significant difference between the coupler loop
and the low-noise qubit loops is the loop size; the coupler
loop is 20 times larger in area. Therefore, these results
motivate future efforts to study the dependence of flux
noise on loop size beyond the scope of this work and
previous efforts [56]. Such measurements will help to
inform us on architectural choices for optimizing coherence
and coupling in next-generation quantum annealers.

APPENDIX E: RESIDUAL COUPLING
WITH COUPLER BIASED “OFF”

Here, we describe the technique that we use to place an
upper bound on any residual coupling when the coupler is

nominally biased to provide zero coupling (fC ¼ 0.402).
As we illustrate in Fig. 11, we observe no avoided crossing
in spectroscopy, allowing us to bound any nonzero residual
coupling to<220 kHz, a limit determined by the resolution
in fA set by our bias-current source. For each value
of fA, the frequency of qubit A is determined by fitting
the spectroscopy trace to a Gaussian function. Qubit B is
biased on degeneracy, and its frequency is precisely
determined through Ramsey spectroscopy.
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