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Optical gratings are created by flexoelectric domains in a bent-core nematic liquid crystal. A unique
feature of this structure is that its wavelength can be controlled by the amplitude of the applied voltage, as
demonstrated by polarizing microscopy and light diffraction techniques. In order to understand the reaction
of the system to the voltage change, the dynamics of the switching process is studied via digital processing
of recorded image sequences. It is shown that the characteristics and the switching mechanisms are
different if the lower voltage level is below or above the threshold of pattern onset. In both cases, the
response to increasing voltage levels is much slower than the response to decreasing voltage levels.
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I. INTRODUCTION

The remarkable electro-optic effects of nematic liquid
crystals (LCs) arise from their large optical anisotropy and
their high sensitivity to external fields [1,2]. In addition to a
wide range of applications in displays, LCs are now used
more and more for manipulating light (including beam
shaping or steering), for switchable holograms, and for
other photonic applications [3–6]. This field of optical
processing has become increasingly important in the
information age.
Optical phase gratings play important roles in photonic

devices, whose performance will determine their capability
to process information. Among diverse gratings, diffraction
gratings based on LCs have potential advantages over
conventional holographic gratings due to the large optical
anisotropies and the ability to use LCs for controllable
electro-optical switching.
Usually, LC gratings are realized either by patterned

electrodes [7–9] or by illumination with a spatially varying
light intensity created by interference [10–13], which
modulates the refractive index; in both cases, the grating
morphologies are fixed. However, another kind of LC
grating, which is based on self-assembled structures in LCs,
can be produced by a uniform electric field applied to
monolithic (nonpatterned) electrodes. Electroconvection
(EC) patterns [14–16] are typical and representative cases
of such gratings.
EC phenomena are distinctive features of LCs, which are

fluid and ordered media; they are often manifested in the
emergence of various convection rolls, which appear as a
regular set of dark and bright stripes in a polarizing micro-
scope. When driven by an electric voltage, LCs can form

different kinds of EC-pattern morphologies; they arise from
the couplings among the deformation of the LC orientation,
the flow of bothmaterial and charge, and the applied electric
field. The characteristics of the induced patterns, such as the
onset voltage, the critical wave vector, and the frequency
range of existence, are closely related to the dielectric and the
charge-transport properties of LCs, as well as the boundary
conditions [14–16]. The formation of convection rolls was
explained by Carr and Helfrich [1,16] via a feedback
mechanism: a periodic fluctuation in the director tilt leads
to space-charge separation due to the anisotropic conduc-
tivity; the Coulomb force on the space charge induces a
vortex flow, which exerts a destabilizing torque on the
director. When this feedback becomes positive at voltages
above a threshold Uc, the fluctuations with a selected
(critical) wave vector qc can grow to a macroscopic pattern.
In contrast to the current-driven EC rolls, the flexo-

electric domains (FDs) [17,18] are typical field-driven
patterns. They appear as a consequence of the linear
coupling between the electric field E and the flexoelectric
polarization [19,20] Pfl ¼ e1ndivn − e3n × curln (here,
e1 and e3 are the phenomenological flexoelectric coeffi-
cients), which yields a free energy gain in the periodically
deformed state compared to the homogeneous planar initial
state. FDs manifest themselves as static longitudinal
(parallel to the initial director) stripes without convection,
which may open up alternative possibilities for applica-
tions. The formation of these electric-field-induced gratings
is, however, strongly constrained by the internal physical
properties of LCs; to date, only a very few nematics have
been reported to exhibit FDs [21]. As the characteristics of
FDs are governed by the flexoelectric coefficients (which
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have been shown to be directly linked to the molecular
structure of LCs), investigation of these kinds of gratings
aiming to obtain deeper insight into the pattern formation
mechanism and the working principles of future devices
requires one to seek alternative LC materials with special
molecular structures and improved performance.
In fact, traditional LC molecules possess a rodlike shape;

this molecular structure yields very small flexoelectric
coefficients. Unconventional LC systems based on bent-
core molecules have recently generated considerable inter-
est since their banana-shaped molecular structure leads to
peculiar physical properties [22]. Owing to the combination
of the bent molecular shape and a transverse component
of dipole moment, bent-core nematics (BCNs) [23] are
ideal candidates for compounds with large flexoelectric
coefficients. Indeed, it was reported that, under certain
conditions (with flexible substrates and at a high enough
electric field [24]), BCN systems may exhibit a giant
flexoelectric response [25,26], corresponding to a bend
flexoelectric coefficient e3, which is several orders of
magnitude greater than that of rodlike compounds. The
experimental conditions for observing FDs do not conform
to these requirements, so the flexocoefficients governing
the electric-field-induced deformations (including FD for-
mation) in bent-core materials are found to be similar or a
little higher than those in calamitics [27,28]. Nevertheless,
BCNs still offer significant potential for the observation
and the application of flexoelectric domains. Therefore, in
this paper, we investigate the electric-field-induced optical
grating based on FDs in a bent-core nematic LC.
Most previous work on FDs has focused on their static

behavior (such as the threshold voltage Uth and the critical
wavelength Λth), which are the result of an equilibrium
deformation (without any material flow). The traditional
theoretical description of FDs, which is based on a linear
model [17,19], can provide only Uth and Λth, but it does
not supply information on the voltage dependence of Λ (or
that of the wave number q ¼ jqj ¼ 2π=Λ) for U > Uth,
though it would be essential for grating applications. The
only available nonlinear analysis of FDs at this time [29]
predicts that qðUÞwill be proportional to the strength of the
applied electric field E. Thus, by measuring qðUÞ in our
material, we can test the applicability of this prediction. It
was also found that the occurrence, as well as the
polarization state, of the diffracted light strongly depends
on the conditions of the light incidence.
Understanding the driving mechanisms of FDs is not

complete without information on their dynamics, including
how they emerge and decay, as well as how they evolve
during switching. The latter is especially important con-
cerning the applications of FDs. Therefore, in this work, we
concentrate more on the dynamics of FDs. Since the wave
number q is a key characteristic of FDs, we monitor the
time dependence of q as a tool for analyzing the dynamic
behavior of FDs systematically.

II. MATERIAL AND METHODS

Measurements are performed on the BCN compound
2,5-bis {4-[difluoro (4-heptylphenyl) methoxy] phenyl}-
1,3,4-oxadiazole (7P-CF2O-ODBP), whose structural for-
mula is shown in Fig. 1. The phase sequence is crystal,
77 °C, smectic, 90.3 °C, nematic, 131.5 °C, isotropic.
The BCN samples are filled into sandwich cells of

d ¼ 6 μm thickness. The indium-tin-oxide electrodes are
covered with a passivating layer of SiO2 in order to prevent
injection of charge carriers through the electrode, as well as
with rubbed polyimide to provide planar alignment. The
initial director orientation n0 is along the x axis, while the
electric fieldE is applied along the z axis, i.e., perpendicular
to the substrates and n0. The temperature of the samples is
controlled using a Linkam LTS 350/TMS 94 hot stage.
The BCN sample is driven through a high-voltage

amplifier either by constant voltage or by steplike voltage
levels changing repetitively at ultralow frequency, gener-
ated by a function generator. The voltage-induced FDs are
observed by a Leica DM RXP polarizing microscope
(POM) in transmission mode using a single polarizer only
(the shadowgraph technique [30]). In order to explore the
temporal evolution of FDs, image sequences of the FD
pattern are captured by a fast black-and-white camera
(Mikrotron EoSens MC 1362) with an adjustable (maxi-
mum 2000 frames/s) recording rate at the spatial resolution
of 520 × 512 pixels; the recording is synchronized with the
switching of the applied voltage.
The recorded image sequences are later digitally proc-

essed for further characterization of the patterns. This
procedure includes determination of the pattern contrast
C, defined as themean-square deviation of the intensities Ixy
of the pixels of the image,

C ¼ hðIxy − hIxyiÞ2i; ð1Þ
where h� � �i denotes averaging over thewhole image. A two-
dimensional fast Fourier transform (FFT) of the images is
also performed, providing the spectral distribution function
ΨðqÞ—the square of the absolute value of the Fourier
amplitude—at the location q ¼ ðqx; qyÞ in the Fourier
space. One can then introduce the spectral entropy [31]

S ¼ −hPðqÞ lnPðqÞiq ð2Þ
as a measure of the order of the pattern, with

FIG. 1. Structural formula of the BCN compound 2,5-bis
{4-[difluoro (4-heptylphenyl) methoxy] phenyl}-1,3,4-oxadiazole
(7P-CF2O-ODBP).
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PðqÞ ¼ ΨðqÞR R
ΨðqÞdqxdqy

ð3Þ

being the normalized spectral distribution function; the
averaging h� � �iq extends over the whole Fourier space.
Increasing S means a reduction in the order of the pattern.
The Fourier peaks of the FD patterns are not perfectly

sharp, especially after voltage transients, when the pattern
contains several defects (dislocations). Therefore, instead
of singling out the location qm of the maximal PðqÞ, an
averaged wave vector

qav ¼
Z Z

A
qPðqÞdqxdqy ð4Þ

of the pattern is calculated by a weighted averaging over a
closed region A surrounding the Fourier peak at qm.
Besides polarizing microscopy, an independent, optical

diffraction technique is also used to probe the character-
istics of FDs. The periodic director distortion of FDs
corresponds to an optical grating, which diffracts the
incident beam of a He-Ne laser (λ ¼ 633 nm). The far-
field diffraction image and the corresponding diffraction
intensity of the fringes are recorded by a digital camera and
a photodetector, respectively. From the position of the
centers of the diffraction spots and the diffraction angles ϕκ

of the κth order, and via the Braggs relation Λ sinϕκ ¼ κλ,
the pattern wavelength is determined. The ratio of the
intensity Iκ of the κth-order diffraction to the intensity I0
of the direct beam provides the diffraction efficiency of
the grating.

III. EXPERIMENTAL RESULTS

In the following, we summarize the results obtained by
combining the POM and diffraction techniques about the

static and dynamic (switching) behavior of FD gratings at a
fixed temperature of T ¼ 105 °C. In addition, we report on
some unexpected polarization characteristics of the light
diffracted on the FD grating that are revealed by the
diffraction technique.

A. Static behavior

The dc voltage dependence of the FD pattern is dem-
onstrated in Fig. 2 by a sequence of POM snapshots and the
corresponding diffraction fringes taken at different volt-
ages. It clearly shows that, when the applied dc voltage U
exceeds a threshold Uth (⪅22 V in our case), FDs are
present in the form of longitudinal stripes running parallel
with n0 whose wavelength Λ decreases with increased
voltages.
A detailed analysis of the diffracted light (determination

of the diffraction angles ϕn of the nth order and then the
wavelength Λ of the pattern from the Bragg criterion of
Λ sinϕn ¼ nλ) proves that the wave number q of the FDs—
and hence the dimensionless wave number q� ¼ qd=π ¼
2d=Λ as well—depends linearly on the applied dc voltage,
as shown in Fig. 3(a). Least-squares fitting provides

q�ðUÞ ¼ q�th þ αðU − UthÞ; ð5Þ

where q�th ¼ 2.53� 0.18 is the critical dimensionless wave
number at the threshold Uth and α ¼ 0.185� 0.003 V−1

gives the slope of the q�ðUÞ curve.
We should note at this point that the voltage applied to

our cell is not equal to the voltage on the LC layer,
escpecially at dc driving, due to the internal voltage
attenuation between the impedance of the insulating layers
(the passivating SiO2 and the orienting polyimide) and that
of the liquid crystal [32]. Consequently, the measured Uth
value is certainly larger than the theoretical one [see

FIG. 2. Contrast-enhanced
shadowgraph images (upper row;
their size is 100 × 100 μm) and
the corresponding diffraction spots
(lower row) of FDs at different
voltages. (a) U ¼ 0. (b) U ¼ 25 V.
(c) U ¼ 35 V. (d) U ¼ 50 V.
The initial director alignment n0

is horizontal.
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Eq. (7)]. This fact should be taken into account during
comparisons and application designs.
The feature shown in Eq. (5) is qualitatively similar

to that reported previously for various calamitic LCs
[18,33,34]; there, the α values deduced from published
graphs fall into the range of 0.04–0.2 V−1. Therefore, the
linear dependence of q� on voltage seems to be a general
property of the flexoelectric domains in all LC systems;
thus, it can serve as the basis for applying FDs in voltage-
tunable LC gratings.
We note that, while the above-threshold (weakly non-

linear) behavior of EC patterns has been thoroughly
investigated (both theoretically and experimentally), a
similar detailed analysis of FDs is not yet available. The
first theoretical attempt of describing the nonlinear behav-
ior of FDs [19,29] ignored the anisotropy of the elastic
properties (one-elastic-constant approximation) and, con-
straining themselves to high (U ≫ Uth) voltages, neglected
the effect of the confining surfaces (no distortion across the
sample). Under such assumptions, the calculation yielded
[19,29]

Uth ¼ 0 and q� ¼ αU; with α ≈ 0.4je1 − e3j=K;
ð6Þ

here, K is the single (averaged) elastic constant. Making a
comparison with the experimental results in Eq. (5), we
clearly see that the prediction of q ∝ U fails at low voltage
[though Eq. (5) tends to Eq. (6) in the high-U limit],
presumably because the threshold voltage is nonzero. It
follows from the linear theory that the presence of an onset
threshold is the consequence of the strong surface anchor-
ing; hence, the anchoring effects must not be neglected
when developing the nonlinear theory. Nevertheless, this
has proved to be too big of a theoretical challenge thus far.
To our knowledge, the only attempt [35] to overcome this
problem did not provide data on qðUÞ since only numerical
results on the diffracted light intensities are reported.
Lacking rigorous nonlinear calculations and a resulting

relation between the material parameters and the slope α
of Eq. (5), we may only assume that the formula for α
given in Eq. (6) provides a good approximation. With this
assumption, using the measured value of α, the flexoelastic
ratio je1 − e3j=K can be estimated as je1 − e3j=K ¼
0.46 C=ðNmÞ, which is on the same order of magnitude
as the corresponding parameter in calamitic materials [36].
The flexoelastic ratio can also be calculated independently
from the critical wave number q�th. Using the formulas
obtained from the one-elastic-constant approximations [17],

Uth ¼
2πK

je1 − e3jð1þ μÞ ; q�th ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

1þ μ

s
;

μ ¼ ε0εaK
je1 − e3j2

; ð7Þ

and substituting the unknown dielectric anisotropy
and elastic constant of 7P-CF2O-ODBP with the values
εa ¼ −4.3 andK ¼ ðK1 þ K2Þ=2 ¼ 10.62 × 10−12 Nmea-
sured for another member (9P-CF2O-ODBP) of the same
bent-core homologous series, we obtain je1 − e3j=K ¼
2.22 C=ðNmÞ. Using this value, Eq. (7) yields Uc ¼
10.4 V for the theoretical threshold voltage. On the one
hand, the large difference of the flexoelastic ratios provided
by the two methods evidently points out the necessity of
improving the theoretical description of the nonlinear
regime as well as knowing the actual, not yet available
material parameters of the studied compound. On the other
hand, the deviation between the expected and measured
thresholds proves the significance of the internal attenuation
in the cell, which was mentioned above.
Increasing the applied dc voltage alters not only the

positions of the diffraction spots (i.e., the value of q) but
also their intensity. Figure 3(b) exhibits how the diffraction
efficiency η1 ¼ I1=I0—the ratio of the intensities corre-
sponding to the first- (I1) and the zeroth-order (I0)
diffraction spots—varies with the voltage up to about
4Uth. It is clearly seen that the voltage dependence is
not monotonic. A previous calculation of the light inten-
sities diffracted on an EC grating (where the director field is
different from that of FDs) showed [37] that I1 is there

FIG. 3. Dependence of (a) the dimensionless wave number q�
of the pattern and (b) the diffraction efficiency η1 of the first-order
fringe on the applied dc voltage U.
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described with a squared Bessel function J21ðβUÞ (β is a
combination of material and cell parameters), which is
evidently nonmonotonic with the applied voltage. We are
not aware of similar calculations for FDs. Though some
numerical calculation of the diffracted intensities has been
performed on a calamitic system [35], it covered only a
much narrower voltage range (up to 1.5Uth), which does
not facilitate a comparison with the data in Fig. 3(b).

B. Polarization characteristics of the diffraction fringes

As the diffraction on LC gratings occurs due to the
periodic refractive-index modulation caused by director
distortions and the optical anisotropy, it is not surprising
that the light intensity of a certain diffracted order depends
strongly on the direction and polarization of the illuminat-
ing beam. For example, in the case of a standard EC
[14–16], first-order spots are not visible at normal light
incidence [37]. Moreover, only light with extraordinary
polarization causes diffraction because, at ordinary illumi-
nation, there is no spatial refractive-index modulation.
Diffraction on FD gratings possesses some distinct

features compared to the case of a standard EC which
involve the intensity of fringes and the polarization of the
diffracted light [38]. In Fig. 4, we summarize the typical

scenarios observed when the BCN sample is illuminated at
normal incidence by a laser beam with a polarization
direction Pin that is rotatable with respect to n0 and shows
representative snapshots of the diffraction fringes in a far
screen. The shape and the polarization of the diffraction
spots are found to vary with the direction of Pin:
Case A.—When Pin∥n0 [Fig. 4(a), extraordinary illumi-

nation], the first-order spots vanish, whereas the second-
order spots are present as shown in Fig. 4(b). Their
polarization P2 is parallel with Pin.
Case B.—If, however, Pin⊥n0 [Fig. 4(c), ordinary

illumination], the first-order spots are clearly seen. Their
polarization P1 is perpendicular to Pin, whereas the second-
order spots disappear as depicted in Fig. 4(d).
Case C.—If Pin is oblique with respect to n0 [Fig. 4(e),

superposition of ordinary and extraordinary illuminations],
both the first- and second-order spots are visible.
In each case, the transmitted beam (zeroth-order spot)

has a strongly elliptical polarization P0 with the long axis
almost parallel with Pin, which reflects the birefringence of
the LC layer.
The observation in case A matches the behavior of

standard EC [37]; case B is, however, specific to FDs.
The complex three-dimensional (3D) director distortion in
FDs involves not only out-of-plane (tilt), but also in-plane
(azimuthal, twist) deformations. A recent theoretical analy-
sis of the diffraction on general 3D director structures
showed [39] that, in the presence of twist, the polarization
of the diffracted light may be rotated by 90° with respect to
that of the illuminating beam; thus, the observations above
are in qualitative agreement with the theoretical predictions.

C. Dynamic behavior

While the static behavior presented above corresponds to
the equilibrium (i.e., the final) state of the system, the
dynamic behavior characterizes how this end state can be
reached, e.g., after a voltage jump. Exploration requires the
application of a biased square-wave driving signal (i.e.,
repetitive switching between two dc voltage levels, U1 and
U2, with a period of τ0, much larger than the growth or decay
time of the pattern) andmonitoring of the temporal evolution
of the FDs in response to this voltage variation. Figure 5
shows the typical driving steplike waveform. The voltage
jumps fromU1 toU2 at the time instant t ¼ tup and remains
at that level for a duration of τ1; then, at t ¼ tdown ¼ tup þ τ1,
it jumps back to U1 for a duration of τ2. The sequence is
repeated by the period of τ0 ¼ τ1 þ τ2. This waveform
actually corresponds to a bipolar square wave of an
amplitude of ðU2 −U1Þ=2, biased with a dc voltage of
ðU1 þ U2Þ=2.
Investigations of the switching characteristics by recording

and processing image sequences shot by the camera imply
that one has to distinguish between two cases. In case 1, the
voltage is switched between values below and above the
threshold, i.e.,U2 > Uth > U1. This scenario corresponds to

FIG. 4. Typical diffraction geometries and the corresponding
diffraction images in a far screen. (a),(b) Incident light polari-
zation Pin parallel with the initial director n0: only second-order
diffraction spots are visible. (c),(d) Pin perpendicular to n0: only
first-order diffraction spots are present. (e) Pin is oblique with
respect to n0: both first- and second-order spots appear.
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repetitive decay and growth of the FD pattern. In case 2, both
voltage levels are above the threshold, thus the switching
occurs between two FD patterns of different wavelength. In
the following we discuss the specialties of these two cases
separately.

1. Case 1: U2 > Uth > U1

The threshold voltage of the FDs is found to beUth⪅22 V.
For studying the growth and decay of the FDs, we use the
driving waveform shown in Fig. 5 with τ1 ¼ τ2 ¼ τ0=2 ¼
50 s. Figure 6 demonstrates the emergence and the decay of
the FDs following the voltage jumps by a sequence of
snapshots taken at regular intervals in the case of U1 ¼
15 V andU2 ¼ 25 V. It can be seen from the snapshots that
the wavelength does not seem to alter significantly during
time elapsing; thus, thewavelength selectionmostly occurs at
the onset and the fastest growing mode is roughly the one
finally seen in the equilibrium end state corresponding toU2.
Similarly, this wavelength also remains almost the same
during decay. A detailed analysis shows, however, that the

dimensionless averaged wave number q�av ¼ qavd=π [see
Eq. (3)] exhibits an increase of about 10%–20% at the
beginning of the transient after the upward voltage jump,
before reaching its final value as shown in Fig. 7. A decrease
of the same order is detectable during the decay of the FDs.
Wenote that this feature is slightly different from that reported
for EC patterns [40], where no change of the wave number
during decay is observed.
The characteristic times of the appearance and disap-

pearance of the FD pattern are obtained by monitoring the
temporal evolution of the pattern contrast. As the contrastC
depends on the voltage U2 [CðUÞ increases with U in a
certain voltage range], it is better to use the normalized
contrast for a comparison of the time scales,

C� ¼ ðC − CminÞ=ðCmax − CminÞ; ð8Þ

shown in Fig. 8(a) for the growth and in Fig. 8(b) for the
decay of FDs. Here, Cmax and Cmin are the maximal and
minimal values of the contrast, respectively.
In the initial phase, immediately after the voltage

increase, the pattern—and hence the contrast—grows
exponentially (C� ∝ exp½ðt − tupÞ=τgrowth� for C� < 0.4).
Similarly, decreasing the voltage initiates an exponential
decay of the pattern (C� ∝ exp½−ðt − tdownÞ=τdecay�). The
characteristic growth and decay times, τgrowth and τdecay,
can be obtained from the curves in Figs. 8(a) and 8(b),
respectively, by exponential fitting. Alternatively, a switch-
on time τon and a switch-off time τoff—commonly used in
display applications—can be defined as the time needed for
the normalized contrast C� to increase from 10% to 90%
and to decrease from 90% to 10%, respectively.
All of these characteristic time values are collected in

Table I. It is immediately seen that they all depend strongly
on the value of U2 (the larger the U2, the shorter the τgrowth,
τdecay, τon, and τoff ). Variation of τgrowth with U2 is not at all

FIG. 5. One period of the steplike driving waveform.

FIG. 6. Sequence of contrast-
enhanced shadowgraph snapshots
of the FD pattern during growth
(voltage jumps from U1 ¼ 15 V to
U2 ¼ 25 V, upper row) and decay
(voltage jumps from U2 ¼ 25 V to
U1 ¼ 15 V, lower row). The initial
director n0 is horizontal. The time
instants when the snapshots are taken
are (a) t ¼ tup, (b) t ¼ tup þ 0.3 s,
(c) t ¼ tup þ 0.6 s, (d) t ¼ tupþ
0.9 s, (e) t ¼ tdown, (f) t ¼ tdownþ
0.03 s, (g) t ¼ tdown þ 0.06 s, and
(h) t ¼ tdown þ 0.09 s. The size of
each snapshot is 100 × 100 μm.
Contrast enhancement is performed
byspanning the actual intensity range
of the snapshots over the full intensity
range.

YING XIANG et al. PHYS. REV. APPLIED 7, 064032 (2017)

064032-6



surprising since the growth of FDs is a typical field-driven
effect. The decay, however, is a simple elastic relaxation;
therefore, the voltage dependence is not evident. It may
come from the fact that, at higher voltages, the pattern
wavelength is shorter (i.e., q� is larger; see Table I) and a
pattern with a higher wave number decays faster. The latter
has actually been proven theoretically as well as exper-
imentally for the decay of the EC pattern [40], yielding a
decay rate (τ−1decay) roughly proportional to q�2. Assuming a
similar dependence for the decay of the FDs would imply
(see τ�d in Table I) a 1.6 times decrease of the decay time at
U2 ¼ 26 V—and a 2.5 times lowering at U2 ¼ 30 V—
compared to that at the near-threshold voltage of
U2 ¼ 22 V; these values are quite close to the experimen-
tally found ones. The deviation observed at high voltage
may be due to the deformation getting out from the linear
regime assumed in the calculations.
It is notable that the decay is much faster than the growth

of the FDs. This result is evident from Table I; the time
scales of the snapshots in Fig. 6 also prove that the decay or
switch-off times are much shorter than the growth or
switch-on times.
Figure 9 depicts the temporal evolution of the spectral

entropy S defined in Eq. (2). Obviously, the appearance of

FIG. 7. Temporal evolution of the averaged dimensionless
wave number q�av during the growth of FDs following a voltage
jump from U1 ¼ 18 V (below threshold) to the indicated U2

values. Time is counted from the instant t ¼ tup of the voltage
jump.

FIG. 8. Temporal evolution of the normalized contrast C�
(a) during the growth of FDs following a voltage jump from
U1 ¼ 18 V (below threshold) to the indicated above-threshold
U2 values (time is counted from the instant t ¼ tup of the voltage
jump) and (b) during the decay of FDs following a voltage jump
from the indicated U2 values (above threshold) to the below-
threshold value of U1 ¼ 18 V (time is counted from the instant
t ¼ tdown of the voltage jump).

TABLE I. Characteristic times and q�2 of FDs vs the above-
threshold voltage (U2) at steplike driving with U1 ¼ 18 V and
τ0 ¼ 100 s. τ�d is the expected decay time when taking into
account its dependence on q�2.

U2 (V) τgrowth (s) τdecay (s) τon (s) τoff (s) q�2 τ�d (s)

22 0.384 0.095 1.326 0.225 4.84 0.095
26 0.086 0.054 0.316 0.122 7.84 0.059
30 0.047 0.027 0.287 0.062 12.25 0.038

FIG. 9. Temporal evolution of the spectral entropy S when
driven by a steplike waveform of Fig. 5 with U2 ¼ 26 V,
U1 ¼ 18 V, and τ1 ¼ τ2 ¼ τ0=2 ¼ 50 s. The left side corre-
sponds to the voltage increase, the right side to the voltage
decrease. Vertical dashed lines indicate the moments of voltage
jumps.
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FDs leads to a reduction of S, which increases back to its
initial value in the homogeneous, pattern-free state during
the decay of FDs. Thus, the temporal evolution of SðtÞ is
just the opposite of that of the pattern contrast CðtÞ.

2. Case 2: U2 > U1 > Uth

Under this condition, the BCN system switches
alternately between two FD states. Namely, FD2 with
wavelength Λ2 is present during the time interval τ1 (while
U ¼ U2), which transforms back to FD1 with wavelength
Λ1 for the interval τ2 (while U ¼ U1), and vice versa.
While the wavelength varies, the orientation of the FD
stripes remains the same during the transition process.
As both the FD1 and the FD2 states are patterned (none

of them have a homogeneous director field), the mechanism
of the transitions between these FD states differs consid-
erably from the growth and decay processes described in
Sec. III C 1, as we will prove below.
The characteristic features of the transition are demon-

strated via evaluation of the image sequences recorded
using a driving signal as in Fig. 5, characterized by
U1 ¼ 25 V, U2 ¼ 35 V, and τ1 ¼ τ2 ¼ τ0=2 ¼ 50 s.
This low switching rate is selected so that it ensures
reaching (or at least closely approaching) the final
equilibrium states by the end of the intervals τ1 and τ2.
Figures 10, 11, and 12 depict the temporal evolution of

the averaged dimensionless wave number q�av, the pattern
contrast C, and the spectral entropy S, respectively, during
the transition process following the voltage jumps.
We note first that, unsurprisingly, the transitions (the

change of Λ from Λ1 ≈ 4.6 μm to Λ2 ≈ 3.0 μm and vice
versa) are not instantaneous. Though the pattern contrast
changes immediately after tup or tdown, as opposed to the
behavior found in Figs. 8 and 9 for the growth from or
decay to the homogeneous state, the CðtÞ curves in Fig. 11,

as well as the SðtÞ curves in Fig. 12, are nonmonotonic.
Thus, in order to estimate the switching times of the
FD1 → FD2 transition, we should refer to the monotonic
temporal variation of q�avðtÞ in Fig. 10. It is obvious from
the figure that q�av has not yet reached its final (equilibrium)
value by the end of the presented interval of 7 s. It is also
clear that the wave-number adjustment related to the
upward voltage jump is much slower than that character-
izing the downward voltage jump. Moreover, the switching
times (on the order of seconds) are longer than those shown
in Table I, which is characteristic for the pattern growth
from or decay to the homogeneous state.
Let us now focus on the mechanism of the switching

between two FD states, which is illustrated via some
representative snapshots of the FDs in Figs. 13 and 14.

FIG. 10. Temporal evolution of the averaged dimensionless
wave number q�av when driven by a steplike waveform of Fig. 5,
with U1 ¼ 25 V, U2 ¼ 35 V, and τ1 ¼ τ2 ¼ τ0=2 ¼ 50 s. The
left side is at voltage increase, the right side is at voltage decrease.
Vertical dashed lines indicate the moments of voltage jumps.

FIG. 11. Temporal evolution of the contrast C when driven by a
steplike waveform of Fig. 5 with U1 ¼ 25 V, U2 ¼ 35 V, and
τ1 ¼ τ2 ¼ τ0=2 ¼ 50 s. The left side is at voltage increase, the
right side is at voltage decrease. Vertical dashed lines indicate the
moments of voltage jumps.

FIG. 12. Temporal evolution of the entropy S when driven by a
steplike waveform of Fig. 5 with U1 ¼ 25 V, U2 ¼ 35 V, and
τ1 ¼ τ2 ¼ τ0=2 ¼ 50 s. The left side is at voltage increase, the
right side is at voltage decrease. Vertical dashed lines indicate the
moments of voltage jumps.
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Based on these images and on the contrast curves of
Fig. 11, the process of switching can be subdivided into two
intervals.
The first is a short interval of about 0.5 s, immediately

following the upward or downward voltage jumps, when a
sudden change (increase or decrease, respectively) of the
contrast and thus of the pattern amplitude is detected,
without a substantial change of the wavelength. This
amplitude change temporarily yields a higher (lower)

pattern order, which is also manifested in the drop (incre-
ment) of the spectral entropy of Fig. 12.
The second is the interval, when the actual adjustment of

q occurs. Here, defects (dislocations) appear in pairs of
opposite topological charge, which then move along the
stripes in opposite directions until they reach the edge of the
sample or annihilate with a defect of opposite topological
charge, originating from another pair. This indicates that
the pattern cannot tune its wavelength by continuously
shrinking (or dilating) the width of the FD stripes; rather,
the adjustment ofΛ occurs via the generation and motion of
defects. This mechanism is the same as the one reported
for and investigated in detail in other stripe patterns (e.g.,
electroconvection) [41,42].
The presence of defects introduces disorder to the

system, yielding an increase of the spectral entropy to a
maximum value before relaxing to the equilibrium FD2

state. As the defect creation and motion is driven by the
wave-vector mismatch (the difference between the actual
and the equilibrium q values), the growth phase (≲3 s) of S
is much faster than the following relaxation (≫ 10 s). Note,
however, that if U2 ≫ Uth fulfills, FD2 contains defects
even in equilibrium, thus degrading the regularity of the

FIG. 13. Snapshots of the FD pattern (upper row; their size is
100 × 100 μm) and their FFT images (lower row) during the
FD1 → FD2 transition. (a) t ¼ tup, where voltage has just been
increased fromU1 ¼ 25 V toU2 ¼ 35 V. (b) t ¼ tup þ 0.48 s, at
the contrast maximum. (c) t ¼ tup þ 3.73 s, at the maximum of
the entropy. (d) t ¼ tup þ 7.06 s, at the end of recording.

FIG. 14. Snapshots of the FD pattern (upper row; their size is
100 × 100 μm) and their FFT images (lower row) during the
FD2 → FD1 transition. (a) t ¼ tdown ¼ tup þ 50 s, where voltage
has just been decreased from U2 ¼ 35 V to U1 ¼ 25 V. (b) t ¼
tdown þ 0.19 s, at the contrast minimum. (c) t ¼ tdown þ 0.57 s, at
the maximum of the entropy. (d) t ¼ tdown þ 7.08 s, at the end of
recording.

FIG. 15. Profile of the spectral distribution function
Ψ along the qx axis at different time moments following a
voltage jump: (a) from U1 ¼ 25 V to U2 ¼ 35 V, and (b) from
U2 ¼ 35 V to U1 ¼ 25 V.
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pattern. Therefore, the spectral entropy in the FD2 state will
be larger than in the lower-voltage FD1 state, as can be seen
in Fig. 12. The disorder created by the defects is observable
also in the FFT images belonging to the snapshots of
Figs. 13 and 14. While the equilibrium FD states are
characterized by sharp peaks in the Fourier space with the
half-width of the FD2 peak being larger than that of the FD1

one, during the transient process, the Fourier transform is
smeared and extends to a larger q range.
Figures 15(a) and 15(b) depict the profile of the spectral

distribution function Ψ along the qx axis in the Fourier
space, at various time instants following the voltage
jumping up and down, respectively. The figures also clearly
show the delocalization of Ψ for a wide q range during the
switching transient and prove that after upward voltage
jumps more time is needed to reach the new equilibrium
state than at voltage lowering.

IV. DISCUSSION AND CONCLUSIONS

The experimental results reported above point out some
issues (e.g., the behavior of the contrast or the difference
between switching on and off) which are worth further
discussing.
The contrast of the shadowgraph image of the FD pattern

depends on the magnitude of the periodic director dis-
tortions. The latter, as well as the wave number of the FDs,
should be the outcome of a rigorous nonlinear theoretical
analysis, which is not currently available. Even without
that, some qualitative conclusions can be drawn. FDs
correspond to an equilibrium deformation, characterized
by the balance of the destabilizing flexoelectric and the
stabilizing elastic and dielectric torques. Their existence
proves that, in a certain voltage range, the reduction of the
free energy of the deformed state due to the flexoelectric
contribution overcomes the increments due to the elastic
and dielectric terms. Increasing the voltage increments the
flexoelectric torque, which thus has to be compensated for
by higher stabilizing torques. The latter may be reached
either by an increase of the pattern amplitude (the director
deviation angle), a reduction of the wavelength (an increase
of the director gradients), or a combination thereof.
The measurements clearly show the substantial dep-

endence of the wavelength on the applied voltage [see
Figs. 3(a), 10, 13, and 14]. Because of that, the new torque
balance at a higher voltage can be reached by a moderate
increase of the pattern amplitude, resulting in some increase
of the pattern contrast. By contrast, in the initial phase of the
switching transient when the wavelength is still unaltered,
the torque increase due to the upward voltage jump should
be fully compensated for by the change of the pattern
amplitude only. This is the reason for the sudden jump in the
contrast of the pattern in Fig. 11. As the wavelength starts to
adjust itself to the shorter final value, the pattern amplitude
relaxes to a much lower level. Similarly, after a downward
voltage jump, the balancewith a reduced flexoelectric torque

can be reached by a much lower pattern amplitude (where
the pattern almost disappears), as is indicated in Fig. 11 by
the sudden drop of the contrast. Again, as the wavelength
adjustment starts operating, the pattern amplitude—and thus
the contrast—relaxes, now to a higher value due to wave-
length lengthening.
A remarkable feature of FD dynamics is that the

response to voltage decrement is much faster than that
upon voltage increment. At first glance, this finding seems
to be counterintuitive, as it is a common experience
with LCDs that the switch-on times can be substantially
reduced by increasing the voltage. A closer look at the
equations shows, however, that this acceleration of the
switching occurs only at high enough voltage, but it does
not work at a voltage close to the threshold. This can
be easily demonstrated in the simple case of the twist
Fréedericksz transition (FT), where analytical expressions
for the switching-on (τon) and the switching-off (τoff ) time
constants are available [2,43,44]:

τoff ¼
γ1π

2

K2d2
; τon ¼ τoff

1

ð U
UF
Þ2 − 1

: ð9Þ

Here, γ1 is the rotational viscosity, K2 is the twist elastic
constant andUF is the twist Fréedericksz threshold voltage.
It is seen from Eq. (9) that, indeed, τon ≪ τoff for U ≫ UF;
however, τon diverges as U → UF. As a consequence, for
U < 1.4UF, one finds τon > τoff .
For flexodomains, switching on is a field-driven process,

while switching off is an elastic relaxation, just as in the FT.
Therefore, similar tendencies are expected for FDs as for
the FT: acceleration at high voltage, but slowing down near
the threshold. The U=Uth ratio used during the measure-
ments in Fig. 6 is about 1.14; i.e., being much below the
value calculated above, the τon > τoff relation should not be
surprising. Nevertheless, the dynamics of the FDs is a much
more complex phenomenon than that of the twist
Fréedericksz transition (e.g., the linear flexoelectric inter-
action is also involved) and, unfortunately, no analytical
solutions have yet been derived for its time scale(s).
Therefore, it is still unclear how this complexity affects
the temporal behavior.
The linear voltage dependence of the wave number

[Eq. (5)] offers a possibility for the creation of optical
gratings, tunable or switchable by a dc voltage. We have
shown that switching between two FD states of different
wavelength has a different mechanism compared to the
switching between a FD and the homogeneous initial state.
The transition necessarily involves the creation and motion
of dislocations, which considerably slows the response.
Therefore, if repetitive switching between FD states is
required, the switching frequency has to be fairly low.
During the measurements, an ultralow frequency of f ¼
10 mHz (τ0 ¼ 100 s) is used, which ensures switching
between (quasi)equilibrium final FD states.
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If the repetition rate is too large (i.e., if τ0 is not long
enough), the transition process cannot complete
adequately; the system will not reach the final FD1 or
FD2 equilibrium states; instead, it will switch between
intermediate, nonequilibrium states. These intermediate
states are characterized by a nonsaturated average wave
vector [Eq. (4)] and a reduced order of the resulting
pattern (a large number of defects), which depends on
the magnitude of τ0.
In the end, it is worth mentioning the potential of FDs in

applications by their capability of wavelength tuning. FDs
as tunable optical gratings may be used for laser scanning
and beam steering (e.g., in microscopy or in LIDAR
applications). Compared to current solutions like piezo-
electric scanning mirrors or acousto-optical deflectors, a
FD-based device is simple: it has no moving mechanical
parts and no requirements of special driving. Its operating
voltage is lower and has convenient linear characteristics,
and the size of a deflector unit can be made very small. Its
drawback, relatively low diffraction efficiency, can be
improved by tuning the material parameters: towards
higher birefringence or via doping by dichroic dyes.
Based on our current experimental results shown in
Fig. 3(a), a beam-steering device can be constructed whose
light deflection (first-order diffracted light with an illumi-
nation wavelength of 0.65 μm) of 0°–10° can be obtained
with linear dependence in the voltage range of 22–40 V.
The scanning performance can be enhanced by using
polarizers to eliminate the influences of other (zeroth
and second) diffraction orders.

V. SUMMARY

In this paper, we investigate the static and dynamic
characteristics of flexoelectric-effect-driven pattern forma-
tion in a BCN system. We show that the wave number of
the FDs are adjustable linearly in a wide range by a
relatively low dc voltage, offering their application as
tunable optical gratings. The decay time of the gratings
is found to be significantly smaller than the growth time,
which we explain qualitatively in analogy with the dynam-
ics of the Fréedericksz transition. We point out the
importance of the defect generation and annihilation during
the process of wave-number changing, where we find larger
switching times in the case where the initial state is
characterized by a lower wave number. We find that the
phenomena under our scope are worth considering as a
potential alternative of current methods for laser scanning
or beam-steering applications, especially where the small
size, the simplicity, and the low cost of the tunable optical
grating device is important.
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