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Degenerate band-edge (DBE) modes are known for their exceptionally high field intensity at the nearly
flat dispersion-diagram profile. Because of the latter property, resonances supported by these modes are
associated with a very strong field at the band edge. DBE modes and similar resonances of this class have
been typically realized by introducing anisotropic dielectric slabs in volumetric photonic crystals. By
contrast, in this paper, we present an analytic model of DBE modes using a simple set of nonidentical
coupled transmission lines. The unequal phase velocities of the supported waves supported by these
transmission lines lead to mode degeneracy, that in turn provide quartic solutions of dispersion (ω-β)
relations. The DBE mode appears as one these quartic solutions. As such, the proposed model generalizes
the concept of DBE modes using the construct of nonidentical coupled transmission lines. In this paper, we
also propose a propagation medium using a dual pair of nonidentical transmission lines. The medium is
referred to as a “butterfly” structure and is composed of four coupled transmission lines. These four coupled
transmission lines generate the TM01-like degenerate band-edge mode. This is done by coupling the TE
modes supported on each pair of the transmission lines. Mode purity at the resonance frequency and the
intense field profile on the axis are properties that can be exploited for high-power microwave sources.

DOI: 10.1103/PhysRevApplied.7.064030

I. INTRODUCTION

Periodic and/or metamaterial structures are routinely
used to control propagation characteristics of electromag-
netic waves. They have been successfully used in numerous
applications, including antenna arrays [1], leaky-wave
antennas [2], electromagnetic band-gap structures [3],
artificial magnetic conductors [4], frequency selective
surfaces [5], and slow-wave realization [6–8]. Depending
on the unit elements used in periodic layers, different
properties of electromagnetic-wave propagation are
achieved. For example, (i) using split rings and copper
strips in a two-dimensional periodic array, a negative index
of refraction is achieved [9]; (ii) periodically spaced
antenna elements provide arbitrary beam forming for
multipath signal reception and target tracking [10,11];
(iii) a two-dimensional textured lattice of resonant elements
in a metal sheet forms a high impedance surface, preventing
certain frequencies from propagation [4]. However, the
simplest form of periodic structures is periodic dielectric
stacks that have been traditionally used to achieve electro-
magnetic band gaps [12]. In this paper, we focus on the
latter and propose a replacement of those dielectrics using
coupled transmission lines.

Periodic stacks of dielectrics are often referred to as
photonic crystals, as in Fig. 1(a). These crystals support
band gaps in their dispersion diagrams caused by the
coupling of forward and backward waves. The actual
dispersion curve can be of the second order with the edge
of the band gap located at the βp ¼ π point, referred to as
the “regular band edge” (RBE) [Fig. 1(a)]. Field intensity is
typically high at the band edge and is proportional to N2

[13], where N is the number of periodic cells in an array.
When anisotropic dielectric layers are used to form unit

cells of the stack, additional resonances can be supported
[7,14,15]. The dispersion diagram for these cases can be up
to the fourth order and the edge of the band is usually
referred to as the degenerate band edge (DBE) [15,16].
Because of this fourth-order ω-β relation, the field intensity
at the band edge is proportional to N4 [13,15], where N is
the number of periodic cells in an array. That is, a huge field
enhancement is associated with this resonance realized by
these special DBE crystals [13,15]. This property has
been exploited in the past to improve the directivity of
dipole antennas [17]. The insertion of a magnetic layer into
the unit cell can generate magnetic photonic crystal
modes [8,18]. These modes are especially useful to
achieve frequency-independent scanning of leaky-wave
antennas [2].
Despite their attractive properties and applications, DBE

crystals lack simplicity in realization. These crystals are
usually formed of bulk dielectric slabs and require large
space. Because of this, the DBE crystals are difficult to
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conform into certain applications, e.g., electronic chips,
planner antennas, waveguides, etc., where space is limited.
Therefore, alternate approaches to realizing such media are
of interest. As shown in Refs. [13,19,20], the physics of
DBE and MPC modes are associated with anisotropic
media and a special mode-coupling mechanism. Already,
as a simpler alternative, Locker et al. [7] introduced the
concept of coupled transmission lines (TLs) to emulate
photonic crystals. As shown by Locker et al. [7], coupled
and uncoupled sections of meandered microstrip lines
emulate the required anisotropy for the realization of
DBE modes. This approach has also been used to realize
miniaturized antennas [6] and to achieve frequency-
independent beam scanning [2] in leaky-wave antennas.
Although the concept of coupled TLs has been success-

fully used [21] in various applications, its potential has yet
to be exploited. For example, DBE modes have yet to be
realized inside waveguide structures. Recently, Othman
et al. [22] proposed a medium formed by misaligned
elliptic irises that demonstrates DBE modes inside circular
waveguides. These modes can be useful to amplify the rf
wave that interacts with an electron beam [23] in traveling-
wave tubes and/or backward-wave oscillators (BWOs).
Typically, the electronic efficiency of traveling-wave tubes
and BWOs is low and dependent on the axial field intensity
of the waveguide modes. Therefore, the introduction of
alternative modes within the waveguide that support a
strong axial electric field at the center can improve beam-
to-rf mode interactions. However, the elliptic irises [22] do
not support pure TM01 modes, an essential property for
efficient beam-wave interactions. Even though the DBE
mode is demonstrated in dispersion diagrams [22], the
physics of mode coupling in the presence of the natural TE

and TM modes inside has not been explained. To do so, a
generalized approach of the mode-coupling mechanism is
introduced in this paper.
We present a generalized method of mode coupling

using nonidentical coupled transmission lines to realize
fourth-order dispersion diagrams (DBE modes). In pre-
vious papers [7,8], only a single pair of coupled TLs was
considered and the associated coupled modes were TEM
types. However, a single pair of nonidentical TLs does not
provide sufficient coupling to support DBE modes due to
the presence of the natural waveguide (TE, TM) modes in
the background. Also, in previous works, the coupling was
not characterized in terms of simple (L, C) parameters.
Further, as noted above, the mode-coupling mechanisms
leading to higher-order dispersion were not explained.
In this paper, we build upon the concept of coupled

transmission lines and proceed to generate higher-order
dispersion curves using a “coupled-mode” technique for
dual pairs of nonidentical coupled TLs [Fig. 1(b)]. The key
characteristics of the coupled TLs are the following:
(i) nonidentical TLs; (ii) coupled (L, C) parameters; and
(iii) coupling coefficients, later defined as Kc1; Kc2, and
Kc3. These will be explained in Sec. II. Section III presents
a “butterfly” structure that realizes the nonidentical TLs.
The structure demonstrates DBE modes with a TM01-like
field profile. In Sec. IV, a BWO example will be given as a
sample of vacuum-tube applications using four coupled
transmission lines. It is shown that the field enhancement
due to the DBE mode improves the BWO’s electronic
efficiency. Overall, we believe that the findings and
analysis in this paper will provide a basis for dispersion
engineering pertaining to other applications such as reso-
nator antennas [24], waveguides [25], and cavities [26].

FIG. 1. (a) 1D photonic crystals composed of dielectric stacks (top left); equivalent medium in the form of printed circuits (top right);
ω-β diagram showing regular band-edge resonance (bottom). (b) Dual pair of coupled nonidentical microstrip lines and its equivalent
circuit; DbBE (bottom left) and DBE (bottom right) resonances are supported on these lines.
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II. DISPERSION ENGINEERING USING
DUAL NONIDENTICAL PAIR OF TLs

A. Background

Transmission lines are inherently periodic structures, as
they can be modeled with periodically spaced lumped
elements (L, C) of period p. TLs support both forward and
backward waves. By controlling the (L, C) parameters of
the TLs, slow waves (υ ≪ c) can be realized. Indeed, this
property has been used to enhance the coupling of the
electron beam to rf waves in traveling-wave tubes and
BWO applications. Examples of coupled transmission lines
include double helix [27], ring bar [28,29], and ring loop
[30], etc. For these cases, the TL pair has identical lumped
elements (L, C) and supports the regular band-edge mode
only. This mode is observed at the frequency (ωπ) corre-
sponding to βp ¼ π; 3π; 5π; :… in the dispersion diagram,
where β is the propagation constant and ωπ is the angular
frequency. We remark that regular band-edge resonances
are a consequence of the coupling between the forward and
backward-wave modes [29,31,32].
When the coupled TLs are not identical, viz., composed

of different lumped elements (blue and red) as shown in
Fig. 1(b) (top), the forward and backward waves have
unequal phase and group velocities and give rise to the
double band edge (DbBE) as in Fig. 1(b) (bottom left). The
term “double band” originates from the presence of dual
RBE resonances in the dispersion diagram. Typically,
DbBE resonances are weak in comparison to DBE reso-
nances and are not useful since the field intensity at the
band edge is proportional to N2. The nonidentical nature of
the TLs induces weak coupling between two RBE reso-
nances, creating a crest in between them [Fig. 1(b)]. The
latter affects the electric field intensity at the band edge.
The coupling strength between these two RBE resonances
is completely dependent on the type of mode involved, i.e.,
the field profiles of each mode.
In contrast, DBE modes are quite strong due to their

degeneracy at the band edge. The coupling strength
between the TLs, if chosen appropriately by modifying
the geometry of rf structure, furnishes an appropriate
coupling environment required for DbBE modes to evolve
into DBE modes [Fig. 1(b), bottom right]. Therefore, DBE
resonance can be achieved if the lumped parameters of the
nonidentical coupled TLs are chosen appropriately. Unlike
DbBE resonances, four modes are strongly coupled
together to form DBE resonances. Because of this, field
intensity at the band edge is a couple of degrees higher as
compared to RBE or DbBE resonances. Actually, more
than second-order dispersion can be achieved using a pair
of nonidentical coupled TLs. Depending on the modes
involved in the coupling process and lumped (L, C)
elements, DbBE or DBE modes can be achieved. Below,
we provide a theoretical analysis for the coupled TLs to
generate higher-order dispersion curves.

B. Theoretical analysis

The presented analysis follows the coupled-mode theory
[31,33]. For any continuously coupled system, the coupled-
mode propagation constants are functions of the propaga-
tion constants of each uncoupled mode [31]. For detailed
information about the continuous coupling in periodic
systems and the associated propagation constants, please
refer to the derivation in the Supplemental Material [34].
Since coupled TLs comprise periodically spaced lumped
coupling elements (LM, CM), the analogy of the continu-
ously coupled system can be translated to the coupled
transmission-line systems. Accordingly, the coupled pair of
TLs are associated with the propagation constants [31]:

β� ¼ βm þ βn
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
βm − βn

2

�
2

− K2
c

s
: ð1Þ

Here, βm ¼ ω
ffiffiffiffiffiffiffi
LC

p
, βn ¼ ð2π=pÞ − ω

ffiffiffiffiffiffiffi
LC

p
, the uncoupled

propagation constants of each line being coupled and β�
refer to the forward and backward modes for the coupled
TL system. Also, the coefficient Kc represents the coupling
between the βmn modes. We remark that Eq. (1) is the
building block of our analysis. Specifically, by choosing
appropriate modes to replace the (βm, βn) pair, fourth-order
dispersion curves can be generated.
To begin, let us consider two uncoupled TLs associated

with different lumped inductances and capacitances
(L1, C1) and (L2, C2). These lines are depicted in blue and
red in Figs. 2(a) and 2(b). Each TL supports forward
and backward waves associated with unequal velocities
υ1 ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffi

L1C1

p Þ ≠ ð1= ffiffiffiffiffiffiffiffiffiffiffi
L2C2

p Þ ¼ υ2. The propagating
constants of these four waves are

βa ¼ ω
ffiffiffiffiffiffiffiffiffiffiffi
L1C1

p
¼ ω

υ1
; ð2Þ

βb ¼
2π

p
− ω

ffiffiffiffiffiffiffiffiffiffiffi
L1C1

p
¼ 2π

p
−
ω

υ1
; ð3Þ

βc ¼ ω
ffiffiffiffiffiffiffiffiffiffiffi
L2C2

p
¼ ω

υ2
; ð4Þ

βd ¼
2π

p
− ω

ffiffiffiffiffiffiffiffiffiffiffi
L2C2

p
¼ 2π

p
−
ω

υ2
: ð5Þ

Each of the above β’s gives rise to the linear dispersion
curves (2)–(5) in Fig. 2(c). Notably, unlike identical TLs,
each line supports nonoverlapping forward-wave and
backward-wave modes represented by solid and dashed
lines, respectively. We denote the forward-wave propaga-
tion constants as βa (solid blue line) and βc (solid red line).
Similarly, βb (dashed blue line) and βd (dashed red line)
represent the backward-wave propagation constants.
When the TLs are coupled, they couple through the

forward and backward mode pairs. This gives rise to
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second-order dispersion curves as in Fig. 2(d). Specifically,
the coupling between forward and backward mode
pairs, e.g., βaðωÞ, βdðωÞ and βbðωÞ, βcðωÞ gives rise to
second-order dispersion curves. The associated propaga-
tion constants are given by

βu ¼
π

p
−
ω

2

�
1

υ2
−

1

υ1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
π
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2

�
1
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þ 1
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��
2
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ð6Þ
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βx ¼
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It is noted that Eqs. (6)–(9) represent second-order
dispersion curves and are associated with regular band-
edge resonances at βp ¼ 2 (rad) and βp ¼ 4.3 (rad),
respectively. Their associated dispersion curves are given
in Fig. 2(d).

1
2

3

21 3

Coupling

-

Nonidentical TLs

(a) (b)

(c) (d)

FIG. 2. (a) A pair of coupled nonidentical TLs to realize DbBE and DBE modes. Two oppositely traveling waves with unequal phase
velocities couple through mutual inductance LM and capacitance CM. (b) Pair of uncoupled and coupled nonidentical TLs supporting
forward and backward waves whose propagation constants are defined in Eqs. (2)–(9). (c) ω-β dispersion diagram of the uncoupled TLs
for each of the supported modes given in Eqs. (2)–(5). The solid blue line and solid red line represent Eqs. (2) and (4), while the dashed
blue line and dashed red line represent Eqs. (3) and (5). (d) Regular band-edge resonances realized by the nonidentical coupled TLs are
found due to unequal velocities (υ1, υ2), Eqs. (6)–(9). These curves refer to circuit parameters ðL1; C1Þ≡ ð16.17 μH, 68.8 pF) and
ðL2; C2Þ≡ ð6.5 μH, 27.52 pF).
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To characterize and observe higher-order coupling, we introduce a coupling parameter Kc3. This quantity represents
coupling between βv and βw. Since βv and βw have the same phase velocity at the π point, these pairs couple further inside
the waveguide and form fourth-order dispersion curves.
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The corresponding propagation constants β2 and β3 are of
fourth order and can be derived using the process described
in Ref. [31].
When Eqs. (10)–(13) are plotted in Fig. 3, DbBE and

DBE modes are observed subject to appropriate choices for
Kc1; Kc2, and Kc3. That is, Kc3 is important in realizing
higher-order dispersion curves.
Above, Kc1, Kc2, and Kc3 signify different mode-

formation mechanisms. It is noted that these parameters
are strongly dependent on geometric features and mode
profile. For example, the parameters Kc1 and Kc2 represent
natural coupling between the forward and backward modes

of two nonidentical TLs. Each of the forward-wave and
backward-wave velocities can be nonidentical to each other
and the degree of coupling is strongly dependent on their
field profile.
On the contrary, Kc3 represents the coupling between

two RBE resonances of two different modes. Therefore, the
derivation of Kc3 is a cumbersome process and is beyond
the scope of this paper. Indeed, a numerical approach can
be employed to compute Kc3.
We note that special choices for Kc1, Kc2, and Kc3 lead

to the realization of DbBE [Fig. 3(a)] and DBE modes
[Fig. 3(b)]. For example, a strong flattop fourth-order
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FIG. 3. ω-β diagrams associated with coupled pairs of TLs. The (L, C) parameters of the coupled TLs of each pair are ðL1; C1Þ≡
ð16.17 μH; 68.8 pFÞ and ðL2; C2Þ≡ ð6.5 μH; 27.52 pFÞ. (a) DbBE dispersion curves, viz., weak coupling of the dual TL pair. For the
DbBEmode, the coupling parameters areKc1 ¼ Kc2 ¼ Kc3 ¼ 20.85. (b) DBE dispersion curves, viz., strong coupling of the dual TL pair.
These are fourth-order curves and higher-order dispersion condition: ð∂3ω=∂β3Þ ≠ 0, the coupling parameters are
Kc1 ¼ Kc2 ¼ 20.85 ≠ 50 ¼ Kc3.
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resonance (DBE mode) is observed for Kc1 ¼ Kc2 ≠ Kc3
[Fig. 3(b)]. Since the ω-β diagram is a fourth-order
polynomial, i.e., ω ∝ ðβ4Þ, the first, second, and third
derivatives of ω are nonzero at the band edge. This is an
important property that verifies the presence of the DBE
modes in the dispersion diagram. Recently, Othaman et al.
[23] demonstrated that DBE modes can be realized by
imposing angular anisotropy using elliptic irises in the
circular waveguide. In the following section, we present an
example of such DBE mode realization using coupled TLs.

III. REALIZATION OF THE DBE MODE
USING BUTTERFLY GEOMETRY

Above, we proposed a pair of nonidentical TLs to realize
higher-order dispersion curves. However, depending on the
geometry and mode profile, the coupling parameters are
affected and either the DbBE or DBE mode is observed. In
this section, we present an example of rf structure based on
coupled TLs placed inside a waveguide. As already stated,
strong coupling among the nonidentical coupled TLs is
necessary to achieve DBE modes. Othman et al. [22]
demonstrated such a medium by using misaligned elliptic
irises placed on the axis of a circular waveguide.
In this paper, we realize DBE modes using two pairs of

freestanding wire TLs placed orthogonally to each other.
One such structure is demonstrated in Fig. 4(a). The
associated structure is formed by a butterfly unit cell.
This unit cell is composed of two nonidentical pairs of TLs
represented by elliptic wires and bars, marked as blue and
red in Fig. 4(b). Notably, the four TLs are placed circularly
among a set of rings. These rings serve to realize coupling

among the four TLs. Each pair of TLs (blue or red) are in
essence curved ring-bars [29]. The coefficients, Kc1 and
Kc2 represent the coupling between oppositely traveling
modes for the TL pairs. They are given as follows [29]:

Kc1 ¼
ð1þ πha

4a Þ
E1ðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βaβd

jβa − βdj

s
; ð14aÞ

Kc2 ¼
ð1þ πhb

4a Þ
E2ðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βbβc

jβb − βcj

s
; ð14bÞ

where E1½m ¼ ðha=hcÞ� ¼
R π=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðm2 − 1Þ sin2ðθÞ

p
dθ

and E2½m ¼ ðhb=hcÞ� ¼
R π=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðm2 − 1Þ sin2ðθÞ

p
dθ is

the elliptic integral of the second kind.
In Fig. 4(a), the coupling rings are marked with a green

color and allow control of mutual inductances and capac-
itances between the TL pairs. It is noted that each identical
pair (blue or red) in Fig. 4 serves as a single TL component
of the nonidentical TL model as shown in Fig. 2(b). This
coupling mechanism serves to

(i) Provide a medium that support slow waves.
(ii) Lower the cutoff frequency of waveguide modes.
(iii) Facilitate coupling of the lower-order modes to form

a higher-order mode such as the DBE mode.
To illustrate the above mechanism, we refer to Figs. 5(a)

and 5(b). Indeed, the introduction of butterfly geometry
lowered the cutoff frequency of each mode forming slow
waves inside the circular waveguide as shown in Fig. 5(b).
As depicted in Fig. 5(c), the degenerate TE11 mode coupled
to the TE21 mode to form the DBE TM01-like resonance.

FIG. 4. (a) The butterfly slow-wave structure placed within a circular waveguide for realizing DBE modes. The unit cell is shown
below the circular waveguide. Each of the four TLs is formed of a series of elliptical loops. Also, a ring at the center of the TLs serves to
achieve coupling among the TLs. The dimensions of the elliptical and circular rings are ha ¼ 50.8 mm, hb ¼ 36.4 mm, hc ¼ 7.4 mm,
p ¼ 22 mm, rb ¼ ring radius ¼ 4.5 mm, rg ¼ waveguide radius ¼ 63.5 mm. Notably, the unequal pairs in different planes emulate
nonidentical coupled TLs. (b) Butterfly geometry and its equivalent TL structure.

ZUBORAJ, SERTEL, and VOLAKIS PHYS. REV. APPLIED 7, 064030 (2017)

064030-6



We remark that coupling is achieved via the mutual Hz
fields supported by the TE11 and TE21 modes. It is noted
that unlike DBE crystals, no band gap is observed in
dispersion diagrams. This is due to the presence of other
higher-order waveguide modes in the waveguide which are
not affected by the geometry. One key property of the
butterfly geometry is its strong Ez field that leads to a
strong TM01-like mode at the DBE resonance. As shown in
Fig. 5(d), the strong and uniform Ez provides mode purity
as compared to the elliptic iris-loaded waveguide [22]. In
fact, the Ez field at the center (r ¼ 0), is approximately 300
times stronger than that of the elliptical iris-loaded wave-
guide as shown in Fig. 6(a). Therefore, the purity of the
mode supported by the strong DBE resonance is suitable

for vacuum-tube devices where the strong Ez field is
required. The provided field profiles are obtained from
CST Microwave Studio [35]. The detailed dispersion dia-
gram for the DBE mode of butterfly structure is obtained
via full-wave simulation using the Ansoft High Frequency
Simulation Software (HFSS) package, 2015 [36]. It is also
verified using the Computer Simulation Technology (CST)
Microwave Studio [35]. It is shown in Fig. 6(b). The
resonant frequency of the DBE TM01-like mode is
observed at approximately ωd ¼ 3.52 GHz.
The above geometry utilizes the property of curved ring-

bar unit cells, known for supporting the TM01 mode. For
the other geometry, the mode profile defines the ðL;CÞ
parameters. The challenge is to model each mode to its
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FIG. 5. Comparison of the dispersion diagrams with (a) and without (b) the butterfly periodic geometry inside the circular waveguide.
As seen, the introduction of the butterfly TL structure lowers the cutoff frequency of each mode by splitting the TE11 degenerate modes.
(c) Illustration of coupling to form the DBE TM01 mode by coupling of TE21 and TE11 degenerate modes is shown. The field profiles are
magnitudes of the overall field amplitude with E normalized to 0.1 V=m. (d) (top) Overall electric field magnitude, E and Ez field
magnitude (bottom) in the XY plane at the DBE resonance of the butterfly geometry and elliptical iris-loaded waveguide [22]. The units
are in decibels (1 mV=m) [35].
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transmission-line equivalents and find the appropriate
coupling parameters: Kc1, Kc2, and Kc3. Hence, the above
approach forms a mathematical tool for all.

IV. BWO DESIGN USING BUTTERFLY
STRUCTURE

DBE modes have been used before to miniaturize
dielectric resonator antennas by lowering their resonance
frequencies [6]. They have also been demonstrated to
enhance the directivity of the horn antenna due to their
strong resonance [37]. However, they have never been used
before in high-power microwave sources, e.g., traveling
wave tubes or BWOs. These sources typically require
“mode purity” and an intense axial field at the center.
Previously, DBE crystals [17] or rf structures [22] sup-
ported the strong resonant field. Yet, they lacked mode

purity and supported hybrid modes, inapt for such appli-
cations. Since we have demonstrated that TM01-DBE
modes with mode purity can be achieved using coupled
TL-based butterfly geometry, there is a strong potential for
DBE mode-based tube applications. That is, the DBE mode
can be useful for the electron-beam–rf-wave interaction for
vacuum tubes. However, since DBE modes are associated
with a narrow bandwidth, BWOs or klystrons are more
appropriate applications for this. In this paper, we focus on
BWO only. BWOs are active devices designed to oscillate
in single frequency depending on the electron beam energy
passing through it. The space-charge field of the beam
couples to the backwardly propagating wave, creating a
feedback path for rf energy and oscillation is established.
The oscillation frequency depends on the matching of the
velocity of the beam and the phase velocity of the backward
wave. Typically, it is the intersecting point of the beam line
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FIG. 6. (a) A comparison of the Ez field along the axis of butterfly geometry and the elliptical iris-loaded waveguide. As shown,
butterfly geometry providesEz approximately 300 times larger compared to elliptic irises [22]. (b)ω-β diagram of the butterfly structure.
The DBE mode is depicted along with its field profile. The DBE resonance is observed at ωd=2π ¼ 3.52 GHz.
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FIG. 7. (a) ω-β diagram of the first 20 modes of the butterfly slow-wave structure using HFSS [36]. A 52-kV, 4-A beam line is drawn to
show the resonant point (intersecting point of the straight line and DBE mode) where beam-wave interaction takes place in a simple
butterfly BWO design. (b) Demonstration of beam-wave interaction in a BWO loaded with butterfly slow-wave structure simulated
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and ω-β diagram of the slow-wave structure. As seen in
Fig. 7(a),ω-β diagrams of the first 20 modes of the butterfly
slow-wave structure is given along with the 52-kV beam
line. The beam will interact with all modes that have the Ez
field at the center. To illustrate the BWO interaction with
the DBE mode, a BWO design is simulated using the
computer simulation software (CST) particle-in-cell (PIC)
[38] code. The BWO draws 4-A current from a circular
cathode biased at 52 kV. The tube is 16 cm long and
generates 68 kW power at 3.34 GHz with 33% electronic
efficiency. The butterfly slow-wave structure is placed at
the center of the waveguide as shown in Fig. 7(b). The
bunching of electrons verifies the beam-wave interaction
[Fig. 7(b)]. Typically, the homogenous section BWOs are
associated with nominal electronic efficiency of 15%–20%
[39,40]. Hence, a 13%–18% efficiency improvement is
observed by introducing the DBE mode in the BWO using
the butterfly geometry.

V. CONCLUSION

We implement a class of TLs that can generate DbBE
and DBE modes. It is demonstrated that a dual pair of
nonidentical TLs can generate higher-order dispersion
curves, especially DBE modes. Fourth-order dispersion
equations are derived using the coupled-mode analysis for
the nonidentical pair of coupled TLs. Further, it is shown
that the order of the dispersion curves is dependent on the
choice of coupling parameters, Kc1, Kc2, and Kc3 and
dispersion can be controlled by them. An alternate
approach of DBE-mode realization inside circular wave-
guides is demonstrated via butterfly geometry, a design
based on four coupled TLs. This geometry provides an
approximately 300× stronger Ez field on the axis compared
to elliptic irises. The presence of the DBE mode verifies the
coupled TLs as an effective alternative of bulk photonic
crystals. The same concept can be extended further to
design couplers, filters, printed circuits, and to engineer a
new class of vacuum tubes and BWOs. An example of
BWO design is presented to verify the beam-wave inter-
action with the DBE TM01-like mode. The BWO demon-
strates efficiency improvement by 13%–18% compared to
nominal BWOs. This theory and example are expected to
serve as tools to engineer dispersion curves for more
practical applications.
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