
Background-Force Compensation in Dynamic Atomic Force Microscopy

Riccardo Borgani,1,* Per-Anders Thorén,1 Daniel Forchheimer,1 Illia Dobryden,2 Si Mohamed Sah,1

Per Martin Claesson,2 and David B. Haviland1
1Nanostructure Physics, KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden

2Surface and Corrosion Science, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
(Received 16 December 2016; revised manuscript received 17 March 2017; published 13 June 2017)

Background forces are linear long-range interactions of the cantilever body with its surroundings that
must be compensated for in order to reveal tip-surface force, the quantity of interest for determining
material properties in atomic force microscopy. We provide a mathematical derivation of a method to
compensate for background forces, apply it to experimental data, and discuss how to include background
forces in simulation. Our method, based on linear-response theory in the frequency domain, provides a
general way of measuring and compensating for any background force and it can be readily applied to
different force reconstruction methods in dynamic AFM.
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I. INTRODUCTION

Accurate and reproducible measurement of material
properties at the nanoscale is the main goal of dynamic
atomic force microscopy (AFM). Extraction of material
properties from the measurable quantities in dynamic AFM
requires a deep understanding of both the tip-surface
interaction and the dynamics of the AFM cantilever when
it is close to the sample surface. We propose a method that
uses Fourier analysis to measure and compensate for
background forces, which are long range and not local
to the AFM tip. These interactions produce artifacts in the
measurement of tip-surface force, leading to overestimation
of its attractive and dissipative components.
Background forces are observed when measuring the

quality factor of a cantilever resonance which decreases
when the tip-sample distance becomes comparable to the
cantilever width, dropping as much as 30% at the scanning
position (Fig. 1). This phenomenon has been attributed to
an additional squeeze-film damping force [1–3], arising
when the fluid surrounding the cantilever is squeezed
between the cantilever body and the sample surface. We
also observe a slight decrease in the resonance frequency
f0, due to increased hydrodynamic load.
Other long-range forces appearing at tip-sample

distances of a few micrometers have been attributed to
electrostatic contributions [4]. We have also observed in
different commercial AFM systems, a dependence of the
cantilever’s acoustic excitation on the z extension of the

piezoelectric scanner, resulting in a change of the drive
force which can be mistaken as a long-range interaction.
The coupling between the cantilever and the acoustic
actuator could in principle also be affected by the increased
hydrodynamic load, causing the effective drive power to
change as a function of the tip-sample distance.
Whatever their origin, be it hydrodynamic, electrostatic,

or AFM design, these effects influence force reconstruction
in dynamic AFM. Previous attempts at compensating for
them have used an effective resonance frequency and
quality factor for the cantilever [5–7], but a general and
accurate description is still lacking. Here, we describe how
to compensate for these effects by treating them as

FIG. 1. Relative change in quality factor Q and resonance
frequency f0 as a function of tip-sample distance over a
homogeneous polydimethylsiloxane surface. The values are
obtained by fitting the thermal-noise power-spectral density,
and plotted as the shift relative to a tip-sample distance of
1 mm. The fitted Q drops by as much as 30%, whereas the
decrease in f0 is 3 orders of magnitude smaller (plotted values of
f0 are multiplied by 100). The cantilever is a MikroMasch
HQ:NSC15/AlBS.
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background forces, assuming that they have the following
properties: they are linear as shown by a lack of inter-
modulation distortion [8]; they act over a long range,
comparable to the cantilever width; and they do not depend
on the xy tip position over the sample surface, as they
originate from the cantilever body rather than being local to
the tip.
We can easily compensate for any such background force

to reveal the true tip-surface interaction, using linear-
response theory in the frequency domain. Because of its
generality and ease of implementation, we expect our
method to be readily applied to a variety of force
reconstruction methods essential for AFM researchers.

II. GENERIC LINEAR MODEL

When an AFM cantilever is far away from the sample
surface, its fundamental flexural mode is well modeled as a
linear system. The frequency-dependent linear-response
function χ̂ðωÞ relates the frequency components of any
force F̂ðωÞ to the resulting frequency components of the
cantilever deflection d̂ðωÞ:

d̂ðωÞ ¼ χ̂ðωÞF̂ðωÞ: ð1Þ

In our notation d̂ðωÞ denotes a complex valued function of
the real variable ω, the frequency. In particular, d̂ðωÞ is the
Fourier transform of dðtÞ. In the following, we will drop
the explicit ω dependence for the sake of compact
notation.
When the frequency components of d̂ are concentrated

around the cantilever resonance frequency, χ̂ can be well
modeled as a dampened simple harmonic oscillator:

χ̂−1 ¼ k

�
1 −

ω2

ω2
0

þ i
ω

Qω0

�
: ð2Þ

The parameters k, ω0, and Q are the mode stiffness,
resonance frequency, and quality factor, respectively.
These parameters, together with the optical-lever respon-
sivity, can be obtained by a noninvasive calibration pro-
cedure traceable to the measurement of the thermal
fluctuations of the cantilever deflection when it is far from
the surface [9,10].
The drive force with multiple frequency components F̂D

is applied to the cantilever by means of a shaker piezo-
electric actuator in the case of acoustic excitation, or a
pulsed laser beam in the case of photothermal excitation.
Regardless of the means of excitation, the drive force is
determined by measuring the cantilever motion far away
from the surface (larger than 100 μm) at what we call the
“free” position [Fig. 2(a)]. Thus, we extract the driving
force from a measurement of the cantilever free motion d̂free
and the calibrated linear-response function χ̂

F̂D ¼ χ̂−1d̂free: ð3Þ
As the AFM probe approaches the sample surface,

background forces begin to affect the cantilever body when
its separation from the surface becomes comparable to its
width, as shown in Fig. 1. Background forces change the
cantilever motion [compare insets of Figs. 2(a) and 2(b)],
but they are clearly linear, as seen from the lack of
intermodulation [8] in the spectrum of Fig. 2(b).
When the AFM tip starts interacting with the surface at

what we call the “engaged” position [Fig. 2(c)], the
measured motion is affected by all the forces at play

d̂eng ¼ χ̂ðF̂D þ F̂BG þ F̂TSÞ; ð4Þ

where F̂TS is the nonlinear tip-surface force, carrying all the
information about the material properties, and F̂BG are
the background forces. We can use Eq. (3) to account for
the drive force, but in order to solve for the tip-surface force
we must eliminate the background forces.
Note that, while the components of the drive force F̂D

can be treated as constant, the components of the back-
ground forces F̂BG depend on the motion d̂ which changes
from pixel to pixel. For example, a squeeze-film damping
force will depend on the velocity of the cantilever.
Motivated by experimental observation (the lack of

intermodulation distortion), we treat the problemof a general
linear background force without regard to its particular

(a)

(b)

(c)

FIG. 2. Discrete frequency spectra of cantilever motion mea-
sured near resonance using a two-tone drive. Phase is also
measured at each frequency but only amplitude is shown.
(a) At the free position far away from the sample surface.
(b) At the lift position closer to the surface. (c) At the engaged
position on a polystyrene surface. In (a) and (b) linear forces act
on the cantilever and only noise is measured at the undriven
frequencies. In (c) the nonlinear tip-surface force gives rise to
intermodulation with strong response at undriven frequencies.
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origin, by expressing it in terms of a linear-response
function χ̂BG

F̂BG ¼ χ̂−1BGd̂: ð5Þ

Equation (5) allows for the calculation of F̂BG for any
motion d̂. Our treatment assumes that there exists a linear
differential equation of the cantilever deflection which
describes the background forces. This equation can in
principle be very complicated, e.g., involve fractional
derivatives and have many parameters, but we assume that
it does not change as the probe scans over the sample,
consistent with the idea that the background forces act on
the body of the cantilever.
Lifting the probe slightly away from the surface, we

find that the short-ranged F̂TS goes to zero with an abrupt
drop in intermodulation, while the long-ranged F̂BG is
barely affected. We define the “lift” position as the closest
distance for which the forces acting on the cantilever are
linear (see Sec. III).
At the lift position [Fig. 2(b)], the total force is given by

the drive force F̂D and the linear background forces F̂BG
only. The lift motion is therefore

d̂lift ¼ χ̂F̂D þ χ̂F̂BG: ð6Þ

Solving for F̂BG gives

F̂BG ¼ χ̂−1d̂lift − F̂D: ð7Þ

Combining Eqs. (3), (5), and (7), we determine χ̂BG from
the measured d̂free and d̂lift

χ̂−1BG ¼ χ̂−1
d̂lift − d̂free

d̂lift
: ð8Þ

Going back to the engaged position, we can now com-
pensate for the background forces in Eq. (4) using χ̂BG from
Eq. (8). Thus, we obtain the tip-surface force

F̂TS ¼ χ̂−1d̂eng − F̂D − χ̂−1BGd̂eng: ð9Þ

Equation (9) allows for the compensation of the back-
ground forces, and thus the calculation of the tip-surface
force at every pixel of an AFM image, provided the
knowledge of F̂D and of χ̂BG, both being constant during
the AFM scan.

III. DEFINING THE LIFT POSITION

To accurately determine the linear-response function of
the background forces χ̂BG, we need to measure the
cantilever motion d̂lift as close to the surface as possible
without tip-surface interaction. We use the notion that the
tip-surface force is strongly nonlinear, while the

background forces are linear, as evidenced by the mea-
surements of Figs. 2 and 3.
We apply a multifrequency drive with a number of

discrete components ND at the set of frequencies fωDkg
with ND ≥ 2, i.e., F̂DðωÞ is nonzero for ω ∈ fωDkg. When
the linear forces F̂D and F̂BG act on the cantilever, the
response d̂ðωÞ will be nonzero only at ω ∈ fωDkg [see
Figs. 2(a) and 2(b)]. On the other hand, when the cantilever
is experiencing the nonlinear F̂TS, response will arise at
intermodulation product frequencies ωIMP given by integer
linear combinations of the drive frequencies:

ωIMP ¼
XND

k¼1

nkωDk; nk ∈ Z; ð10Þ

where nk is an integer [see Fig. 2(c)].
We introduce the intermodulation distortion IMD, as the

ratio of the power at undriven frequencies to the power at
driven frequencies:

IMD ¼
P

ωIMP∉fωDkgjd̂ðωIMPÞj2P
ωIMP∈fωDkgjd̂ðωIMPÞj2

: ð11Þ

In principle, we want to measure d̂lift at the minimum
distance from the surface such that IMD ¼ 0. In practice,
however, we will always measure some nonzero noise
power. We therefore choose a threshold (typically 3 dB)
and measure d̂lift at the minimum distance from the surface
such that IMDlift < IMDfree þ threshold.
Figure 3 shows the intermodulation distortion as a

function of amplitude set point measured for drive schemes
with a different number of drive tones ND. As the AFM

FIG. 3. Intermodulation distortion (IMD) for a different number
of drive tones ND is measured as a function of the AFM feedback
amplitude set point. As the AFM probe moves away from the
surface (increasing the set point), IMD gradually decreases until
the probe suddenly breaks free from the tip-surface interaction
FTS and a sharp drop in IMD is observed. The lift motion is
measured at this drop. For all data shown, the total free amplitude
is 50 nm.
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feedback set point increases, a characteristic behavior is
visible showing a gradual decrease of IMD with an
increasing set point, due to the decrease of the nonlinear
tip-surface interaction F̂TS. When the set point reaches a
value of about 90%, a sharp drop in IMD is observed,
indicating a transition from an overall nonlinear force to an
overall linear force. This sharp transition allows for unam-
biguous measurement of d̂lift, from which we calculate the
linear-response function of the background forces χ̂BG.

IV. EXTRAPOLATION TO UNDRIVEN
FREQUENCIES

As discussed in Sec. III, d̂lift and d̂free will be nonzero
only at the drive frequencies. Calculating the linear-
response function of the background forces from Eq. (8)
will, therefore, yield χ̂BGðωÞ only at the drive frequencies
ω ∈ fωDkg. On the other hand, to apply the compensation
to the measured data with Eq. (9) we require the knowledge
of χ̂BGðωÞ at all the frequencies in the spectrum of engaged
motion d̂eng.
To overcome this issue we use the notion of narrow-band

measurement on a resonant system. Because of the high Q
resonance in the cantilever linear-response function, the
motion will be concentrated at frequencies close to the
resonance frequency ω0, within a narrow band Ω

Ω ≈ NIMP
ω0

Q
≪ ω0; ð12Þ

where NIMP is the number of measured frequencies
(typically 32) and ω0=Q is typically chosen as the meas-
urement bandwidth. We perform a polynomial expansion of
the complex function χ̂BGðωÞ in this narrow band:

χ̂−1BGðωÞ ≈
XM
k¼0

ðak þ ibkÞðω − ω0Þk; ð13Þ

where i is the imaginary constant and fakg and fbkg are
sets of real coefficients to be determined. A drive force with
ND frequency components allows for the determination of
up to 2ND coefficients, corresponding to two polynomial
fits of degree M ¼ ND − 1 of the real and imaginary parts
of χ̂BG. It is possible to perform a low-degree fit with
a high number of drives, M < ND − 1, in which case the
coefficients are obtained with a least-square optimization
method.
While a higher-order fit could in principle describe a

more complex χ̂BG, we find that a linear approximation of
each of the two quadratures (four coefficients, requiring
two or more drive frequencies) is sufficient to describe the
background forces. A higher-order fit is not always numeri-
cally stable, and it can introduce artifacts in the compen-
sated data.
Equation (13) is quite general, allowing for a good

approximation to any type of linear background force. A
special case of Eq. (13) is a polynomial with only two
coefficients of the form

χ̂−1BGðωÞ ≈ kðaω2 þ ibωÞ; ð14Þ

where k is the mode stiffness and a and b are fit parameters.
In this case it can be shown that the background forces
result in an effective cantilever with a renormalized linear-
response function χ̂0 of the form of Eq. (2), where the
resonance frequency and quality factor are given by

ω0
0 ¼ ω0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − aω2

0

p ; ð15Þ

Q0 ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − aω2

0

p
1þ bQω0

: ð16Þ

This special case is often assumed when analyzing forces
in dynamic AFM [5–7].

V. EXPERIMENTAL RESULTS

We have shown how to mathematically treat the problem
of compensating for arbitrary linear background forces, and
we proposed a simple method to obtain their response
function. We now show an application of this method on
soft material surfaces where background forces are typi-
cally rather large.
Figure 4 shows dynamic force quadratures [11] on two

areas of a polystyrene low-density polyethylene polymer
blend (Bruker). FI is the force in phase with the cantilever
motion integrated over one oscillation cycle, representing
the conservative forces experienced by the cantilever at
different oscillation amplitudes. FQ is the force quadrature
to the cantilever motion integrated over one oscillation
cycle, showing the dissipative interaction of the cantilever
with its environment and with the surface. The force
quadratures represent a direct transformation of the mea-
sured data without any model assumptions, providing a
physically intuitive way of analyzing the measured canti-
lever dynamics in terms of conservative and dissipative
interactions.
At low amplitudes the uncompensated force quadratures

[dashed lines in Figs. 4(b) and 4(c)] show a positive slope in
FI , the signature of a long-range attractive force. The
negative slope in FQ is a signature of a linear damping, in
addition to the damping contained in χ̂ which is calibrated
far away from the surface. Some hysteresis is also present
in both sets of curves, indicating that the background forces
are not purely of the type described by the special case of
Eq. (14). Notably, the low-amplitude background forces are
the same for the two sets of curves, despite being measured
over different areas of the sample with very different
material properties, confirming that the background forces
are not local to the AFM tip.
We use a drive scheme with ND ¼ 2, measured d̂lift over

a polystyrene area of the sample [black circle in Fig. 4(a)],
then calculate χ̂BG with M ¼ 1 in Eq. (13) and apply its
compensation to the measured data. The solid lines in
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Figs. 4(b) and 4(c) show the force quadratures compensated
for background forces. The slope at low amplitudes is now
missing, as well as most of the hysteretic effects [see inset
of Fig. 4(b)]. We note that the compensation calculated over
a polystyrene area of the sample has this effect not only for
the force quadratures on the polystyrene, but also for those
on polyethylene. Taken together, these observations con-
firm the validity of the assumption that while the

background forces change for every pixel of the image,
their linear-response function does not change during the
whole scan.
Figure 5 shows the same measurement and compensa-

tion procedure on a silicone hydrogel sample in a high-
humidity environment. The sample presents alternating
solid and liquidlike domains [Fig. 5(a)] with very different
mechanical response as shown by the peculiar shapes of the

(a) (b)

(c)

FIG. 4. (a) Phase image at the first drive frequency on a blend of polystyrene (PS) and low-density polyethylene (LDPE). The blue
triangle and the red square mark the pixels for which the engaged spectrum is analyzed. The black circle marks the location where the lift
motion is measured using the method described in Sec. III. The scale bar is 200 nm. (b),(c) Dynamic force quadratures on PS (red) and
on LDPE (blue) at the pixels marked in the corresponding color. Dashed lines show uncompensated measurements and solid lines show
compensation for background forces.

(a) (b)

(c)

FIG. 5. (a) Phase image at the first drive frequency on a silicone hydrogel (Young’smodulus 0.35MPa) in a high-humidity environment.
The blue triangle and the red square mark the pixels for which the engaged spectrum is analyzed. The black circle marks the pixel where
the lift motion is measured while scanning. At the top of the image the AFM is left scanning at the lift position, demonstrating that the
background forces are independent on the xy position of the tip. The scale bar is 200 nm. (b),(c) Dynamic force quadratures on a solidlike
area (red) and on a liquidlike area (blue) at the pixels marked in the corresponding color. Dashed lines show uncompensated
measurements and solid lines show compensation for background forces.
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force quadratures [Figs. 5(b) and 5(c)]. Also in this sample
it is clear how the background-force compensation corrects
for the long-range attractive forces and increased dissipa-
tion, while at the same time preserving the interesting
features of the tip-surface force and the peculiar hysteresis.
These will be discussed further in a forthcoming
publication.
For the dynamic force quadratures shown, the generic

compensation according to Eq. (13) is used. Figure 6 shows
a comparison of these curves with the ones obtained from
the special, simplified case of Eq. (14). While the simplified
case can capture the general slope in the conservative and
in the dissipative long-range interactions, it fails to describe
the hysteresis in the low-amplitude part of the curves. Thus,
the background forces cannot be described by simply
redefining the parameters of the cantilever resonance,
indicating that a more thorough modeling of the inter-
actions is required.
We show the effect of applying the background-force

compensation on the dynamic force quadratures FI and FQ.
The compensation procedure is, however, general and can
be applied to any force reconstruction method. Once the
frequency components of the compensated tip-surface
force F̂TS are obtained from Eq. (9), F̂TS can be fed to
any force reconstruction algorithm without further mod-
ifications. As an example, in Fig. 7 we calculate the tip-
surface force on the polystyrene and on the solid domain of
the hydrogel sample with amplitude-dependent force spec-
troscopy [12] (ADFS), with and without compensation for
the background forces. Not compensating for background
forces would lead to overestimating the adhesion force by
47% for polystyrene, and by 240% for the solid domain of
the hydrogel. The observed peak force would be instead
underestimated by about 10% in both cases (not shown
in Fig. 7).

VI. SIMULATION OF BACKGROUND FORCES

Because of the nonlinear nature of the tip-surface
interaction in dynamic AFM, the dynamics is typically
simulated by numerically integrating the differential equa-
tion for the cantilever deflection dðtÞ

d̈þ ω0

Q
_dþ ω2

0d ¼ ω2
0

k
ðFD þ FTS þ FBGÞ: ð17Þ

FDðtÞ is a known function of time, whereas FTS and FBG
are unknown. Avariety of models for FTS are available [13]
to simulate different types of both conservative and dis-
sipative tip-surface interaction as a function of the canti-
lever motion dðtÞ and its velocity _dðtÞ, and even on the
effective position of a moving surface model [14]. On the
other hand, no general model for simulating background
forces is available, due to the different types of interaction
that can give rise to this effect.
In the frequency domain, the background forces

can be treated as an effective cantilever linear-response
function χ̂0:

F̂TS ¼ χ̂0−1d̂eng − F̂D; ð18Þ
where

χ̂0−1 ¼ χ̂−1 − χ̂−1BG: ð19Þ

Transforming χ̂0 into a differential equation is in general
very difficult, however, in the special case of Eq. (14) it is
possible to simply replace ω0 andQ in Eq. (17) with ω0

0 and
Q0 as defined by Eqs. (15) and (16):

(a)

(b)

FIG. 6. Comparison of dynamic force quadratures on FI (a) and
FQ (b) polystyrene: uncompensated curves (black), compensated
according to Eq. (13) (red), and according to Eq. (14) (blue). The
simplified case of Eq. (14) fails to describe the hysteresis in the
low-amplitude region of the curves.

(a)

(b)

FIG. 7. Tip-surface force on polystyrene (a) and a solid domain
of hydrogel (b) reconstructed with amplitude-dependent force
spectroscopy [12] (ADFS). The dashed lines show the uncom-
pensated force, and the solid lines the force compensated for
background interactions.
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d̈þ ω0
0

Q0 _dþ ω02
0 d ¼ ω02

0

k
ðFD þ FTSÞ: ð20Þ

Alternatively, it is possible to more generally treat the
effect of the background forces on the nonlinear response
by introducing an effective drive force F̂0

D:

F̂TS ¼ χ̂−1d̂eng − F̂0
D; ð21Þ

where

F̂0
D ¼ F̂D þ χ̂−1BGd̂eng: ð22Þ

Once the free, lift, and engaged motions are measured
experimentally, Eq. (22) is used to determine the effective
drive force F̂0

DðωÞ which is readily transformed to the time
domain F0

DðtÞ via the inverse Fourier transform. The new
differential equation

d̈þ ω0

Q
_dþ ω2

0d ¼ ω2
0

k
ðF0

D þ FTSÞ ð23Þ

can now be integrated numerically.
A comparison of the simulated motion dsim using

Eqs. (20) or (23), with the measured motion deng, allows
for numerical optimization to find the best-fit parameters of
a nonlinear tip-surface force model.

VII. CONCLUSIONS

We derive a mathematical procedure to account for long-
range background forces in dynamic AFM, under the
assumption of linear interaction and in the limit of a
narrow-band measurement. Using intermodulation distor-
tion to detect the onset of tip-surface forces, we accurately
measure the background forces at the driven frequencies
and extrapolate their linear-response function to undriven
frequencies. Applying our procedure to experimental data
we demonstrate compensation for background forces on
dynamic force quadratures and ADFS force curves, mea-
sured on two different soft materials. Given the generality
of the compensation procedure and its ease of application to
any type of dynamic force reconstruction, our method will
be very useful for the determination of material properties
with quantitative dynamic AFM.
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APPENDIX: EXPERIMENTAL AND
IMPLEMENTATION DETAILS

All measurements reported were performed in ambient
atmosphere at room temperature with commercially avail-
able instrumentation.
The measurements on the polystyrene low-density poly-

ethylene blend sample (Figs. 3, 4, and 7) are performed on a
Bruker Dimension Icon Atomic Force Microscope. The
cantilever used is a MikroMasch HQ:NSC15/AlBS. The
fundamental flexural eigenmode of the cantilever and
the detector are calibrated with the noninvasive thermal-
noise method [9,10], which yields resonance frequency
f0 ¼ 231.6 kHz, quality factor Q ¼ 392.3, mode stiffness
k ¼ 14.25 Nm−1, and inverse optical-lever responsivity
invOLR ¼ 88.63 nmV−1. The drive of the acoustic actua-
tion is chosen to have a free oscillation amplitude of 50 nm
(100 nm peak to peak) for all the number of drives ND. The
scan in Fig. 4 is performed with a drive composed of two
frequencies separated by 500 Hz and centered around the
cantilever resonance. The AFM feedback keeps the ampli-
tude at the lower drive frequency constant, at 80% of its free
value by adjusting the z extension of the scanner. The scan
size is 1.5 μm, the resolution 256 × 256 pixels, and the
pixel time 2 ms, giving a total scan time of less than 5min.
The measurements on the silicone hydrogel (Figs. 5

and 7) are performed on a JPK NanoWizard3 AFM. The
cantilever is a Bruker Tap525. The thermal-noise calibration
yields resonance frequency f0 ¼ 470.3 kHz, quality factor
Q¼626.0, mode stiffness k¼86.39Nm−1 and inverse
optical-lever responsivity invOLR ¼ 37.84 nmV−1. The
amplitude feedback set point is 86% of the free value.
The total free amplitude is 105 nm (210 nm peak to peak).
The scan size is 1 μm, the resolution 128 × 128 pixels, and
the pixel time 2 ms, giving a total scan time of about 1 min.
For all the measurements reported, a multifrequency

lock-in amplifier and dedicated control software
(Intermodulation Products AB) are used as an add-on to
the AFM hardware and software.
The automatic procedure for measuring the lift oscil-

lation (see Sec. III) works as follows. The scan size of the
AFM is set to zero. The z scanner is fully retracted (by
setting a very high amplitude set point) and the free
intermodulation distortion IMDfree is measured. The origi-
nal set point is restored to allow the tip to engage the
surface again. The set point is repeatedly increased in steps
of 0.1% (causing the z scanner to gradually retract) and the
IMD is measured for each of the set-point values. To allow
the AFM feedback to stabilize and to lower the noise, at
each step 100 pixels are acquired (typically requiring
200 ms) and only the last 10 pixels are averaged and
included in the calculation of IMD. The procedure con-
tinues until the measured IMD decreases to within 3 dB (a
factor of 2) of IMDfree. The first measurement that satisfies
IMD < IMDfree þ 3 dB defines the lift oscillation dlift
which is then stored. The original scan size and feedback
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set point are finally restored and the AFM scan is resumed.
The whole procedure requires less than one minute and is
fully automated.
When the free and lift response is known, the back-

ground-forces linear-response function χ̂BG can then be
calculated from Eq. (8) at the driven frequencies (2 in the
case of Figs. 4 and 5, ND in Fig. 3). To get χ̂BG at all the
measured frequencies (32 in the case of Fig. 4, 42 in Fig. 5),
a least-square optimization routine (MINPACK) is used to fit
Eq. (13) to the measured χ̂BG.
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