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Optical isolation, nonreciprocal phase transmission, and topological phases for light based on synthetic
gauge fields have been raising significant interest in the recent literature. Cavity-optomechanical systems
that involve two optical modes coupled to a common mechanical mode form an ideal platform to realize
these effects, providing the basis for various recent demonstrations of optomechanically induced
nonreciprocal light transmission. Here, we establish a unifying theoretical framework to analyze optical
nonreciprocity and the breaking of time-reversal symmetry in multimode optomechanical systems. We
highlight two general scenarios to achieve isolation, relying on either optical or mechanical losses.
Depending on the loss mechanism, our theory defines the ultimate requirements for optimal isolation and
the available operational bandwidth in these systems. We also analyze the effect of sideband resolution on
the performance of optomechanical isolators, highlighting the fact that nonreciprocity can be preserved
even in the unresolved sideband regime. Our results provide general insights into a broad class of
parametrically modulated nonreciprocal devices, paving the way towards optimal nonreciprocal systems
for low-noise integrated nanophotonics.
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I. INTRODUCTION

Nonreciprocal elements are crucial in nanophotonic
communication systems. Such devices allow the trans-
mission of signals in one direction while blocking those
propagating in the opposite one, avoiding interference and
protecting optical sources. In general, achieving nonreci-
procity requires breaking the time-reversal symmetry
inherent in the governing electromagnetic-wave equations,
a symmetry that holds as long as the structure is linear, time
invariant, and not biased by a quantity that is odd under
time reversal. In practice, optical isolation is commonly
achieved based on the magneto-optic effect [1], i.e., by
applying a static magnetic bias. However, such devices tend
to be bulky, costly, and not CMOS compatible, motivating
the ongoing search for alternative strategies to break
reciprocity in chip-scale devices. Over the past few years,
several approaches have been suggested in integrated
photonic systems. Examples include nonlinear structures
with a spatially asymmetric refractive-index profile [2] and
systems that undergo a dynamic spatiotemporal modulation
of the refractive-index profile, thus mimicking the effect of
an external gauge bias and inducing nonreciprocal behavior
[3–6]. Microring resonators with a traveling-wave index
modulation, acting as an angular-momentum bias, have
been proposed as an efficient way to break reciprocity in
compact devices [6,7], a concept that has been realized in a

discretized arrangement of resonators with out-of-phase
temporal modulations [8,9]. In addition, parametrically
coupled multimode systems have been also shown to
perform nonreciprocal frequency conversion and amplifi-
cation [10–12], for example, based on Josephson junctions
[13]. Recently, it has been realized that optomechanical
coupling can also be used to impart the required form of
synthetic gauge required to induce electromagnetic non-
reciprocity at optical [14–22] and microwave frequencies
[23,24]. In this context, different theories have been
presented to describe possible optomechanical implemen-
tations of on-chip isolators [15,16,21,22].
Here, we present a general theoretical framework to

describe multimode optomechanical arrangements for non-
reciprocal transmission, establishing a minimal model that
captures the essential mechanisms behind the operation of
the different geometries discussed in the recent literature
[15,16,21,22]. We show that optomechanically induced
nonreciprocity can be observed in a wide class of multimode
systems, as long as a minimum set of necessary and
sufficient conditions are satisfied. These conditions are
expressed in terms of the mode-port coupling matrix of
the underlying optical system as well as the relative phases
and intensities of the driving lasers used to bias. Previously
reported geometries [15,16,22] are then discussed as specific
cases of our general theory. We define two important classes
of implementations, distinguished by different coupling
of the involved modes to the input and output ports, and
discuss their similarities and distinctions in terms of power,*alu@mail.utexas.edu
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bandwidth, isolation levels, and loss. We derive fundamental
conditions to achieve nonreciprocal responses in phase and
intensity and discuss the requirements to maximize isolation,
nonreciprocal phase difference, and bandwidth constraints.
We also investigate the performance and stability of opto-
mechanical isolators and gyrators in both resolved and
unresolved sideband regimes and by exploring the linear
eigenmodes and simulating the governing nonlinear dynami-
cal equations.
The paper is organized as follows. In Sec. II, we review

the temporal coupled-mode theory of a general two-port
optical system that involves two modes and derive the
minimal requirements for nonreciprocity, showing the
general necessity of nonreciprocal mode conversion.
Next, in Sec. III we show how a mechanical mode coupled
to both optical modes can mediate such nonreciprocal
conversion, and we derive the conditions for the optical
drive fields to optimally break reciprocity. Section IV
explains how such conversion can lead to nonreciprocal
phase shifting and isolation in two classes of implementa-
tions, based on end- and side-coupled resonator geometries,
respectively, which differ in the loss mechanism respon-
sible for isolation. Sections V and VI study how trans-
mission through both classes of systems depends on the
geometry and the drive fields. In both cases, the conditions
for ideal isolation are derived, and their realization in terms
of the involved parameters is discussed. In Sec. VII, we
explore the possibility of nonreciprocal amplification.
Section VIII is then devoted to the extension of this
treatment to a more general scenario in which both side-
bands are taken into account, pointing out the relevant fact
that sideband resolution is not necessary to yield nonre-
ciprocal transmission. The linear eigenmodes of the system
are explored in Sec. IX, allowing a rigorous study of the
instability threshold for these devices. The steady-state
biasing conditions are then investigated in Sec. X, followed
by rigorous time-domain simulations of the governing
nonlinear dynamical equations that validate our results in
specific sample geometries (Sec. XI). Finally, we discuss
the effect of thermal noise on the operation of the proposed
devices in Sec. XII and conclude in Sec. XIII.

II. COUPLED-MODE THEORY AND
TIME-REVERSAL SYMMETRY BREAKING

IN A TWO-PORT OR TWO-MODE
OPTICAL SYSTEM

Before investigating the hybrid optomechanical system
at the core of this paper, consider a general optical two-port
or two-mode system as shown in Fig. 1, which can be
described through the coupled-mode formalism [25]

d
dt

�
a1

a2

�
¼ iℳ

�
a1

a2

�
þ B

�
sþ1
sþ2

�
; ð1Þ

�
s−1
s−2

�
¼ C

�
sþ1
sþ2

�
þD

�
a1

a2

�
; ð2Þ

where a1;2 are the amplitudes of the two modes and s�1;2
represent the incoming (þ) and outgoing (−) signals at the
two ports. The matrix C describes the direct-path-scattering
matrix between the two ports, while D and B describe the
port-to-mode and mode-to-port coupling processes, respec-
tively. Finally,ℳ represents a linear evolution matrix of the
optical modes in the absence of excitation. Here we assume
that the evolution operator does not depend explicitly on
time, as in the case of systems with externally controlled
parametric modulation. However, ℳ can include time
derivatives, which is the case for an optomechanical system
involving self-induced parametric modulation. In such
systems, ℳ can be decomposed in two terms, one
describing the bare optical system Θ and a second term
associated with optomechanical interactions. In general, the
bare optical evolution operator can be written as
Θ ¼ Oþ ði=2ÞK, where O and K, both being real and
symmetric matrices, represent resonance and damping
frequencies, respectively. The diagonal and off-diagonal
elements of O represent, respectively, the resonance
frequencies of the two optical modes (ω1 and ω2) and
the mutual coupling between the two modes (μ). The
losses, on the other hand, can be decomposed into
exchange (Ke) and intrinsic losses (Kl) as K ¼ Ke þ Kl
(in a conservative treatment of the system, one can consider
the intrinsic losses as extra ports that work as leakage
channels). The diagonal and off-diagonal elements of K,
respectively, represent the total losses of each mode (κ1 and
κ2) and the coupling between two modes due to interfer-
ence in the joint output channels (κr). Without the loss of
generality, here we assume an eigenbasis that diagonalizes
the bare optical evolution matrix Θ. The diagonalization
leads to normal modes whose complex frequencies are
“dressed” by the original couplings μ. As such, the diagonal
elements of Θ can be written as ω1;2 þ iκ1;2 =2, where
ω1;2 ¼ ω0 ∓ μ represent the resonance frequencies of the
two modes, κ1;2 their total losses, and 2μ a possible normal-
mode frequency splitting. In addition, we define leakage
coefficients η1;2, which describe the ratios of external losses
(due to decay into the considered ports) to total losses of
each mode, i.e., κe1;2 ¼ η1;2κ1;2 and κl1;2 ¼ ð1 − η1;2Þκ1;2.

FIG. 1. Schematic representation of a two-port optical wave-
guide cavity arrangement involving two optical modes.
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The matrices involved in (1) and (2) are not independent,
as time-reversal symmetry and energy conservation impose
relevant restrictions on them. We use the convention in
which each optical mode is explicitly coupled to the
input or output channels in a reciprocal fashion, meaning
B ¼ DT . Then, CD� þD ¼ 0, and D†D ¼ Ke, where in
these relations “T” and “†,” respectively, represent the
transpose and conjugated transpose operations [25]. Based
on these relations, we can derive a general condition on the
determinant of the coupling matrix D: Since D†D ¼ Ke,
we can write j detðDÞj2 ¼ detðKeÞ ¼ η1η2κ1κ2. Using
CD� ¼ −D, we find that detðCÞ det ðDÞ� ¼ detðDÞ. Here
C is a unitary matrix; thus, j detðCÞj ¼ 1 : In general,
nothing can be said about the phase of detðCÞ. However,
by properly choosing the reference plane at one of the
ports, we can control this phase and, without the loss of
generality, we assume in the following that detðCÞ ¼ −1,
yielding detðDÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η1η2κ1κ2

p
.

In the frequency domain, the scattering matrix of a
system governed by Eqs. (1) and (2), defined as�

s−1
s−2

�
¼ SðωÞ

�
sþ1
sþ2

�
; ð3Þ

can be written as

S ¼ Cþ iDðMðωÞ þ ωIÞ−1DT: ð4Þ
Based on this relation, the difference between forward

and backward transmission, which quantifies nonreciproc-
ity, can be written in a very compact and general form:

S21 − S12 ¼ i
detðDÞðm12 −m21Þ
det½MðωÞ þ ωI� ; ð5Þ

which is a fundamental relation for the rest of this work.
According to this expression, two conditions are necessary
and sufficient to break reciprocity in a general two-port
optical system based on two coupled optical modes [21]:
(a) detðDÞ ≠ 0 and (b) m12 ≠ m21. The full rank of the
coupling matrix D can be ensured with a suitable asym-
metry in the coupling of the two modes to the two ports,
i.e., d11=d21 ≠ d12=d22. The second condition, on the other
hand, is quite demanding, as in a linear, time-invariant,
time-reversible system the evolution matrix is always
symmetric. In the next section, we show that optomechan-
ical interactions, when properly controlled, can break the
symmetry of the effective evolution matrix, thus enabling
optical nonreciprocity.

III. MULTIMODE CAVITY
OPTOMECHANICAL SYSTEM

A. Optomechanical evolution equations

Consider the case in which the general system discussed
in the previous section supports a single mechanical mode

coupled to both optical modes. The effective mass, reso-
nance frequency, and decay rate of the mechanical mode
are m, Ωm, and Γm, respectively, while the optical modes’
frequency shift per mechanical displacement are G1 and G2,
respectively. In the frame of control frequency ωL, the
evolution of this system is described by

d
dt

�
a1

a2

�
¼ i

�Δ1 þ G1xþ iκ1=2 0

0 Δ2 þ G2xþ iκ2=2

�

×

�
a1

a2

�
þDT

�
sþ1
sþ2

�
; ð6Þ

d2

dt2
x ¼ −Ω2

mx − Γm
d
dt

xþ ℏ
m
ðG1ja1j2 þ G2ja2j2Þ; ð7Þ

where x is the position of the mechanical resonator with
respect to its reference point. Here, Δ1;2 ¼ ωL − ω1;2

represent the detuning of the resonance frequencies with
respect to the driving frequency. Assuming ω1 ¼ ω0 − μ
and ω2 ¼ ω0 þ μ, we can write Δ1 ¼ Δþ μ and Δ2 ¼
Δ − μ, whereΔ ¼ ωL − ω0 is a detuning from the center of
the two resonance frequencies.

B. Linearized optomechanical system
and scattering parameters

Assuming that the optical modes are strongly driven by a
control signal at ωL, the evolution equations can be
linearized for weak probes at ωp ¼ ωL þ ω. In this case,
the modal optical amplitudes and the mechanical displace-
ments can be written as a1;2ðtÞ ¼ ā1;2 þ δa1;2ðtÞ and
xðtÞ ¼ x̄þ δxðtÞ, where jδa1;2j ≪ jā1;2j. Here ā1;2 and
x̄ are the fixed point biases of the optical and mechanical
resonators, which are obtained from Eqs. (6) and (7) at the
steady state, i.e., for d=dt → 0. The evolution of the
modulating optical δa1;2 and mechanical δx signals is
governed by the linearized equations

d
dt

�
δa1

δa2

�
¼ i

�
Δ̄1 þ iκ1=2 0

0 Δ̄2 þ iκ2=2

��
δa1

δa2

�

þ i

�
G1

G2

�
δxþDT

�
δsþ1
δsþ2

�
; ð8Þ

d2

dt2
δx¼ −Ω2

mδx− Γm
d
dt
δx

þ ℏ
m
ðG�

1δa1 þG1δa�
1 þG�

2δa2 þG2δa�
2Þ; ð9Þ

where Δ̄1;2 ¼ Δ1;2 þ G1;2x̄ are the modified frequency
detuning factors and G1;2 ¼ G1;2ā1;2 are the enhanced
optomechanical frequency shifts. Here, we assume both
modes being driven in the lower and upper mechanical
sidebands, i.e., Δ̄1;2≈ ∓ Ωm. In addition, in this section,
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we assume for now a sideband resolved operation; i.e., the
mechanical frequency is larger than the optical linewidths,
Ωm > κ1;2. Under these conditions, and for a probe signal
approximately centered at the optical resonance frequency,
it is possible to show that the terms with complex-conjugate
fields in the above equations can be ignored [26]. We will
lift the sideband resolution assumption in Sec. VIII.
Therefore, under the resolved sideband approximation,

in the frequency domain [here, the Fourier transform is
defined as a1;2ðωÞ ¼

R
a1;2ðtÞeiωtdω, where again ω ¼

ωp − ωL represents the probe frequency evaluated with
respect to the control frequency], Eqs. (8) and (9) imply

i

��
ωþ Δ̄1þ iκ1

2
0

0 ωþ Δ̄2þ iκ2
2

�
− ℏ
Σm

� jG1j2 G1G�
2

G�
1G2 jG2j2

��

×

�
δa1
δa2

�
þDT

�
δsþ1
δsþ2

�
¼0; ð10Þ

where Σm ¼ mðω2 −Ω2
m þ iΓmωÞ represents the inverse

mechanical susceptibility. The evolution operator can thus
be written as

M ¼
�
Δ̄1 þ iκ1=2 0

0 Δ̄2 þ iκ2=2

�
− ℏ
Σm

� jG1j2 G1G�
2

G�
1G2 jG2j2

�
:

ð11Þ

As this relation clearly shows, the symmetry of the
evolution matrix can be broken through the optomechanical
interaction terms, as long as G1G�

2 ≠ G�
1G2 (see Fig. 2).

Assuming a phase difference Δϕ ¼ ϕG2
− ϕG1

between the
enhanced optomechanical frequency shifts, this latter con-
dition requires Δϕ ≠ nπ, where n ¼ 0;�1;�2;…. A
similar conclusion can be reached by analyzing directly
the scattering matrix (4), which leads to

S ¼ Cþ iD

 
Σo1 − ℏ

Σm
jG1j2 − ℏ

Σm
G1G�

2

− ℏ
Σm

G�
1G2 Σo2 − ℏ

Σm
jG2j2

!−1
DT;

ð12Þ

where Σo1;2 ¼ ðωþ Δ̄1;2 þ iκ1;2=2Þ represents the inverse
optical susceptibility of the two optical modes. The
scattering coefficients can be then explicitly obtained:

S11 ¼ c11 þ i
d212ðΣo1Σm − ℏjG1j2Þ þ d211ðΣo2Σm − ℏjG2j2Þ þ d11d12ℏðG1G�

2 þG�
1G2Þ

Σo1Σo2Σm − ℏðΣo2 jG1j2 þ Σo1 jG2j2Þ
; ð13aÞ

S12 ¼ c12 þ i
d12d22ðΣo1Σm − ℏjG1j2Þ þ d11d21ðΣo2Σm − ℏjG2j2Þ þ d11d22ℏG1G�

2 þ d12d21ℏG�
1G2

Σo1Σo2Σm − ℏðΣo2 jG1j2 þ Σo1 jG2j2Þ
; ð13bÞ

S21 ¼ c21 þ i
d12d22ðΣo1Σm − ℏjG1j2Þ þ d11d21ðΣo2Σm − ℏjG2j2Þ þ d12d21ℏG1G�

2 þ d11d22ℏG�
1G2

Σo1Σo2Σm − ℏðΣo2 jG1j2 þ Σo1 jG2j2Þ
; ð13cÞ

S22 ¼ c22 þ i
d222ðΣo1Σm − ℏjG1j2Þ þ d221ðΣo2Σm − ℏjG2j2Þ þ d21d22ℏðG1G�

2 þ G�
1G2Þ

Σo1Σo2Σm − ℏðΣo2 jG1j2 þ Σo1 jG2j2Þ
: ð13dÞ

Using Eq. (5) and the determinant relation, the complex difference between forward and backward transmission
coefficients becomes

S21 − S12 ¼ −2i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η1η2κ1κ2

p ℏjG1jjG2j sinðΔϕÞ
Σo1Σo2Σm − ℏðΣo2 jG1j2þΣo1 jG2j2Þ

: ð14Þ

FIG. 2. The small signal model of a multimode cavity opto-
mechanical system involving two optical modes coupled to a
mechanical mode. Coupling to the mechanical resonator creates a
mechanically mediated coupling between the two optical modes,
which is, in general, nonreciprocal.
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This general relation ensures that the maximum contrast
between forward and backward transmission coefficients
is obtained when the driving fields are in quadrature,
Δϕ ¼ �π=2. This consideration applies regardless of
whether nonreciprocal transmission is manifested as an
asymmetric phase (gyration) or amplitude (isolation) of
transmission. We iterate that the simple and general form of
Eq. (14) relies on our convention of describing the optical
system in terms of its normal modes.

IV. OPTOMECHANICALLY INDUCED
NONRECIPROCITY

A. Fabry-Pérot model

In order to provide an intuitive understanding of the
underlying physics involved in the design of a nonrecip-
rocal optomechanical system, we first consider two Fabry-
Pérot model implementations. These are referred to as
end- and side-coupled structures [Figs. 3(a) and 3(c) and
Figs. 3(b) and 3(d), respectively], in analogy with their
integrated photonic counterparts that will be introduced
later. The difference between these systems is a direct light
propagation path between the two input and output ports in
scenarios (b) and (d), which is absent in (a) and (c). For
both systems [Eq. (11)], the mechanically mediated hop-
ping rate from cavity 1 to 2 reads μ1→2

m ¼ −ℏG1G�
2=ΣmðωÞ,

while for the opposite process μ2→1
m ¼ −ℏG�

1G2=ΣmðωÞ. At
resonance, and for Δϕ ¼ π=2, this coupling reduces to
μ1→2
m ¼ ℏjG1 jjG2j=mΓmΩm and μ2→1

m ¼ −μ1→2
m , which

reveals that this coupling imprints opposite phase for
oppositely traveling photons. However, in order to obtain
isolation, this nonreciprocal mode-transfer path needs to be
interfered with a second optical path.
In the end-coupled structure, such an additional path is

provided by direct hopping between the optical cavities at
rate μ. A finite optical coupling (μ ≠ 0) allows one-way
destructive interference between the two paths, resulting in
isolation. Critically, in order to create complete destructive
interference between the two paths, a careful match
between hopping rates is required [10,19]. Optimal iso-
lation in the end-coupled geometry therefore occurs for
μ ¼ jμmj, which is consistent with the condition derived
in Ref. [22] following a different theoretical approach. At
first sight, this result seems to suggest that it is possible to
equally increase or decrease both μ and jμmj to achieve
ideal isolation. However, a careful inspection of the under-
lying equations, as detailed in Sec. V, shows that there is an
optimum value for μ, related to the rate at which photons
are lost through the mechanical loss channel.
In contrast, the side-coupled geometry [Fig. 3(b)] can

be seen as the end-coupled system of Fig. 3(a) positioned
in an optical interferometer. In this case, a direct propaga-
tion channel provides the path with which the mode-
transfer processes can interfere, external to the cavities.
Considering the direct channel to be lossless, one can

intuitively understand that complete destructive interfer-
ence happens when all the light entering the optomechan-
ical system at cavity 1 exits at cavity 2. In other words,
complete isolation is achieved for ideal mode transfer,
which occurs for jG1jjG2j → ∞.
Although the Fabry-Pérot models introduced here pro-

vide an intuitive understanding of the major processes
leading to nonreciprocal light transmission in the general
platform analyzed in this paper, a more quantitative
discussion based on Eqs. (13) and (14) requires the
implementation of system-specific D matrices, which are
derived in the next section.

B. Integrated photonic geometries

The Fabry-Pérot models introduced in the previous
subsection can be modeled in abstract waveguide

FIG. 3. Fabry-Pérot models of nonreciprocal optomechanical
systems. The mechanically mediated mode conversion μm is, in
general, nonreciprocal, imprinting opposite phases for photons
hopping from optical mode 1 to 2 versus those hopping from
mode 2 to 1. (a),(c) In the absence of a direct scattering path
between ports 1 and 2 and the absence of direct optical coupling
(μ ¼ 0), the end-coupled geometry operates as a nonreciprocal
phase shifter. To obtain isolation, the path that experiences a
nonreciprocal phase pickup due to the mechanically mediated
mode transfer needs to interfere with the direct mode coupling
path (μ ≠ 0). Optimal isolation is achieved when the two
interference paths are balanced μ ¼ μm, which can fully block
the signal. Note that in this scenario a loss through the mechanical
bath is needed to achieve isolation. This limits the operational
bandwidth to the mechanical linewidth. (b),(d) In contrast, in the
presence of a direct-scattering path as common in a side-coupled
geometry, isolation is achieved when the “mechanically mediated
path” interferes with the direct transmission between the ports. In
this geometry, maximum isolation is achieved when the pump
power is maximal. As in this system the nonreciprocal behavior is
fueled by losses to the optical bath, the bandwidth is ultimately
limited by the optical linewidth κ. The dashed lines in (c) and (d)
indicate interfering optical paths.
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representations as in Fig. 4. As shown in this figure,
we may consider two coupled single-mode optical
cavities with a mode-hopping rate μ (Fig. 4, top row).
Alternatively—and fully equivalently—we can diagonalize
the system and consider it as supporting two normal modes
with frequency splitting 2μ (Fig. 4, bottom row). The
coupled-mode equations are written in the eigenbasis of
those normal modes of the system, which are characterized
by a diagonalized bare optical evolution matrix, as
described in Sec. II. This formalism is applicable to
essentially all two-mode systems, and it can unify the
treatment of the end- and side-coupled structures. In the
following, we assume that the individual optical cavities are
identical and support resonances at ω0, or the equivalent
single optical system is assumed to exhibit mirror sym-
metry with respect to a plane orthogonal to the propagation
direction, thus supporting normal modes with pure even
and odd symmetry. This assumption simplifies the coupling
matrixD; however, the derivations can be straightforwardly
extended to take into account any asymmetry in the
cavities. Moreover, we will treat the case where input
and output fields oscillate at the same frequency, such that
relative phases are unambiguously defined. General con-
ditions for nonreciprocity in the absence of this assumption
are treated in Refs. [10,27].
In the end-coupled geometry [Fig. 4(a)], we assume

that the only propagation path between the two ports is
through the optical resonators, such that the direct scatter-
ing matrix C reads

C ¼
�
i 0

0 i

�
; ð15Þ

where the arbitrary phase of the reflection coefficient is
chosen to ensure detðCÞ ¼ −1. The symmetry of the modes
dictates d11 ¼ d21 (even) and d12 ¼ −d22 (odd) (see the

inset in Fig. 4). Using these considerations and given that
D†D¼Ke, we obtain jd11j2 ¼ η1κ1=2 and jd22j2 ¼ η2κ2=2.
Together with the condition CD� ¼ −D, the coupling
matrix is thus fully determined as

D ¼ e−iπ=4ffiffiffi
2

p
 ffiffiffiffiffiffiffiffiffi

η1κ1
p − ffiffiffiffiffiffiffiffiffi

η2κ2
p

ffiffiffiffiffiffiffiffiffi
η1κ1

p ffiffiffiffiffiffiffiffiffi
η2κ2

p
!
: ð16Þ

In contrast, when the optical cavity supporting two modes
is side coupled to a bus waveguide [Fig. 4(b)], the direct path
scattering matrix without any reflection reads

C ¼
�
0 1

1 0

�
; ð17Þ

ensuring the same condition detðCÞ ¼ −1. Using a similar
procedure, the coupling matrix for the side-coupled geo-
metry is obtained as

D ¼ 1ffiffiffi
2

p
 
i
ffiffiffiffiffiffiffiffiffi
η1κ1

p − ffiffiffiffiffiffiffiffiffi
η2κ2

p
i
ffiffiffiffiffiffiffiffiffi
η1κ1

p ffiffiffiffiffiffiffiffiffi
η2κ2

p
!
: ð18Þ

In the next sections, we apply this analytical model to
analyze the general conditions for nonreciprocity in these
two integrated photonic schemes.

V. END-COUPLED STRUCTURE

The scattering parameters of the end-coupled geometry
are provided in Eqs. (13), (15), and (16). For two
optical modes that exhibit the same amount of intrinsic
and external losses (η1 ¼ η2 ≡ η, κ1 ¼ κ2 ≡ κ) and are
equally driven (jG1j ¼ jG2j≡ jGj), Eqs. (13) reduce to

S11 ¼ iþ ηκ
ΣoΣm − ℏjGj2½1þ cosðΔϕÞ�
ðΣ2

o − μ2ÞΣm − 2ℏjGj2Σo
; ð19aÞ

S12 ¼ ηκ
μΣm − iℏjGj2 sinðΔϕÞ

ðΣ2
o − μ2ÞΣm − 2ℏjGj2Σo

; ð19bÞ

S21 ¼ ηκ
μΣm þ iℏjGj2 sinðΔϕÞ

ðΣ2
o − μ2ÞΣm − 2ℏjGj2Σo

; ð19cÞ

S22 ¼ iþ ηκ
ΣoΣm − ℏjGj2½1 − cosðΔϕÞ�
ðΣ2

o − μ2ÞΣm − 2ℏjGj2Σo
; ð19dÞ

where we have used Σo1;2 ¼ Σo � μ, where Σo ¼ ωþ Δ̄þ
iκ=2 and 2μ represents the resonance frequency splitting of
the two optical modes. These relations again show that the
contrast between S12 and S21 is maximal for Δϕ ¼ π=2.
Interestingly, under this pump condition the reflection
coefficients S11 and S22 are equal; i.e., the transmission
difference is not induced by asymmetric mismatch at the
port but by asymmetric absorption. On the other hand, for

(a) (b)

FIG. 4. Integrated photonic arrangements for (a) end-coupled
and (b) side-coupled geometries while the system can be
composed of two coupled single-mode cavities (top) or a single
cavity with two modes (bottom). The inset depicts the two optical
supermodes with even and odd symmetry.
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Δϕ ¼ 0, reciprocity is restored (S12 ¼ S21), while the
reflection coefficients are no longer equal. Any other phase
difference provides asymmetry in both transmission and
reflection and nonoptimal isolation.
Figure 5 shows the scattering parameters of an end-

coupled structure, when detuned in the lower mechanical
sideband (Δ̄ ¼ −Ωm) for different incident control ampli-
tudes and changing drive phase Δϕ. As expected, an in-
phase drive (Δϕ ¼ 0) results in a reciprocal system, while
asymmetric driving ðΔϕ ¼ π=2Þ results in nonreciprocal
transmission around the optical resonance ω ¼ Ωm.
Interestingly, the contrast between forward and backward
transmission approaches zero at both low- and high-power
driving regimes, consistent with the fact that maximum
contrast is expected for μ ¼ jμmj. The relatively low values
of transmissivities depicted in this figure are due to the
fact that we assume equal intrinsic and external losses
(η ¼ 1=2). In principle, the transmissivities can be
increased up to unity for η → 1. In these plots, we chose
η ¼ 1=2 to enable a direct comparison with the side-
coupled geometry in the next section.

A. Degenerate modes: Optical gyrator

An interesting scenario arises when the two optical
modes are degenerate (μ ¼ 0). This implies the absence
of direct coupling between them, such that the only
coupling path between the two ports is through the
mechanical mode. In this scenario, the transmission coef-
ficients are simplified to

S12 ¼ −ηκ iℏjGj2 sinðΔϕÞ
Σ2
oΣm − 2ℏjGj2Σo

; ð20aÞ

S21 ¼ þηκ
iℏjGj2 sinðΔϕÞ

Σ2
oΣm − 2ℏjGj2Σo

: ð20bÞ

According to this relation, the amplitudes of the forward
and backward transmission coefficients are equal but
exhibit opposite phase. This structure thus operates as a
gyrator, i.e., a nonreciprocal phase shifter with a phase
difference equal to π. The intensity and phase of the
transmission coefficients of this system are shown in
Fig. 6, highlighting an increase in the transmission band-
width when the pump power increases. Interestingly, the
difference between phases of the forward and backward
transmission coefficients is independent of the frequency,
even though the amplitude response is governed by the
optomechanical line shape.
The phase difference of π between forward and back-

ward probes arises under the assumption that even and
odd modes are pumped with equal intensity. In principle,
however, the phase difference can be controlled through an
unbalanced pumping. In this case, by assuming equal losses
for the modes, it is straightforward to show

S12
S21

¼ jG1j2 − jG2j2 − i2jG1jjG2j sinðΔϕÞ
jG1j2 − jG2j2 þ i2jG1jjG2j sinðΔϕÞ

; ð21Þ

which clearly shows the controllability of the nonreciprocal
phase via the enhanced optomechanical coupling coeffi-
cients G1;2 ¼ G1;2ā1;2. The relation between port excita-
tions s̄1;2 and mode biases ā1;2 is further discussed
in Sec. X.

B. Conditions for ideal isolation

In this subsection, we are ready to explore the conditions
for optimal isolation in this end-coupled geometry, i.e.,
S12 ¼ 0 and jS21j ¼ 1. Assuming Δϕ ¼ π=2, Δ̄ ¼ −Ωm,
and ω ¼ Ωm, the transmission coefficients in Eqs. (19)
reduce to

(a) (b) (c)

(d) (e) (f)

FIG. 5. Scattering parame-
ters for an end-coupled geom-
etry, as depicted in Fig. 4(a).
The top and bottom rows
are associated with Δϕ ¼ 0
and Δϕ ¼ π=2, respectively,
while the intracavity photon
number is increased from left
to right. In all cases, the sys-
tem is assumed to be detuned
in the lower mechanical side-
band, and the set of parame-
ters used for this example
are κ=2π¼ 1MHz, η ¼ 1=2,
2μ ¼ 1 MHz, Ωm=2π ¼
50 MHz, Γm=2π¼10KHz,
m ¼ 6 ng, and G=2π ¼
6 GHz=nm.
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S12ðω ¼ ΩmÞ ¼ −2η
μ
κ=2 − C

1þ ð μ
κ=2Þ2 þ 2C

; ð22aÞ

S21ðω ¼ ΩmÞ ¼ −2η
μ
κ=2 þ C

1þ ð μ
κ=2Þ2 þ 2C

; ð22bÞ

where

C1 ¼ C2 ¼ C ¼ ℏjGj2
2mΩmðΓm=2Þðκ=2Þ

ð23Þ

represents the multiphoton cooperativity of each optical
mode. According to these relations and consistent with the
discussion in the previous section, the complete rejection of
the backward propagating probe requires a balance between
the normalized mode splitting and cooperativity:

2μ

κ
¼ C: ð24Þ

This can be understood from the fact that the direct
optical mode coupling, occurring at an energy transfer
rate μ, should completely cancel the mechanically mediated
conversion at rate Cκ=2 ¼ ℏjGj2=mΩmΓm. Under this
condition, the forward transmission becomes

jS21ðω ¼ ΩmÞj ¼
4ηC

ðC þ 1Þ2 ; ð25Þ

which is generally less than unity, implying a nonzero
insertion loss. Asymptotically low (C ≪ 1) and high
(C ≫ 1) values of cooperativity yield zero forward trans-
mission, and the maximum transmission is obtained for
C ¼ 1, which results in maxðjS21jÞ ¼ η. As expected,
complete forward transmission and zero insertion loss can
be achieved when the optical modes have zero absorption,
i.e., κl ¼ 0, or, equivalently, η ¼ 1. According to Eq. (24),
in order to simultaneously block the backward probe, one
needs to enforce 2μ ¼ κ. Figure 7(a) shows the transmission
contrast in a contour map versus the normalized mode

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 6. Transmission coefficients of an optomechanical gyrator, obtained by removing the direct path coupling between the two optical
modes, such that any coupling between the two ports is mediated through the mechanical mode. (a)–(f) The intensities and phases of the
forward and backward transmission coefficients for different pump intensities associated with jāj ¼ 10 (a),(b), jāj ¼ 100 (c),(d),
and jāj ¼ 1000 (e),(f). In all cases, the system is assumed to be driven in the lower mechanical sideband of the cavity (Δ̄¼−Ωm), and
the set of parameters used for this example are as follows: κ=2π ¼ 1 MHz, η ¼ 0.9, 2μ ¼ 0, Ωm=2π ¼ 50 MHz, Γm=2π¼10KHz,
m ¼ 6 ng, and G=2π ¼ 6 GHz=nm.

(a) (b)

FIG. 7. (a) Maximum transmission contrast in the side-coupled
structure as a function of the normalized mode splitting μ=ðκ=2Þ
and multiphoton cooperativity C. Optimal isolation is achieved
for C ¼ μ=ðκ=2Þ ¼ 1 and η ¼ 1. (b) For these optimal parame-
ters, light in both the forward (red) and backward (blue) direction
is transmitted over the optical bandwidth. Only in a narrow
bandwidth, corresponding to the twice the mechanical linewidth,
is backwards travelling light rejected (lost in the mechanical
bath), resulting in optical isolation.
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splitting (horizontal axis) and cooperativity (vertical axis)
for η ¼ 1.
Although the above analysis implies that it is feasible to

achieve ideal isolation in a system with no optical absorp-
tion, isolation in a two-port system cannot be achieved
without losses, as this operation would violate the second
law of thermodynamics and realize a thermodynamic
paradox [28,29]. In this end-coupled geometry, it is the
coupling to the mechanical bath that provides the required
losses to block propagation in the backward direction.
Indeed, for a finite pump power and Γm → 0, the cooper-
ativity approaches infinity, which, according to Eqs. (22),
leads to equal intensity transmission in both directions and
the absence of isolation. On the other hand, if one decreases
at the same rate pump power and mechanical losses, in
order to keep the cooperativity constant, the nonreciprocity
bandwidth reduces to zero. In the limit of zero loss, we
reach a singular condition, and again isolation disappears.
Therefore, the presence of losses is necessary to achieve
nonreciprocity in the transmitted intensity. This is clearly
visible in Fig. 5(d), where we show that, in the absence of a
pump laser, the end-coupled geometry yields a passband
for light with a bandwidth given by the optical linewidth.
Importantly, it is the coupling to the mechanical bath via the
mechanical resonator, which comes into play when the
system is pumped, that provides unidirectional losses and
the resulting isolation [10,19]. Although such specific end-
coupled geometry has the benefit of reaching optimal
isolation at a relatively low cooperativity C ¼ 1, the loss
mechanism in this specific situation (signaled by C ¼ 1)
directly limits the isolation bandwidth to 2Γm [Fig. 7(b)],
in stark contrast with the side-coupled geometry discussed
in the next section.
Before concluding this section, we direct attention to a

specific class of end-coupled structures, consisting of two
optical waveguides resonantly coupled through a pair of

identical single-mode cavities as discussed in Refs. [16,22].
This geometry can be modeled analogously to Fig. 4(a) by
considering the even and odd supermodes of the coupled
resonators as the eigenbasis. In contrast, the localized
modes of each resonator can also be considered as basis
modes. Interestingly, in both cases the two modes should be
driven in quadrature to achieve the maximum nonreciprocal
response, consistent with the general theory derived here.

VI. SIDE-COUPLED STRUCTURE

For the side-coupled structure modeled in Fig. 4(b), the
scattering parameters can be calculated from Eq. (13) using
the coupling matrices in Eqs. (17) and (18). Similar to the
previous case, relations (13) can be simplified when the two
modes exhibit the same amount of intrinsic and external
losses (η1 ¼ η2 ≡ η, κ1 ¼ κ2 ≡ κ) and are equally pumped,
i.e., jG1j ¼ jG2j≡ jGj. In this case,

S11 ¼ −iηκ μΣm þ iℏjGj2 cosðΔϕÞ
ðΣ2

o − μ2ÞΣm − 2ℏjGj2Σo
; ð26aÞ

S12 ¼ 1 − iηκ
ΣoΣm − ℏjGj2½1þ sinðΔϕÞ�
ðΣ2

o − μ2ÞΣm − 2ℏjGj2Σo
; ð26bÞ

S21 ¼ 1 − iηκ
ΣoΣm − ℏjGj2½1 − sinðΔϕÞ�
ðΣ2

o − μ2ÞΣm − 2ℏjGj2Σo
; ð26cÞ

S22 ¼ −iηκ μΣm − iℏjGj2 cosðΔϕÞ
ðΣ2

o − μ2ÞΣm − 2ℏjGj2Σo
: ð26dÞ

These scattering parameters are plotted in Fig. 8 in the red-
detuned regime Δ̄ ¼ −Ωm for different pump conditions,
consistent with Fig. 5. For the out-of-phase pump scenario,
by increasing the pump intensity we obtain a large contrast
between forward and backward transmission coefficients,

(a) (b) (c)

(d) (e) (f)

FIG. 8. Scattering parame-
ters for a side-coupled geom-
etry as depicted in Fig. 4(b),
whendriven at different power
levels and (a–c)Δϕ ¼ 0, (d–f)
Δϕ ¼ π=2. As in previous
examples, the system is as-
sumed to be detuned in the
lower mechanical sideband,
and the parameters used
for this example are
κ=2π ¼ 1 MHz, η ¼ 1=2,
2μ ¼ 1 MHz, Ωm=2π ¼
50 MHz, Γm=2π ¼ 10 KHz,
m ¼ 6 ng, and G=2π ¼
6 GHz=nm.
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at the same time increasing the isolation bandwidth of the
system. It should be noted that the scattering coefficients
shown in Fig. 8 exhibit similarities with those plotted in
Fig. 5. In fact, a direct comparison of the expression for the
scattering coefficients derived for the end-coupled and side-
coupled systems [Eqs. (19) and (26)] shows that the two are
related through the transformation

SecðΔϕÞ ¼ iPSscðΔϕ − π=2Þ; ð27Þ

where in this relation Ssc and Sec, respectively, represent the
scattering matrix of the side-coupled and end-coupled
structures, Δϕ is the phase difference between pumps,

and P is the 2 × 2 exchange matrix P ¼ ð 0 1

1 0
Þ. Equation

(27) relates the transmission (reflection) coefficients of the
side-coupled structure to the reflection (transmission)
coefficients of the end-coupled structure when the two
systems are driven with phases that differ by π=2. This
relation implies that the reflection and transmission
coefficients for forward and backward waves cannot be
simultaneously identical, as also seen in Eqs. (19) and (26).
Therefore, under an equal-intensity pump, the left-right
symmetry of this system is always broken.

A. Degenerate modes: One-way OMIT

As in the previous example, it is of interest to explore the
case of degenerate modes, i.e., μ ¼ 0. In this case, and for
Δϕ ¼ π=2, the transmission coefficients are simplified into

S12 ¼ 1 − iηκ
1

Σo
; ð28aÞ

S21 ¼ 1 − iηκ
Σm

ΣoΣm − 2ℏjGj2 : ð28bÞ

The backward propagation is thus fully decoupled from
the mechanical degree of freedom and governed only by the
optical line shape. In contrast, the forward transmission
is identical to the one of a single-mode optomechanical
system. For forward propagation, the transmission is
governed by the optical response when G ¼ Gā → 0.
Therefore, the system blocks light propagation over a band

equal to the optical linewidth of the cavity, in both
directions in the absence of a pump laser. By increasing
the pump power, an optomechanically induced transpar-
ency (OMIT) signature [30,31] arises in the forward
transmission spectrum, and for large values of G the
induced transparency window can be completely opened,
spanning over a broad range of frequencies with a peak
transmission close to unity [see Figs. 9(a)–9(c)]. This
operation is ultimately limited by the optical linewidth
of the cavity modes [15].

B. Conditions for ideal nonreciprocity

Equations (26) explicitly provide the conditions for ideal
isolation, i.e., S12 ¼ 0 and S21 ¼ 1, for π=2 out-of-phase
pumping. For Δ̄ ¼ −Ωm, and at optical resonance,
ω ¼ Ωm, the transmission coefficients are

S12ðω ¼ ΩmÞ ¼ 1 − 2ηð1þ 2CÞ
1þ ð μ

κ=2Þ2 þ 2C
; ð29aÞ

S21ðω ¼ ΩmÞ ¼ 1 − 2η

1þ ð μ
κ=2Þ2 þ 2C

; ð29bÞ

where C is the multiphoton cooperativity of each optical
mode. Therefore, the condition to fully isolate the back-
ward propagating probe, S12ðω ¼ ΩmÞ ¼ 0, is

2

�
η − 1

2

�
ð1þ 2CÞ ¼

�
μ

κ=2

�
2

; ð30Þ

which is a condition on the frequency splitting of the optical
modes μ (or equivalently on the coupling rate between
the two modes) in connection with the out-coupling loss
ratio η and the multiphoton cooperativity. This condition
can be satisfied only for strongly coupled waveguide-cavity
arrangements, i.e., η > 1=2. In addition, for degenerate
modes the requirement Eq. (30) reduces to the condition
of critical coupling, η ¼ 1=2. Figure 10(a) shows the
normalized mode splitting required for complete absorption
of a backward propagating probe. According to Eq. (29b),
the forward transmission S21 can become very close to unity
for large cooperativities; however, it can never be equal to

(a) (b) (c)

FIG. 9. Scattering parame-
ters of the side-coupled opto-
mechanical arrangement with
degenerate optical modes for
different pumping intensities
associated with (a) jāj ¼ 10,
(b) jāj ¼ 100, and (c) jāj ¼
1000. Apart from a zero-
mode frequency splitting
μ ¼ 0, all parameters are the
same as in Fig. 8.
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unity. Thus, in practice, there is always a (vanishingly small)
insertion loss for the device in this side-coupled regime. The
transmission contrast is shown in Fig. 10(b) in a parameter
map of the normalized mode splitting and cooperativity
and for a critically coupled system (η ¼ 0.5). In this case, it
is again worth exploring a scenario with no mechanical
dissipation. According to Eqs. (29), at the asymptotic limit
Γm → 0, or equivalently C → ∞, the forward transmission
becomes S12 ¼ 1 − 2η while the backward transmission
approaches S21 ¼ 1. Therefore, this system can operate as an
isolator as long as η ≠ 1, i.e., as long as internal optical
losses exist.
This analysis points out a fundamental distinction

between the operations of the two considered scenarios,
end- and side-coupled geometries. In the side-coupled
operation, it is the optical loss that leads to zero trans-
mission, and the presence of mechanical loss is not
detrimental in order to achieve one-way transmission.
On the contrary, in the end-coupled geometry, mechanical
loss blocks light in the unwanted propagation direction, and

the optical loss should be as low loss as possible. As a
result, isolation at negligible insertion loss in the side-
coupled geometry is possible only at very high coopera-
tivities, resulting in a bandwidth ultimately limited by the
optical linewidth [15]. Instead, the different loss mecha-
nism in the end-coupled geometry leads to optimal iso-
lation at much lower cooperativities but at the cost of
reduced bandwidths.
An interesting example of a side-coupled structure is the

microring resonator system explored in Refs. [15,20,21].
Such a system is typically analyzed in terms of clockwise
(cw) and counterclockwise (ccw) modes. As each of the cw
and ccw modes can leak only into one of the two ports, in
such a description breaking the reciprocity requires driving
one of the two modes while leaving the other mode
unpumped [15]. Alternatively, one can consider a pair of
even and odd modes as the eigenbasis, falling within the
general framework presented in this section [21].

VII. NONRECIPROCAL AMPLIFICATION

In this section, we consider nonreciprocal amplification
[10,19] in the three-mode optomechanical system dis-
cussed above. Such directional amplification has been
experimentally demonstrated in Josephson circuits [6,11]
and in optomechanical cavities [20,21], while it has been
shown that a generic system of three harmonic modes,
coupled parametrically through two pump harmonics,
serves as a minimal system for directional amplification
[12]. In all examples discussed so far, we considered
operation in the red-detuned regime, which is the most
commonly considered in optomechanical systems for
nonreciprocity and isolation. However, under the sideband
resolved approximation, the formulation derived in the
previous sections is directly applicable also to the blue-
detuned regime, by simply choosing Δ̄ ¼ Ωm. Figure 11
shows the transmission coefficients associated with

2.0
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1.0

0.5

0.0
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nd-coupled

S
ide-coupled

(a) (b) (c)

(d) (f)
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FIG. 11. Transmission co-
efficients of the end- (top)
and side-coupled (bottom)
structures when the system
is driven in the upper
mechanical sideband of the
cavity, i.e., Δ̄ ¼ Ωm for dif-
ferent pump intensities. All
parameters are the same as
Figs. 5 and 8. The intracavity
pump photons are associated
with jāj ¼ 20 (a,d), jāj ¼ 80
(b,e), jāj ¼ 200 (c,f).

(a) (b)

FIG. 10. (a) Normalized frequency splitting required for a
perfect rejection of the backward propagating probe in a side-
coupled structure as a function of the outcoupling loss ratio η and
the multiphoton cooperativity of each optical mode. (b)Maximum
transmission contrast as a function of the normalized frequency
splitting and cooperativity for a critically coupled structure
(η ¼ 0.5).

OPTICAL NONRECIPROCITY BASED ON … PHYS. REV. APPLIED 7, 064014 (2017)

064014-11



end- and side-coupled structures [Eqs. (19) and (26)] when
driven at the upper mechanical sideband, with the two
modes pumped at Δϕ ¼ π=2 phase difference. For an
intermediate pump power range, large amplification can
be achieved in this regime, in either the forward or
backward direction, due to parametric gain. At resonance
ω ¼ −Ωm (recall that ω ¼ ωp − ωL), the transmission
coefficients for the end-coupled structure become

S12ðω ¼ −ΩmÞ ¼ −2η ð
μ
κ=2Þ þ C sinðΔϕÞ
1þ ð μ

κ=2Þ2 − 2C
; ð31aÞ

S21ðω ¼ −ΩmÞ ¼ −2η ð
μ
κ=2Þ − C sinðΔϕÞ
1þ ð μ

κ=2Þ2 − 2C
; ð31bÞ

while for the side-coupled geometry

S12ðω ¼ −ΩmÞ ¼ 1 − 2η
1 − C½1þ sinðΔϕÞ�
1þ ð μ

κ=2Þ2 − 2C
; ð32aÞ

S21ðω ¼ −ΩmÞ ¼ 1 − 2η
1 − C½1 − sinðΔϕÞ�
1þ ð μ

κ=2Þ2 − 2C
: ð32bÞ

Clearly, in both cases the transmittivities can be larger
than unity, while the system is nonreciprocal. It should be
noted that all the scattering parameters in Eqs. (31) and (32)
involve a singularity at a critical power level, corresponding
to 2C ¼ 1þ ½μ=ðκ=2Þ�2. This shows the onset of instabil-
ities when the system is excited at ω ¼ −Ωm. As we
discuss in Sec. IX, such instability can occur in both the
red- and blue-detuned regimes, but in the red-detuned
regime it requires much larger power levels.

VIII. SIDEBAND RESOLUTION

Our analysis so far has been based on the assumption of
operation in the resolved sideband regime, for which the
optical linewidth is much narrower than the mechanical
frequency, thus filtering out the undesired sideband gen-
erated at 2ωL − ωp (see Fig. 12). In the following, we show
that large nonreciprocity can also be achieved outside the
resolved sideband regime, at the cost of a higher pump
intensity. The general solution for this scenario can be

derived from Eqs. (8) and (9), which take into account the
effect of both sidebands. Using these equations and con-
sidering both terms of δa1;2ðtÞ and δa�

1;2ðtÞ, the frequency-
domain equations governing the small signals can be
written as

i

�Σo1 0

0 Σo2

��
δa1
δa2

�
− i

ℏ
Σm

� jG1j2 G1G�
2

G�
1G2 jG2j2

��
δa1
δa2

�

− i
ℏ
Σm

�
G2

1 G1G2

G1G2 G2
2

��
δa�1ð−ωÞ
δa�2ð−ωÞ

�

þDT

�
δsþ1
δsþ2

�
¼ 0; ð33Þ

where δaðωÞ ¼ FfδaðtÞg and δa�ð−ωÞ ¼ Ffδa�ðtÞg.
Considering this latter relation along with its complex
conjugate at negative frequencies, and using the input-
output relations, we obtain

i

�
LðωÞ QðωÞ

−Q�ð−ωÞ −L�ð−ωÞ
��

δAðωÞ
δA�ð−ωÞ

�

þ
�
D 0

0 D�

�T� δSþðωÞ
δSþ�ð−ωÞ

�
¼ 0; ð34Þ

�
δS−

δS−�ð−ωÞ
�

¼
�
C 0

0 C�

��
δSþ

δSþ�ð−ωÞ
�

þ
�
D 0

0 D�

��
δAðωÞ

δA�ð−ωÞ
�
; ð35Þ

where

δA ¼
�
δa1ðωÞ
δa2ðωÞ

�
; ð36Þ

δS� ¼
�
δs�1 ðωÞ
δs�2 ðωÞ

�
; ð37Þ

LðωÞ ¼
�Σo1ðωÞ 0

0 Σo2ðωÞ
�
− ℏ
Σm

� jG1j2 G1G�
2

G�
1G2 jG2j2

�
;

ð38Þ

QðωÞ ¼ − ℏ
ΣmðωÞ

�
G2

1 G1G2

G1G2 G2
2

�
: ð39Þ

Equations (34) and (35) can be solved for the modified
scattering parameters as

0

−Δ

−

FIG. 12. A schematic illustration of the different frequency
components involved in the system.
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�
δS−ðωÞ

δS−�ð−ωÞ
�

¼
��

C 0

0 C�

�
þ i

�
D 0

0 D�

�

×

�
LðωÞ QðωÞ

−Q�ð−ωÞ −L�ð−ωÞ
�−1

×

�
D 0

0 D�

�T�� δSþðωÞ
δSþ�ð−ωÞ

�
: ð40Þ

Thus, the identical-frequency and frequency-converter
scattering matrices Sðω;ωÞ and Sðω;−ωÞ, defined as

�
δs−1 ðωÞ
δs−2 ðωÞ

�
¼ Sðω;ωÞ

�
δsþ1 ðωÞ
δsþ2 ðωÞ

�

þ Sðω;−ωÞ
�
δsþ�

1 ð−ωÞ
δsþ�

2 ð−ωÞ
�
; ð41Þ

become

Sðω;ωÞ¼Cþ iDfLðωÞ−QðωÞ½L�ð−ωÞ�−1Q�ð−ωÞg−1DT;

ð42Þ

Sðω;−ωÞ ¼ iDfLðωÞ −QðωÞ½L�ð−ωÞ�−1Q�ð−ωÞg−1
×QðωÞ½L�ð−ωÞ�−1D�T: ð43Þ

Note that Eq. (42) should be compared with the scatter-
ing matrix obtained under a single sideband approximation
[Eq. (12)], when replacing LðωÞ with L0ðωÞ ¼ LðωÞ−
QðωÞ½L�ð−ωÞ�−1Q�ð−ωÞ. This latter term can be calcu-
lated as

L0ðωÞ ¼
 
Σo1ðωÞ − ℏ

Σm
½1þ α�ð−ωÞ�jG1j2 − ℏ

Σm
½1þ α�ð−ωÞ�G1G�

2

− ℏ
Σm

½1þ α�ð−ωÞ�G�
1G2 Σo2ðωÞ − ℏ

Σm
½1þ α�ð−ωÞ�jG2j2

!
; ð44Þ

where the frequency-dependent modification factor α is defined as

αðωÞ ¼ ℏ½jG1j2Σo2ðωÞ þ jG2j2Σo1ðωÞ�
ΣmðωÞΣo1ðωÞΣo2ðωÞ − ℏ½jG1j2Σo2ðωÞ þ jG2j2Σo1ðωÞ�

: ð45Þ

Therefore, the same-frequency scattering matrix becomes

Sðω;ωÞ ¼ Cþ iD

�Σo1ðωÞ − ℏ
Σm

½1þ α�ð−ωÞ�jG1j2 − ℏ
Σm

½1þ α�ð−ωÞ�G1G�
2

− ℏ
Σm

½1þ α�ð−ωÞ�G�
1G2 Σo2ðωÞ − ℏ

Σm
½1þ α�ð−ωÞ�jG2j2

!−1
DT: ð46Þ

(a)

(d) (e) (f)

(b) (c)

FIG. 13. The forward
(blue) and backward (red)
transmission coefficients
for different sideband res-
olution ratios as obtained
with (top) andwithout (bot-
tom) utilizing the single-
sideband approximation.
Here, we consider a side-
coupled structure driven in
the lower mechanical side-
band, and the set of param-
eters used are as follows:
η ¼ 0.5, 2μ ¼ 5 MHz,
Ωm=2π ¼ 50 MHz, Γm=
2π ¼ 10 KHz, m ¼ 6 ng,
G=2π ¼ 6 GHz=nm, and
ā ¼ 250. The total optical
losses are assumed to be
κ=2π ¼ 5 (a),(d), 50 (b),
(e), and 500 MHz (c),(f).
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Interestingly, the modified matrix L0ðωÞ exhibits the
same type of asymmetry as LðωÞ, which in turn guarantees
nonreciprocity. This property can be verified by calculating
the transmission coefficients obtained through the full
solution of Eq. (46) and comparing it with the simplified
solution Eq. (12), which neglects the effect of the other
sideband. Figure 13 shows the transmission coefficients
obtained based on these two approaches for three different
values of sideband resolution ratio Ωm=κ ¼ 10, 1, and 0.1.
Here, the sideband resolution ratio is decreased by increas-
ing the total optical losses κ, while the mechanical
frequency is assumed to be constant. As seen in this figure,
the solution obtained under the single-sideband approxi-
mation is close to the complete solution; only minor
deviations occur at ω ≈ −Ωm. Interestingly, the nonrecip-
rocal response is preserved in the unresolved sideband
regime, even though the isolation contrast associated with
the OMIT feature is significantly reduced. In fact, the
reduction of the peak transparency is expected as the total
losses are increased. Increasing κ can nonetheless be
beneficial, as significantly larger single-photon coupling
rates g0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mΩm

p
G have been reported outside the

resolved sideband regime [32]. To compensate for the
increased losses and maintain a strong nonreciprocal
behavior, the pump power should be increased such that

the multiphoton cooperativity of each mode remains con-
stant. It should be noted that in the case of unresolved
sidebands, whereas isolation at ω can be near ideal, it
would be accompanied by a finite conversion to frequency
−ω. For applications where such frequency-converted
transmission is detrimental, additional filtering could be
warranted.

IX. LINEAR EIGENMODE ANALYSIS

In this section, we rigorously explore the linear eigenm-
odes of the multimode optomechanical system. Such
linear eigenmodes uniquely determine the overall behavior
of the scattering parameters of the system at given power
levels and therefore allow discussing its temporal evolution
and stability. Here, we first derive and compare the
eigenvalues calculated under different approximations.
Next, by exploring the evolution of the eigenvalues in
the complex plane, we discuss the behavior of the reflection
and transmission coefficients under different drive con-
ditions. Then, we analyze the onset of instabilities at high
pump powers.
Consider again the linearized dynamical equations (8)

and (9) in the absence of external signal excitations. These
equations can be rewritten in the matrix form

d
dt

0
BBBBBBBBB@

δa1

δa2

δa�
1

δa�
2

δp

δx

1
CCCCCCCCCA

¼ i

0
BBBBBBBBB@

Δ̄1 þ iκ1=2 0 0 0 0 G1

0 Δ̄2 þ iκ2=2 0 0 0 G2

0 0 −Δ̄1 þ iκ1=2 0 0 −G�
1

0 0 0 −Δ̄2 þ iκ2=2 0 −G�
2

−iℏG�
1 −iℏG�

2 −iℏG1 −iℏG2 iΓm imΩ2
m

0 0 0 0 −i=m 0

1
CCCCCCCCCA

0
BBBBBBBB@

δa1
δa2

δa�
1

δa�
2

δp

δx

1
CCCCCCCCA
; ð47Þ

where δp ¼ m dðδxÞ=dt represents the momentum of the mechanical mode. Assuming an ansatz of
ð δa1 δa2 δa�

1 δa�
2 δp δx ÞT ¼ vTe−iωt, the eigenvalues ω are found as roots of the equation

ΣmðωÞΣo1ðωÞΣo2ðωÞΣ�
o1ð−ωÞΣ�

o2ð−ωÞ − 2ℏjG1j2Σo2ðωÞΣ�
o2ð−ωÞ − 2ℏjG2j2Σo1ðωÞΣ�

o1ð−ωÞ ¼ 0; ð48Þ

which is associated with the poles of the scattering coefficients when considering both sidebands. This equation
can be much simplified when ignoring the coupling to conjugate optical fields centered at the opposite sideband. This
can be seen from the large detuning between the diagonal elements 1 and 3 as well as 2 and 4 in the dynamical equations
(47), which significantly reduces the energy transfer between the two sidebands for jΔ̄1;2j ≫ κ1;2. In this regime, Eqs. (47)
reduce to

d
dt

0
BBB@

δa1

δa2

δp

δx

1
CCCA ¼ i

0
BBBBB@

Δ̄1 þ iκ1=2 0 0 G1

0 Δ̄2 þ iκ2=2 0 G2

−iℏG�
1 −iℏG�

2 iΓm imΩ2
m

0 0 −i=m 0

1
CCCCCA

0
BBB@

δa1

δa2

δp

δx

1
CCCA; ð49Þ

which leads to the characteristic polynomial
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Σo1ðωÞΣo2ðωÞΣmðωÞ − ℏðΣo2ðωÞjG1j2 þ Σo1ðωÞjG2j2Þ ¼ 0;

ð50Þ

which is the denominator of the scattering coefficients in
Eqs. (13). A further simplification can be made by con-
sidering only one of the two mechanical sidebands. This
can be done by reducing the order of the mechanical
equation. For a high Q-factor mechanical mode, assuming
operation around one of the two sidebands, i.e.,
ω ≈�Ωm for a red- or blue-detuned system, the

second-order operator governing the mechanical mode
can be simplified as ½ðd2=dt2ÞþΓmðd=dtÞþΩ2

m�δx≈∓
i2Ωm½ðd=dtÞþðΓm=2Þ�iΩm�δx, and thus the mechanical
equation of motion (9) reduces to

d
dt

δx ¼∓ iΩmδx − Γm

2
δx� i

ℏ
2mΩm

ðG�
1δa1 þ G�

2δa2Þ:

ð51Þ

The dynamical equations can now be written as

d
dt

0
B@

δa1

δa2

δx

1
CA ¼ i

0
BB@

Δ̄1 þ iκ=2 0 G1

0 Δ̄2 þ iκ=2 G2

�ℏG�
1=2mΩm �ℏG�

2=2mΩm ∓ Ωm þ iΓm=2

1
CCA
0
BB@

δa1

δa2

δx

1
CCA; ð52Þ

which leads to the eigenvalue equation

Σo1ðωÞΣo2ðωÞΣ�
mðωÞ

∓ ℏ
2mΩm

½Σo2ðωÞjG1j2 þ Σo1ðωÞjG2j2� ¼ 0; ð53Þ

where Σ�
mðωÞ ¼ ω ∓ Ωm þ iðΓm=2Þ represents the positive

or negative sideband inverse mechanical susceptibility.
Note that, in relations (51)–(53), the upper (lower)
signs are associated with the red- (blue-) detuned regimes
(Δ̄1;2≈ ∓ Ωm).
Figure 14 shows the evolution of the eigenvalues

obtained from Eqs. (48), (50), and (53) in the complex

domain when the intracavity photon bias is increased from
jāj2 ¼ 0 to jāj2 ¼ 106. Here, we consider both the red-
[(a)–(c)] and blue-detuned [(d)–(f)] regimes for a system
with jG1j ¼ jG2j, κ1 ¼ κ2, and Δ̄1;2 ¼ Δ̄� μ, while all
parameters are the same as in the examples of Figs. 5 and 8.
As expected, given that the system investigated in this
example is deeply within the resolved sideband regime, all
three approximations result in similar eigenvalues. It is
worth noting that, in all three characteristic equations (48),
(50), and (53), the enhanced optomechanical coupling
factors appear in absolute values. Therefore, and quite
interestingly, based on these relations the phases of the
pump beams do not have any influence on the poles of the
system. This is due to our choice of using normal modes as
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(a) (b) (c)

(d) (e) (f)

FIG. 14. Evolution of the
eigenvalues of the multimode
optomechanical system in the
complex plane for different
pump powers. (a)–(c) The ei-
genvalues obtained under the
double-sideband [Eq. (48)],
single-sideband [Eq. (50)],
and rotating-wave approxi-
mation [Eq. (53)], respec-
tively. (d)–(f) The same as
the top panels but for the
blue-detuned regime. In all
cases, the arrows show the
migration direction of the ei-
genvalues as the pump power
increases.Inpart(c), themark-
ers are, respectively, associ-
ated with jāj ¼ 10 (cross),
jāj ¼ 100 (circle), and jāj ¼
1000 (star).Allparameters are
the same as in Figs. 5 and 8.
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the basis of the bare optical evolution matrix. In contrast,
the drive phases play a role in the zeros of the scattering
coefficients that control their frequency dispersion.
In general, the real and imaginary components of the

poles are, respectively, associated with the resonance
features and their linewidths. Comparing the scattering
coefficients of end- and side-coupled structures as shown in
Figs. 5 and 8, for a given pump power level, similar
resonance features can be distinguished irrespective of the
relative phase of the drive lasers. In fact, these resonances
follow the complex trend shown in Fig. 14. Considering
first the red-detuned regime, given that for jω −Ωmj < κ=2
the three approximations lead to similar results, we focus
on the eigenvalues obtained from the rotating-wave
approximation presented in Fig. 14(c). According to this
figure, at low pump powers the two optical modes are
separated by 2μ on the real axis equally spaced on both
sides of the mechanical mode which exhibits a much lower
dissipation rate. By increasing the power, the mechanical
mode hybridizes with the optical modes, moving towards
each other along the imaginary axis. As a result, the
mechanical linewidth is significantly enhanced, serving
as a reservoir to absorb the backward propagating signal.
As shown in Fig. 14(c), the imaginary part of the hybrid
mechanical mode eigenvalue, and thus the rejection band-
width of the device, is asymptotically limited by κ=2. In
addition, the linewidths of the optical resonances are
reduced, while their separation on the real frequency axis
increases with increasing pump power. According to Fig. 8,
while for low pump powers the bandwidth of the forward
probe is governed by the hybrid mechanical linewidth, at
high powers it is determined by the separation of the hybrid
optical modes on the real axis, which is ultimately limited
by 2Ωm.
In the blue-detuned regime [Figs. 14(d)–14(f)], this sce-

nario completely changes due to parametric amplification. In
this case, by increasing the pump power, optical and
mechanical modes move in opposite directions on the
imaginary axis. This results in an early appearance of an
eigenvalue with a positive imaginary part, corresponding to
the onset of parametric amplification. In addition, as opposed
to the case of red-detuning, by increasing the pumppower, the
hybrid optical mode eigenvalues travel toward each other.
These two eigenvalues approach at a critical power level and
then repel each other on the imaginary axis. Asymptotically,
the imaginary part of one of the optical modes approaches
−κ=2, while the other eigenvalue increases indefinitely. As a
result, by increasing the power level, the rejection bandwidth
of the backward propagating probe approaches κ=2, while
there is no bound on the bandwidth of the forward

transmission. This analysis is perfectly consistent with the
operationof the different geometries described in the previous
section and their dependence on the input power.
Before ending this section, it is worth noting that, similar

to single-mode optomechanical systems (see, for example,
Refs. [33–35]), this eigenmode analysis hints to the fact
that parametric instabilities can also occur in the red-
detuned regime at sufficiently large power levels. This
can be shown through Eq. (48), which takes into account
both sidebands. According to Fig. 14(a), by increasing the
pump power, two eigenvalues from positive and negative
sidebands move toward each other until merging at an
exceptional point occurring at a very high power. Above
this point, the two eigenvalues repel each other on the
imaginary axis, leading to an unstable pole with a positive
imaginary part.

X. BIASING CONDITIONS

In this section, we explore the steady-state response of
the multimode cavity optomechanical system of Fig. 4 in
order to find the necessary bias condition for the two optical
modes in terms of input drives. The behavior of the modal
bias fields is governed by Eqs. (6) and (7), which, when
neglecting all time derivatives, is simplified to

i

� ðΔ1 þ γ11jā1j2 þ γ12jā2j2 þ iκ1=2Þā1
ðΔ2 þ γ21jā1j2 þ γ22jā2j2 þ iκ2=2Þā2

�
¼ −DT

�
s̄þ1
s̄þ2

�
;

ð54Þ

where in these relations γ11 ¼ ½ℏ=ðmΩ2
mÞ�G2

1, γ12 ¼ γ21 ¼
½ℏ=ðmΩ2

mÞ�G1G2, and γ22 ¼ ½ℏ=ðmΩ2
mÞ�G2

2. For a given
driving condition s̄þ1;2, Eqs. (54) can be solved numerically
for the modal biases ā1;2. Here, we follow the reverse
approach in order to find the input pumps that allow biasing
the two modes with the same intensity but with a desired
phase difference, i.e., ā2 ¼ ā1 expðiΔϕÞ≡ ā expðiΔϕÞ.
The input fields can be obtained as

�
s̄þ1
s̄þ2

�
¼−iðDTÞ−1

� ½Δ1þðγ11þγ12Þjāj2þ iκ1=2�
½Δ2þðγ21þγ22Þjāj2þ iκ2=2�eiΔϕ

�
ā:

ð55Þ

To simplify the analysis, we assume G1 ¼ G2 and thus
γ11 ¼ γ12 ¼ γ21 ¼ γ22 ≡ γ. As before, we also assume
κ1 ¼ κ2, η1 ¼ η2, and Δ1;2 ¼ Δ ∓ μ. Under these condi-
tions, we write

�
s̄þ1
s̄þ2

�
¼ ā

ηκ

�
d22ðΔ − μþ 2γjāj2 þ iκ=2Þ − d21ðΔþ μþ 2γjāj2 þ iκ=2ÞeiΔϕ
−d12ðΔ − μþ 2γjāj2 þ iκ=2Þ þ d11ðΔþ μþ 2γjāj2 þ iκ=2ÞeiΔϕ

�
: ð56Þ
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Based on this relation, and using the coupling matrices
derived in Sec. IV, the input fields required to achieve
Δϕ ¼ π=2 for the end-coupled structure are

�
s̄þ1
s̄þ2

�
¼ 1ffiffiffiffiffi

ηκ
p ā

�−iðΔþ 2γjāj2 þ iκ=2Þ − μ

ðΔþ 2γjāj2 þ iκ=2Þ þ iμ

�
; ð57Þ

while for the side-coupled geometry

�
s̄þ1
s̄þ2

�
¼

ffiffiffiffiffi
2

ηκ

s
ā

�
Δþ 2γjāj2 þ iκ=2

−μ
�
: ð58Þ

Given that μ can, in principle, be ignored in comparison
with Δ, Eqs. (57) and (58) imply that, in order to enforce a
π=2 phase difference between the modal biases, the end-
coupled structure should be excited from both channels with
a −π=2 phase difference, while the side-coupled structure
should be excited only from one port. This is a quite
interesting and general result, consistent with several recent
implementations of optomechanical isolators [21,22].

XI. TIME-DOMAIN SIMULATIONS

While the previous results generally describe the steady-
state response of a wide class of nonreciprocal systems
based on optomechanical interactions, it is important to
assess their temporal dynamics, governed by the nonlinear
evolution equations (6) and (7). A rigorous numerical
treatment of these equations is highly desirable, since it
can justify the validity of the frequency-domain scattering
parameters obtained from the linearized system with or
without making the rotating-wave approximation. In addi-
tion, other important issues, such as the onset of opto-
mechanical instabilities and the presence of higher-order
sidebands, can be addressed with a rigorous numerical
solution of the governing nonlinear dynamical equations.
Such considerations can be important in properly devising
pump and probe levels, in order to avoid unwanted non-
linear effects not captured by the linearized model
described so far, and which can deteriorate the overall
performance of the device.
By considering the mechanical momentum

p ¼ mdx=dt, we utilize a one-way propagating finite-
difference method to solve the set of nonlinear equations

d
dt

0
BBB@

a1

a2

p

x

1
CCCA ¼ i

0
BBB@

Δ1 þ G1xþ iκ1=2 0 0 0

0 Δ2 þ G2xþ iκ2=2 0 0

−iℏG1a�
1 −iℏG2a�

2 iΓm imΩ2
m

0 0 −i=m 0

1
CCCA
0
BBB@

a1

a2

p

x

1
CCCAþ

0
BBB@

d11s
þ
1 þ d21s

þ
2

d12s
þ
1 þ d22s

þ
2

0

0

1
CCCA; ð59Þ

where the output fields can be instantaneously obtained
in terms of the inputs as well as the optical modal
amplitudes according to Eq. (2). The response of this
system to a single-sideband excitation probe can be ex-
plored by considering

sþ1 ðtÞ ¼ s̄þ1 þ sþ01 expð−iωtÞ; ð60aÞ

sþ2 ðtÞ ¼ s̄þ2 þ sþ02 expð−iωtÞ; ð60bÞ

where the small signal coefficients sþ01 and s
þ
02 are assumed

to be much smaller than the biases s̄þ1 and s̄þ2 obtained from
Eqs. (57) and (58). Here, we consider the side-coupled
structure with parameters described in Fig. 5 and simulate
the dynamics for a given time t0 until the system reaches a
steady state. The transmission coefficients are then ob-
tained by calculating the Fourier contents of the output
signal in both channels. Figure 15 shows the power
spectrum of the input and output signals at both ports
when driven from the left [Figs. 15(a)–15(d)] and right
[Figs. 15(e)–15(h)] directions with a probe signal at
ω ¼ Ωm. In both cases, the transmission coefficients are
in good agreement with the frequency-domain analysis

based on the linearized equations. In the case of backward
excitation, a second harmonic at 2Ωm appears in the
transmission coefficient as shown in Fig. 15(g). This is
indeed due to the fact that for the side-coupled structure the
pump bias at port 2 is much smaller than port 1, and in this
example the backward signal power is comparable to the
pump. As a result, the first-order linearization of the
dynamical equations is no longer strictly valid. This,
however, does not significantly affect the performance of
the device, as both harmonics in the transmitted signal carry
less than 2% of the power, while the rest is attenuated. In
principle, additional sidebands can be investigated by
considering higher-order harmonics in the Taylor series
expansion of the field and position variables, as done in
Ref. [36] for a single-mode optomechanical system.

XII. THERMAL NOISE

So far in this work, the effect of noise has been
neglected; however, it may have important implications
in the operation of the proposed devices, in particular, for
nanophotonics and quantum computing. In particular, a
major source of noise in optomechanical systems is the
thermal Langevin forces affecting the mechanical
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resonator. Thermal effects can be considered in the linear-
ized mechanical equation (9) as follows [26]:

d2

dt2
δx¼−Ω2

mδx−Γm
d
dt
δx

þ ℏ
m
ðG�

1δa1þG1δa�
1þG�

2δa2þG2δa�
2Þþ

ξðtÞ
m

:

ð61Þ

Here, ξðtÞ denotes the thermal Langevin force obeying
hξðtÞi ¼ 0 and hξðtÞξðt0Þi ¼ 2mΓmkBTδðt − t0Þ, where kB
is the Boltzmann constant and T is the temperature of the
reservoir [37]. In order to find the noise contribution in the
output ports, first we find the optical response of the system
to an external mechanical force F ðtÞ [associated with FðωÞ
in the Fourier domain]. In this case, it is straightforward to
show that Eqs. (2), (8), and (61) follow

�
δs−1
δs−2

�
¼ SðωÞ

�
δsþ1
δsþ2

�
þ
�
H1ðωÞ
H2ðωÞ

�
FðωÞ; ð62Þ

whereH1;2ðωÞ represent the transfer function of a mechani-
cal derive to the output port fields f1;2ðωÞ ¼ H1;2ðωÞFðωÞ
and are obtained from

�
H1ðωÞ
H2ðωÞ

�
¼ 1

ΣmðωÞ
DðM þ ωIÞ−1

�
G1

G2

�
: ð63Þ

As in previous sections, here for simplicity we assume
κ1;2 ¼ κ, η1;2 ¼ η, and Σo1;2 ¼ Σo � μ. In addition, without
the loss of generality we consider G2 ¼ iG1 ¼ iG, such
that the signal transmits from port 1 to 2 while it is being

blocked in the reverse direction. Under these conditions,
Eq. (63), together with Eqs. (11), (16) and (18), result in the
following expressions for the end-coupled system:

H1ðωÞ ¼ −i ffiffiffiffiffi
ηκ

p
G

Σo − iμ
ðΣ2

o − μ2ÞΣm − 2ℏjGj2Σo
; ð64aÞ

H2ðωÞ ¼
ffiffiffiffiffi
ηκ

p
G

Σo þ iμ
ðΣ2

o − μ2ÞΣm − 2ℏjGj2Σo
; ð64bÞ

while for the side-coupled system we have

H1ðωÞ ¼ −iG
ffiffiffiffiffi
ηκ

p ffiffiffi
2

p 2μ

ðΣ2
o − μ2ÞΣm − 2ℏjGj2Σo

; ð65aÞ

H2ðωÞ ¼ iG
ffiffiffiffiffi
ηκ

p ffiffiffi
2

p 2Σo

ðΣ2
o − μ2ÞΣm − 2ℏjGj2Σo

: ð65bÞ

The noise spectral densities at the output ports can now
be obtained from Sf1;2f1;2ðωÞ ¼ jH1;2ðωÞj2SξξðωÞ, which
results in:

Sf1f1ðωÞ ¼ 2mΓmkBT
ηκjGj2jΣo − iμj2

jðΣ2
o − μ2ÞΣm − 2ℏjGj2Σoj2

; ð66aÞ

Sf2f2ðωÞ ¼ 2mΓmkBT
ηκjGj2jΣo þ iμj2

jðΣ2
o − μ2ÞΣm − 2ℏjGj2Σoj2

; ð66bÞ

for the end-coupled geometry and

Sf1f1ðωÞ ¼ 2mΓmkBT
2ηκjGj2μ2

jðΣ2
o − μ2ÞΣm − 2ℏjGj2Σoj2

; ð67aÞ
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FIG. 15. Power spectrum of
the input and output fields ob-
tained from the numerical solu-
tion of nonlinear dynamical
equations (59) when the system
is probed from the left (a)–(d)
and right (e)–(h). Here we as-
sume a side-coupled structurewith
parameters used in Fig. 5, while
the probe signal is launched at
ω ¼ Ωm and the drive laser power
is obtained from Eq. (58) such
that it biases both modes with
jāj ¼ 1000 and with a π=2 phase
difference.
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Sf2f2ðωÞ ¼ 2mΓmkBT
2ηκjGj2jΣoj2

jðΣ2
o − μ2ÞΣm − 2ℏjGj2Σoj2

; ð67bÞ

for the side-coupled system. According to these equations,
the spectral densities in both scenarios are proportional to
the pump power, a direct result of the enhanced optome-
chanical coupling rate. However, the contribution of noise
at the two ports is, in general, different. In the end-coupled
system, for μ ¼ 0, which is associated with no direct optical
path between the two ports, thermal noise equally affects
the two ports. By increasing μ, however, the noise power
decreases in port 1 and increases in port 2. The minimum
noise in port 1 is associated with the critical value μ ¼ κ=2.
In the case of the side-coupled geometry, for μ ¼ 0 the
thermal noise vanishes at port 1, in complete agreement
with the fact that in this regime port 1 is decoupled from the
mechanical mode. On the other hand, by increasing μ, the
noise power increases in port 1.

XIII. CONCLUSIONS

The aim of this paper is to provide a general theoretical
framework for optomechanical multimode systems yield-
ing nonreciprocal responses and derive general conditions
for nonreciprocal light propagation in these systems. We
discuss different geometries that can realize optimal con-
ditions for isolation and gyration in practical setups and
analyzed in detail end- and side-coupled geometries, which
span a wide range of photonic structures. We show that
both setups can lead to near-ideal isolation but in different
parameter regimes. This is related to the fact that the
reservoir into which energy is lost has a drastically different
nature in these cases. In principle, arbitrary photonic
structures can be described in terms of the direct path
scattering matrix C as a linear combination of these two
extreme scenarios and can be therefore generally analyzed
within the presented framework. Even though we explore
optical modes with purely even and odd spatial symmetries,
arbitrary mode profiles can be also considered by properly
choosing the coupling matrix D. We derive analytical
expressions for the scattering parameters for such arrange-
ments and the conditions for ideal isolation. The possibility
of one-way amplification in the blue-detuned regime is also
discussed. Our analysis shows that optomechanical iso-
lation may be achieved even outside the sideband resolved
regime, at the price of increased cooperativity levels. The
pumping conditions of the system to yield the ideal driving
requirements, and its behavior under nonlinear conditions
in time domain, are also studied. Finally, we investigate the
effect of thermal mechanical noise and show that it affects
the two optical ports differently.
Our results suggest that cavity optomechanics can

provide a rich and powerful platform to realize reconfig-
urable nonreciprocal devices that can be externally
controlled. In principle, optomechanical settings can be

employed for more complex functionalities, such as cir-
culation between an arbitrary number of ports as well as
nonreciprocal and topologically nontrivial periodic struc-
tures [38,39]. In addition, our analysis suggests that, in
order to exploit the full potential of optomechanical
interactions, a proper design of the photonic circuitry is
highly desirable. We envision the application of this
theoretical framework in modeling and investigating the
optical response of large optomechanical systems with
multiple coupled optical and mechanical modes, in order to
fully take advantage of the strong coupling between
photons and phonons in a suitably tailored optomechanical
material platform.
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