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We present the “trimon,” a multimode superconducting circuit implementing three qubits with all-to-all
longitudinal coupling. This always-on interaction enables simple implementation of generalized con-
trolled-NOT gates which form a universal set. Furthermore, two of the three qubits are protected against
Purcell decay while retaining measurability. We demonstrate high-fidelity state swapping operations
between two qubits and characterize the coupling of all three qubits to a neighboring transmon qubit.
Our results offer a different paradigm for multiqubit architecture with applications in quantum error
correction, quantum simulations, and quantum annealing.
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I. INTRODUCTION

Controlling and manipulating the interactions between
multiple qubits is at the heart of quantum-information
processing, and the superconducting-circuit architecture [1]
has emerged as a leading candidate. Previous demonstra-
tions of multiqubit devices [2–8] have used transmon qubits
[9] along with separate coupling elements to implement
transverse interqubit coupling. Typically, this transverse
coupling is weak and restricted to nearest neighbors, which
limits the kind of multiqubit operations that can be
performed. While the idea of longitudinal interqubit cou-
pling [10,11] has existed for more than a decade, there has
been renewed interest in it recently, with proposals for
universal quantum computing [12–15] and quantum
annealing [16] based on modern high-coherence qubits
like the transmon. The transmon design uses the lowest two
levels of a single anharmonic oscillator mode to implement
a qubit. Extending this idea to a circuit that supports several
oscillator modes, one can implement a multiqubit system
with strong longitudinal coupling [17,18]. Previous experi-
ments have shown evidence of longitudinal coupling
[19,20] but have not demonstrated multiqubit operations,
and their coherence times have not matched those of
modern transmon qubits.

In this article, we present the “trimon,” a quantum
device implementing a three-qubit system that arises from
a single superconducting circuit. Our device [Fig. 1(a)] is
based on the Josephson ring modulator (JRM) consisting
of four nominally identical Josephson junctions in a
superconducting loop to implement three orthogonal
electrical modes [21]. This three-mode structure has
previously been exploited to couple different harmonic
oscillators for parametric amplification [22], while, more
recently, it has been proposed as a coupling element
between two qubits [16]. Here, we capacitively shunt the
JRM by connecting superconducting pads to each node
[Fig. 1(b)] to create three coupled anharmonic oscillator
modes: two dipolar and one quadrupolar [Fig. 1(c)]. Each
mode has properties similar to 3D transmon qubits [23],
with the resonant frequency and anharmonicity control-
lable by design. The longitudinal interqubit coupling [16]
of the cross-Kerr type originates due to the sharing of the
four junctions amongst all three modes. One of the two
dipolar modes couples directly to the host 3D electro-
magnetic cavity [Fig. 1(c)]; we call this dipolar mode the
A qubit. The other dipolar mode (qubit B) and the
quadrupolar mode (qubit C) ideally stay uncoupled from
the cavity and hence are protected from Purcell decay
[17]. However, this protection does not preclude cavity-
based measurement of qubits B and C; the interqubit
longitudinal coupling results in dispersive shifts similar to
that of qubit A (Appendix A).

II. DEVICE DESIGN AND PROPERTIES

The Hamiltonian of our circuit (Appendix A) when
operated at zero flux in the loop is given by
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where ωi¼A;B;C are uncoupled qubit transition frequencies,
βi ¼ Ji þ Jij þ Jki, i ≠ j ≠ k are the shifts due to self-Kerr
(Ji) and cross-Kerr (Jij) terms, χi¼A;B;C are the dispersive
shifts and ωcav −

P
iχi is the cavity frequency, with all

qubits in the ground state. While the transition frequencies
can be tuned with a nonzero flux, it will introduce additional
terms in the Hamiltonian (Appendix A), and here we focus
on the zero-flux case. Because of the longitudinal σzσz
coupling, each qubit now has four possible values of tran-
sition frequency that depend on the state of the other two
qubits. For simplicity, the level diagram shown in Fig. 1(d) is
restricted to the two-qubit subspace spanned by qubits A and
B (with qubit C frozen in its ground state) but reveals all of
the important features. For a given qubit, we label the
transition frequency to be in the upper ðωu

i Þ or lower ðωl
i ¼

ωu
i − 2JABÞ band when the partner qubit is in the ground or

excited state, respectively. A rotation on qubit A conditioned
on the state of qubit B can be realized by amicrowave tone at
frequencyωl

A (B in the excited state) or ωu
A (B in the ground

state). A single pulse at ωl
A with the appropriate amplitude

and length then implements a conventional controlled-NOT
(CNOT) gate [24,25] up to a −90° phase, which we call a
−iCNOTBA gate. This extra phase can be accounted for in this
architecture by simply shifting the rotation axis of all
subsequent pulses on qubit B (Appendix B).
While the always-on σzσz coupling leads to simple

two-qubit gates, single-qubit gates become less trivial. In
order to perform a single-qubit rotation on B independent
of the state of A, one now needs to apply pulses at both ωl

B
and ωu

B. This approach is similar to an NMR technique
[26], where a single broadband pulse covering both
frequencies is used. We use a multifrequency pulse instead
due to the large (JAB=π ¼ 201.2 MHz) coupling in our
system. Doing so also automatically accounts for the phase
evolution in the qubit states due to the always-on σzσz
coupling [26]. In general, for such an N-qubit system,
pulses at 2N−1 different frequencies will be required to
perform a single-qubit gate, 2N−2 frequencies for two-qubit
gates, and so on. However, for N ¼ 3, the frequency
crowding is manageable and the multifrequency pulses
can be generated using sideband modulation of a single
microwave source (Appendix B).
The trimon devices are fabricated on a high-resistivity

intrinsic silicon chip using standard electron-beam lithog-
raphy and double-angle evaporation of aluminium. The
device, placed inside a two-port copper cavity with
asymmetric coupling is put inside light-tight radiation
and cryoperm shields and cooled to 30 mK in a cryo-
gen-free dilution refrigerator. The first-stage amplification
of the output signal is done by a near-quantum-limited
lumped-element Josephson parametric amplifier (LJPA)
[27]. Details of the measurement setup are provided in
Appendix B. The resonant frequency and linewidth of our
measurement cavity (bare) are measured to be ωbare=2π ¼
7.23 GHz and κ=2π ¼ 3.9 MHz, respectively. The upper-
and lower-band transition frequencies are extracted using
Ramsey-fringe experiments.

III. EXPERIMENTAL RESULTS

The results of spectroscopy and coherence measure-
ments on all three qubits are tabulated in Table I, indicating
coherence properties comparable to typical 3D transmon
qubits [5]. Note that the anharmonicities (α) are about a
factor of 2 smaller than the typical transmon values, but
they can be increased by adjusting the design parameters.
The interqubit coupling (Jij) numbers confirm the strong,
pairwise longitudinal coupling. We obtain the best relax-
ation time (T1) for qubit B as it is decoupled from the
cavity. The T1;B ∼ 50 μs is consistent with our measure-
ments on regular transmon qubits when they are detuned
sufficiently from the cavity so that the relaxation time is not
limited by Purcell decay. While we expect the T1 for qubit
C to be similar to that of B, we observe it to be smaller. This
trend is seen across several devices, and one possible
reason could be the unavoidable spread in the Josephson

(a) (b)

(c) (d)

FIG. 1. (a) Circuit schematic and (b) scanning-electron-
microscope image of the trimon device. (Inset) Optical image
(false color) of the full device. The two pairs of capacitor pads
have different sizes to obtain different transition frequencies for
qubits A and B. (c) The device is placed at the center of a
rectangular copper cavity with qubit A’s dipole (the red arrow)
aligned to the cavity’s electric field in the TE101 mode (the black
arrows). Qubit B’s orthogonal dipole (the blue arrow) and qubit
C’s quadrupole (the green arrows) are also indicated. (d) Energy
level diagram of the coupled two-qubit subspace of A and B, with
qubit C in its ground state. The σzσz coupling makes the transition
frequency of each qubit dependent on the state of the other. The
upper (ωu

A;B) and lower (ωl
A;B ¼ ωu

A;B − 2JAB) band transition
frequencies for each qubit are indicated.
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energies of the four junctions. As a result, qubits B and C
develop a small dipolar component along the cavity field
leading to a finite qubit-cavity coupling (Appendix C).
Since qubit C (ωu

C=2π ¼ 7.0180 GHz) is much closer to the
bare-cavity frequency ðωbare=2π ¼ 7.23 GHzÞ than qubit B
(ωu

B=2π ¼ 6.1470 GHz), even a small coupling to the
cavity can reduce the T1 due to Purcell decay. Further
investigation is planned to understand this effect.
We first demonstrate our single-pulse CNOT gate by

preparing a Bell state using qubits A and B. For all
experiments, we start by performing a strong measurement
and process only those data for which this measurement
yields the state j000i. This operation initializes the trimon
in the j000i state with 99.7% probability. Since qubit B is
now initialized in the ground state, a π=2 pulse at frequency
ωu
B is sufficient to prepare the state j0iðj0i þ j1iÞ= ffiffiffi

2
p

.
Finally, the CNOTBA gate is implemented by a π pulse at ωl

A

to prepare the two-qubit Bell state ðj00i þ j11iÞ= ffiffiffi
2

p
. Note

that the π pulse at ωl
A implements a native −iCNOTBA gate,

and we shift the phase of all subsequent pulses of the
control qubit (B) by 90° to construct the conventional CNOT
gate. The real and imaginary parts of the reconstructed
density matrix along with the pulse sequence are shown in
Fig. 2. The fidelity of the Bell state is found to be 0.974�
0.003 using two-qubit tomography and maximum-like-
lihood estimation (MLE) and does not account for finite
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FIG. 2. (a),(b) Real and imaginary parts of the reconstructed
density matrix (MLE) for the Bell state ðj00i þ j11iÞ= ffiffiffi

2
p

, which
we prepare using the single-pulse CNOT gate. Here, the filled
colored bars are experimental data, while transparent bars with
black boundaries denote ideal values corresponding to the
intended state. (c) The quantum circuit for preparing the Bell
state and the corresponding pulse sequence with transition
frequencies are indicated. The π=2-pulse length at ωu

B is
281 ns, while the π-pulse (CNOTBA) length at ωl

A is 241 ns.
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FIG. 3. Real and imaginary parts of reconstructed density
matrices (a),(b) before SWAP operation and (c),(d) after SWAP

operation. The filled colored bars are the experimental data, while
transparent bars with black boundaries denote ideal values
corresponding to the intended state. (e) The quantum circuit
and the corresponding pulse sequence with transition frequencies
are indicated. The π=2-pulse length at ωu

B is 281 ns, the π=4-pulse
length at ωu

A and ωl
A is 108 ns, and the π-pulse lengths at ωl

A and
ωl
B are 241 and 497 ns, respectively.

TABLE I. Parameters and coherence properties of the trimon. The transition frequency (ωu) of each qubit with the
other two qubits in their ground state is listed along with the anharmonicity (α), the relaxation time (T1), the Hahn-
echo time (TE

2 ), the dispersive shift (χ), and the interqubit coupling strength (Jij).

Qubit ωu=2π (GHz) α=2π (MHz) T1 (μs) TE
2 (μs) χ=2π (MHz) Jij=π (MHz)

A 5.5585 −111.0 20.6 39.7 −0.332 JAB=π ¼ 201.2
B 6.1470 −116.0 51.4 64.8 −0.376 JBC=π ¼ 253.0
C 7.0180 −138.6 26.2 32.3a −0.386 JCA=π ¼ 232.0
aFor qubit C, the Ramsey-fringe decay time (TR

2 ) is indicated, as we were unable to get a clear Hahn-echo signal
(Appendix C).
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measurement fidelity (Appendix F). The uncertainty quoted
is the standard deviation in the fidelity in successive data
sets, while the uncertainty obtained from bootstrapping is
about an order of magnitude lower. We prepared various
other Bell states and obtained similar fidelities.
Taking the idea further, we demonstrate an optimal

SWAP gate [28,29], for the first time in circuit-QED
architecture, which swaps the quantum states of two qubits.
Our SWAP gate is realized by three CNOT pulses on qubits
A and B: SWAPAB ¼ CNOTBACNOTABCNOTBA. We prepare
the initial state jii¼ ½cosðπ=8Þj0iþ isinðπ=8Þj1i�A⊗
½ðj0iþj1iÞ= ffiffiffi

2
p �B with the fidelity 0.983� 0.005 and then,

using our SWAP gate, generate the final state jfi ¼
½ðj0i þ j1iÞ= ffiffiffi

2
p �A ⊗ ½cosðπ=8Þj0i þ i sinðπ=8Þj1i�B, with

the fidelity 0.971� 0.005. The reconstructed density matri-
ces of the initial and final two-qubit states are shown
in Fig. 3. If qubit B is initially in the ground state, the
SWAP gate can be simplified to a transfer gate which moves
a quantum state from A to B and requires only two
CNOT gates. We transfer the state ðj0i þ j1iÞ= ffiffiffi

2
p

from
qubit A to B and obtain a final-state fidelity of 0.973�
0.005 (Appendix G). In order to estimate single-qubit-gate
(consisting of two pulses at upper- and lower-band frequen-
cies) fidelities, we perform randomized benchmarking
[30] and obtain mean gate fidelities of 0.9928� 0.0001
and 0.9858� 0.0002 for qubits A and B, respectively
(Appendix E). Further improvements in fidelity are pos-
sible by optimizing the qubit-cavity coupling and reducing
pulse lengths. Given the qubit anharmonicities (Table I), we
can easily reduce the pulse lengths (see the captions of
Figs. 2 and 3) by a factor of 10 without any risk of leakage
out of the computational subspace. The pulse lengths in this
experiment are restricted due to the limited microwave
power available in our setup and the relatively weak
coupling of qubits to the cavity (Appendix C).

Since qubits A and B have nearly orthogonal dipole
moments, their coupling to a nearby qubit, say a transmon,
depends strongly onwhether the transmon’s dipole is aligned
[31] to qubit A or B. To characterize the dipolar coupling
between the trimon and a transmon qubit, we fabricate both
the devices with their centers 1mmapart on the same chip, as
shown in Fig. 4(a). The loop area of the transmon is about 7
times larger than that of the trimon. This difference in area
allows us to tune the transition frequency of the transmon
while keeping the transition frequencies of qubitsA,B, andC
relatively unchanged. Spectroscopic data in Figs. 4(b)–4(d)
show strong coupling (JAT=π¼77.6MHz) between the
transmon and qubitA since their dipoles are aligned,whereas
qubit B (JBT=π ¼ 6.8 MHz) and qubit C (JCT=π¼3.8MHz)
show much weaker coupling, as expected. Using electro-
magnetic simulations, we verify that the finite coupling of
qubits B and C is consistent with a 10%–20% variability in
the Josephson energies of the JRM arising due to fabrication
uncertainties. The variable dipolar coupling of the three
qubits to the transmon qubit nearby confirms the symmetry
of the three qubit modes and can be used to estimate the
extent to which qubits B and C are protected against Purcell
decay (Appendix C).

IV. DISCUSSION AND CONCLUSIONS

We now discuss the possibility of scaling to a larger
number of qubits using the trimon-type device. One
direction is to increase the number of junctions in the loop
to obtain more normal modes. An N-qubit device with
all-to-all longitudinal coupling can be implemented with
N þ 1 junctions in the loop. However, as mentioned earlier,
the frequency crowding and increased operational com-
plexity might limit this approach to three to four qubits.
Nevertheless, this kind of architecture might be suitable for

FIG. 4. (a) False-colored optical image of the device showing a trimon and a transmon with a spacing of about 1 mm. The dipole
of the transmon is aligned with that of qubit A of the trimon device. (b)–(d) Avoided crossing of the transmon qubit’s transition with
qubits A, B, and C. ΦT is the flux in the transmon’s loop area and Φ0 is the magnetic flux quantum. The dashed red lines are a fit to the
location of the transition frequencies using the universal avoided crossing formula. We extract the couplings JAT=π ¼ 77.6 MHz,
JBT=π ¼ 6.8 MHz, and JCT=π ¼ 3.8 MHz for the three qubits, respectively.
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building quantum annealers which do not require dynamic
control of interqubit coupling [16]. For conventional
quantum computing, once can use the trimon as a three-
qubit building block and can use existing techniques for
coupling fixed-frequency transmon-type qubits [5,8] to
build small-scale quantum processors. Another possibility
is to use the trimon as a single qubit with switchable
coupling to a cavity bus by exploiting the transfer-gate
capability. This technique can help alleviate some of the
problems related to residual coupling in such architectures.
Our experiments demonstrate a multimode supercon-

ducting quantum circuit which implements three quantum
bits with strong, pairwise longitudinal coupling. The
Purcell-protected qubits could potentially replace the stan-
dard transmon for many applications where a fast meas-
urement is required without sacrificing qubit lifetime. We
demonstrate the SWAP gate, which has several important
applications, including quantum network architectures
involving flying qubits [32] and, as an essential element
of the Fredkin gate [33], a universal gate suitable for
reversible computing. Extending to three qubits and using a
single π pulse at ωu

C − 2JCA − 2JBC, we can implement the
Toffoli gate [34,35], which is useful for quantum error
correction. The demonstration of dipolar coupling to a
nearby transmon qubit suggests that the trimon could be
scaled up using existing multiqubit techniques [5,8] with
the advantage of obtaining three qubits per block. Finally,
the trimon concept can also be extended to circuits with a
larger number of qubits with all-to-all coupling for appli-
cations in quantum annealing [16].
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APPENDIX A: HAMILTONIAN DERIVATION

The trimon device consists of four Josephson junctions
(each with Josephson energy EJ) in a superconducting loop
with four capacitor pads connected to each node. Besides
capacitances CC between adjacent node pairs (which

includes the intrinsic junction capacitance), these pads
give rise to capacitances CA and CB between diagonal
nodes, as shown in Fig. 5(a). This circuit provides three
orthogonal oscillating modes [21]: two dipolar modes and a
quadrupolar mode. The dipolar mode whose electric field is
aligned with that of the 3D measurement cavity (the TE101

mode) is called the A mode. The second dipolar mode B,
which is perpendicular to A, and the quadrupolar mode C
ideally remain uncoupled from the cavity.
In order to derive the Hamiltonian for the system,

we follow the approach used in [21] and define the
node fluxes Φμ¼1;2;3;4, which are related to the potentials
ðVμ¼1;2;3;4Þ at circuit nodes 1,2,3,4 as

Vμ¼1;2;3;4 ¼
dΦμ¼1;2;3;4

dt
≡ _Φμ¼1;2;3;4: ðA1Þ

Note that we have used a cyclic convention for node
numbering which is different from that used in Ref. [21].
In terms of these node fluxes, the capacitive energy in our
device is

HC ¼
X4
μ;ν¼1

1

2
Cμν

_Φμ
_Φν; ðA2Þ

where the capacitance matrix C is given by

C¼

0
BBB@

2C0
C þ CA −C0

C −CA −C0
C

−C0
C 2C0

C þ CB −C0
C −CB

−CA −C0
C 2CC

0 þ CA −C0
C

−C0
C −CB −C0

C 2C0
C þ CB

1
CCCA:

ðA3Þ

We ignore the capacitances of each pad to the ground and
C0
C ¼ CC þ CJ, where CJ is the intrinsic junction capaci-

tance. The inductive energy of our circuit is

HJ ¼ −
X

μ¼1;2;3;4

EJ cos δμ; ðA4Þ

whereEJ is the Josephson energy of each junction (assumed
identical) and δμ¼1;2;3;4 represent the gauge-invariant phase
differences across the junctions satisfying the condition
ðδ1 þ δ2 þ δ3 þ δ4Þ mod 2π ¼ Φ=φ0. Here,Φ is the total
flux threading the loop and φ0 ¼ Φ0=2π is the reduced flux
quantum. We now write the junction phases in terms of the
node fluxes as

δ1 ¼
1

φ0

�
Φ1 −Φ2 þ

Φ
4

�
; ðA5aÞ

δ2 ¼
1

φ0

�
Φ2 −Φ3 þ

Φ
4

�
; ðA5bÞ
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δ3 ¼
1

φ0

�
Φ3 −Φ4 þ

Φ
4

�
; ðA5cÞ

δ4 ¼
1

φ0

�
Φ4 −Φ1 þ

Φ
4

�
: ðA5dÞ

In order to transform to the mode variable (Φi¼A;B;C), we
use the following transformations:

ΦA ¼ Φ1 −Φ3; ðA6aÞ

ΦB ¼ Φ4 −Φ2; ðA6bÞ

ΦC ¼ 1

2
ðΦ1 −Φ2 þΦ3 −Φ4Þ: ðA6cÞ

Note that the C-mode amplitude is defined differently [21]
here so that the Hamiltonian of qubit C is identical to that of
a standard transmon. Then the Josephson energy HJ of the
circuit [21] simplifies to

HJ ¼ −4EJ

�
cos

�
ΦA

2φ0

�
cos

�
ΦB

2φ0

�
cos

�
ΦC

φ0

�
cos

�
Φ
4φ0

�

þ sin

�
ΦA

2φ0

�
sin

�
ΦB

2φ0

�
sin

�
ΦC

φ0

�
sin

�
Φ
4φ0

��
;

ðA7Þ

while the capacitive energy can be expressed as

X
i¼A;B;C

1

2

e2

2ECi

_Φ2
i ; ðA8Þ

where e is the electronic charge and the charging energies
ECi¼A;B;C

are given by

ECA
¼ e2

2ðC0
C þ CAÞ

; ECB
¼ e2

2ðC0
C þ CBÞ

;

ECC
¼ e2

8C0
C
: ðA9Þ

We now express the Hamiltonian of the full system using
mode charge variables Qi¼A;B;C (which are canonically
conjugate to mode flux variable Φi¼A;B;C) for each mode
and corresponding charging energies ECi¼A;B;C

,

Hcircuit ¼ HJ þ
X

i¼A;B;C

ECi

Q2
i

e2
: ðA10Þ

The magnitudes of Ci¼A;B are chosen to be unequal to lift
the degeneracy between qubits A and B. Operating at zero
applied flux ðΦ ¼ 0Þ, we expand Eq. (A10) up to fourth
order in the mode amplitudes to get

FIG. 5. (a) Schematic circuit diagram of trimon device consisting of four Josephson junctions and six capacitors between four nodes.
δμ¼1;2;3;4 are the phase differences across the junctions with identical Josephson energies EJ . (b) False-colored optical image of the
trimon device. (c)–(e) Effective circuit diagram for the A, B, and C modes.
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Hcircuit ¼ −4EJ þ
�
ECA

q2A þ EJ

2
ϕ2
A −

EJ

96
ϕ4
A

�

þ
�
ECB

q2B þ EJ

2
ϕ2
B −

EJ

96
ϕ4
B

�

þ
�
ECC

q2C þ 4EJ

2
ϕ2
C −

EJ

6
ϕ4
C

�

−
EJ

16
ðϕ2

Aϕ
2
B þ 4ϕ2

Bϕ
2
C þ 4ϕ2

Cϕ
2
AÞ; ðA11Þ

where qi ¼ Qi=e and ϕi ¼ Φi=φ0. Here, each qubit is
expressed as a weakly anharmonic oscillator. While qubit
C looks like a regular transmon, the qubits A and B show
reduced nonlinearity. This is because in qubit C (quadru-
pole), all of the junctions are effectively in parallel, while
qubits A and B have two junctions in series [Figs. 5(c)–5(e)].
As we will see later, this design dilutes the anharmonicity of
A and B by a factor of 4. We now quantize the circuit by
introducing the bosonic raising and lowering operators,
which are related to the flux and charge operators as

Φi ¼
ffiffiffiffiffiffiffiffi
ℏZi

2

r
ða†i þ aiÞ; ðA12aÞ

Qi ¼ i

ffiffiffiffiffiffiffi
ℏ
2Zi

s
ða†i − aiÞ: ðA12bÞ

We define the uncoupled mode frequencies and mode
impedances as

ωA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJECA

p
ℏ

; ZA ¼ ℏ
e2

ffiffiffiffiffiffiffiffi
ECA

2EJ

s
; ðA13aÞ

ωB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJECB

p
ℏ

; ZB ¼ ℏ
e2

ffiffiffiffiffiffiffiffi
ECB

2EJ

s
; ðA13bÞ

ωC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32EJECC

p
ℏ

; ZC ¼ ℏ
e2

ffiffiffiffiffiffiffiffi
ECC

8EJ

s
: ðA13cÞ

Then the effective Hamiltonian under rotating-wave
approximation becomes

1

ℏ
Heff ¼

X
i¼A;B;C

½ðωi − βiÞa†i ai − Jia
†
i aia

†
i ai�

−
X
i≠j

2Jija
†
i aia

†
jaj; ðA14Þ

with

βi ¼ Ji þ Jij þ Jki; i ≠ j ≠ k; ðA15aÞ

JA ¼ ECA

8ℏ
; JB ¼ ECB

8ℏ
; JC ¼ ECC

2ℏ
; ðA15bÞ

JAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECA

ECB

p
4ℏ

;

JBC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECB

ECC

p
2ℏ

;

JCA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECC

ECA

p
2ℏ

; ðA15cÞ

where Ji and Jij are the coupling coefficients for the self-
Kerr (Φ4

i ) and pairwise cross-Kerr (Φ2
iΦ2

j ) terms, respec-
tively. Using second-order perturbation theory, one finds
the energy eigenstates of the system to be

1

ℏ
EnA;nB;nC ¼

X
i¼A;B;C

½ðωi − βiÞni − Jin2i � −
X
i≠j

2Jijninj:

ðA16Þ

Using Eq. (A16), we compute the anharmonicities [9] of
the individual modes:

αA ¼ −
ECA

4ℏ
; αB ¼ −

ECB

4ℏ
; αC ¼ −

ECC

ℏ
: ðA17Þ

As mentioned earlier, only the anharmonicity of the qubit C
is identical to that of a transmon, while those of qubits A
and B are diluted by a factor of 4. However, in this device,
ECC

∼ ECA;B
=4, and hence the anharmonicities of all three

qubits are similar.
Restricting ourselves to the four lowest-energy eigen-

states of Eq. (A22), we write the Hamiltonian in terms of
Pauli spin matrices as

1

ℏ
Hspin ¼ −

1

2

� X
i¼A;B;C

ðωi − 2βiÞσiz þ
X
i≠j

Jijσizσ
j
z

�
; ðA18Þ

where

βi ¼ Ji þ Jij þ Jkj; i ≠ j ≠ k: ðA19Þ

As a result, each qubit now has four possible values of
transition frequency, depending upon the state of its partner
qubits:
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ωB¼s;C¼t
A ¼ ωA − 2βA þ ð−1ÞsJAB þ ð−1ÞtJCA; s; t ∈ f0; 1g; ðA20aÞ

ωC¼s;A¼t
B ¼ ωB − 2βB þ ð−1ÞsJBC þ ð−1ÞtJAB; s; t ∈ f0; 1g; ðA20bÞ

ωA¼s;B¼t
C ¼ ωC − 2βC þ ð−1ÞsJCA þ ð−1ÞtJBC; s; t ∈ f0; 1g: ðA20cÞ

Since qubit C is kept in its ground state in our experi-
ment, qubits A and B have only two transition frequencies
each. We call them the upper (ωu

A;B) and lower (ω
l
A;B) band

frequencies [see Fig. 1(d) in the main text] and are given by

ωu
A ¼ ωB¼0;C¼0

A ¼ ωA − 2JA − JAB − JCA; ðA21aÞ

ωl
A ¼ ωB¼1;C¼0

A ¼ ωA − 2JA − 3JAB − JCA; ðA21bÞ

ωu
B ¼ ωC¼0;A¼0

B ¼ ωB − 2JB − JAB − JBC; ðA21cÞ

ωl
B ¼ ωC¼0;A¼1

B ¼ ωB − 2JB − 3JAB − JBC: ðA21dÞ

Including the interaction with the host cavity, we write
the Hamiltonian of the full system as

1

ℏ
Hsystem ¼ −

1

2

� X
i¼A;B;C

ðωi − 2βiÞσiz þ
X
i≠j

Jijσizσ
j
z

�

þ
�
ωcav −

X
i¼A;B;C

χiσ
i
z

�
a†a; ðA22Þ

where the dispersive shifts [9] for the three qubits are
given by

χA ¼ g2
�

1

Δ0

−
1

Δ1

�
; ðA23aÞ

χB ¼ g2

2

�
1

Δ0

−
1

Δ0 − 2JAB

�
; ðA23bÞ

χC ¼ g2

2

�
1

Δ0

−
1

Δ0 − 2JCA

�
: ðA23cÞ

Here, g is the coupling between qubit A and cavity
ωcav ¼ ωbare − g2=Δ0 þ

P
iχi, with ωbare being the bare

resonant frequency of the cavity, Δ0 ¼ ωu
A − ωbare, and

Δ1 ¼ Δ0 þ αA. Although each of the qubits has its own
dispersive shift on the cavity, their origins are quite
different. While qubit A has the usual dispersive shift
[9] due to the coupling to the cavity, one expects that the
dispersive shifts of qubits B and C should be zero since they

are completely decoupled from it. However, when qubit B
(C) is excited, the transition frequency of qubit A is shifted
via the σAz σ

B
z (σCz σAz ) term. This change in qubit A’s

frequency leads to a dispersive shift in the cavity frequency
since the detuning between qubit A and the cavity changes.
Interestingly, for our typical device parameters, this indirect
dispersive shift for B (C) qubit is similar in magnitude to
the regular dispersive shift for qubit A.
It is possible to tune the transition frequencies of the

three qubits by threading a nonzero flux through the JRM
loop. However, the second term of Eq. (A7) will be nonzero
and introduce additional interqubit coupling terms. The
dominant term will be the pure mixing term (∝ ΦAΦBΦC),
which has previously been exploited for parametric ampli-
fication [21,22,36]. However, this term is ineffective since
the qubit frequencies are off resonant. Note that this three-
body coupling term is at the heart of parametric amplifi-
cation using the JRM and is activated when one mode is
pumped at the sum of the other two mode frequencies. This
is, however, not the case here at all. We plan to explore this
regime of operation in the future where one can do gate
operations by parametric pumping techniques. In practice,
we have been able to tune the qubit transition frequencies
down by about 200 MHz before the JRM experiences a
jump to a different flux branch, as expected, and makes the
device unstable. If one needs larger frequency tuning in
such a device, the single Josephson junctions can be
replaced with superconducting quantum-interference devi-
ces (SQUIDs) with a smaller loop area than the JRM. This
way, one can tune the effective EJ while operating at
integer flux quantum in the JRM loop.
Experimentally measured anharmonicities (see Table I

in the main text) are used to obtain the values of ECi¼A;B;C

using Eq. (A17), and hence the values of couplings Jij using
Eq. (A15c). Dispersive shifts of the qubits are calculated
using Eq. (A23). The comparison between theoretical and
experimentally obtained values of these parameters for
sample D1 are given in Table II. The agreement between
theory and experiment for Jij is quite reasonable given that
we have not accounted for the variability in the Josephson
energies (EJ) of the four junctions in the JRM. These
variations will introduce additional terms in the Hamiltonian

TABLE II. Comparison of various device parameters between theory and experiment.

(In MHz) JAB=π JBC=π JCA=π χA=2π χB=2π χC=2π

Theory 227.0 253.6 248.0 −0.332 −0.279 −0.317
Experiment 201.2 253.0 232.0 −0.332 −0.376 −0.386
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and result in small changes in theoretical predictions. The
disagreement for χB;C is much larger and requires further
investigation. We notice similar agreement between theory
and experiment across several samples. The effect of
variability in EJ and the inclusion of higher-order spin
interaction terms will be the subject of a future manuscript.

APPENDIX B: MEASUREMENT SETUP AND
PULSE-GENERATION TECHNIQUE

The measurement setup is shown in Fig. 6. Readout is
performed in transmission mode, where the output signal
is first amplified by a near-quantum-limited LJPA [27]

TABLE III. Parameters and coherence properties of the trimon in the presence of a neighboring transmon.
The transition frequency (ωu) of each qubit with the other two qubits in their ground state is listed along with the
anharmonicity (α), relaxation time (T1), Hahn-echo time (TE

2 ), and interqubit coupling strength (Jij).

Qubit ωu=2π (GHz) α=2π (MHz) T1 (μs) TE
2 (μs) Jij=π (MHz)

A 4.5590 −118 32.0 44 JAB=π ¼ 203.0
B 5.0578 −120 50.5 78 JBC=π ¼ 272.0
C 5.8073 −144 25.0 47 JCA=π ¼ 236.0

FIG. 6. Room-temperature signal generation and detection setup along with cryogenic wiring and filtering.
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at base temperature, followed by cryogenic (4-K) and
room-temperature low-noise amplifiers. Input lines are
heavily attenuated and filtered using reflective low-pass
and lossy Eccosorb® filters [37]. We use three microwave
sources, two for the qubits (A and B, respectively) and
one for readout. The upper- and lower-band frequencies
for each qubit is generated using a sideband modulation
technique where the local oscillator for the mixer is set to
the mean frequency: ðωu

i¼A;B þ ωl
i¼A;BÞ=2. The in-phase

(I) and quadrature-phase (Q) modulating signals (at fre-
quency JAB) are generated using a 1 × 109 samples=s
arbitrary waveform generator (AWG) with a 300-MHz
analog bandwidth. The amplitude and phase of these
signals are optimized to create either a single-tone (ωu

A;B

or ωl
A;B) signal for conditional rotations or a multitone

signal (ωu
A;B and ωl

A;B) for qubit selective rotations. The
signal strengths on each band for a given qubit are
adjusted to provide identical pulse lengths for a given
rotation angle. We use Gaussian-edge, flat-top pulses to
have a good balance between pulse bandwidth and pulse
lengths.
One particular advantage of this technique is the

simple control of rotation axis by adjusting the phase
of the modulating signal in software. Additionally, any
rotation of the qubit about Z axis does not require a
separate gate and can be included by modifying the
rotation axis of subsequent pulses. One important detail
in this technique is to ensure that the phase difference
between the upper- and lower-band tones for qubit A
must be identical to that of qubit B. This difference can
arise due to the unequal cable lengths at the rf output of
the IQ mixers before they are combined and sent to the
device. However, this phase difference can be easily
compensated for by adjusting the phase of the quadrature
modulating signals as well. This technique can easily be
extended for a three-qubit system, where four tones per
qubit would be generated using appropriate modulating
signals.

APPENDIX C: COUPLING OF THREE QUBITS
TO THE CAVITY

In the trimon with identical Josephson junctions,
only qubit A couples to the cavity with coupling strength
gA. In order to estimate the spurious coupling of
qubits B and C to the cavity (gB and gC) due to junction
asymmetries, we used the data shown in Figs. 4(b)–4(d)
in the main text for device D2. The relative coupling
strengths of the different qubits to the transmon can be
used as a rough estimate for their relative coupling
strengths to the cavity. We obtain gB ∼ gA=10 and
gC ∼ gA=20, which are small enough to ensure that the
relaxation time for qubits B and C is not limited by the
Purcell effect [38], provided their transition frequencies
are not too close to the cavity’s resonance. Furthermore,

the presence of an off-resonant qubit [the transmon in
Fig. 4(a) in the main text] does not degrade the coherence
times of the trimon. Coherence numbers for the three
qubits residing in the trimon of device D2 are given in
Table III.
The relatively small coupling of qubits B and C to the

cavity makes it very difficult to couple power into those
qubits and is the primary reason behind our gate pulse
lengths being relatively long. It should be possible to
carefully tailor the power coupling by introducing con-
trolled asymmetry in the junctions or by redesigning port
configuration on the cavity. The large power required to
drive qubit C also results in a strong ac Stark shift [39] and
prevents us from obtaining a clear Hahn-echo signal (see
Table I in the main text).

APPENDIX D: MATRIX REPRESENTATION
OF CONDITIONAL ROTATIONS

The two-qubit states jABi residing in a four-dimensional
Hilbert space are represented by the basis

j00i ¼

0
BBB@

1

0

0

0

1
CCCA; j01i ¼

0
BBB@

0

1

0

0

1
CCCA;

j10i ¼

0
BBB@

0

0

1

0

1
CCCA; j11i ¼

0
BBB@

0

0

0

1

1
CCCA: ðD1Þ

The controlled rotations of qubit B in a plane making
an angle ϕ with the x-z plane conditioned when A ¼ j1i
(the lower band) and A ¼ j0i (the upper band) are
given by

RBlðϕ; θÞ ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 cosðθ=2Þ −e−iϕ sinðθ=2Þ
0 0 eiϕ sinðθ=2Þ cosðθ=2Þ

1
CCCA;

RBuðϕ; θÞ ¼

0
BBB@

cosðθ=2Þ −e−iϕ sinðθ=2Þ 0 0

eiϕ sinðθ=2Þ cosðθ=2Þ 0 0

0 0 1 0

0 0 0 1

1
CCCA:

ðD2Þ

Similarly controlled rotations for qubit A conditional on
the state of qubit B are given by
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RAlðϕ; θÞ ¼

0
BBB@

1 0 0 0

0 cosðθ=2Þ 0 −e−iϕ sinðθ=2Þ
0 0 1 0

0 eiϕ sinðθ=2Þ 0 cosðθ=2Þ

1
CCCA;

RAuðϕ; θÞ ¼

0
BBB@

cosðθ=2Þ 0 −e−iϕ sinðθ=2Þ 0

0 1 0 0

eiϕ sinðθ=2Þ 0 cosðθ=2Þ 0

0 0 0 1

1
CCCA:

ðD3Þ

These rotations can be used to implement generic
two-qubit controlled unitary gates. The conventional
CNOT gate (up to a −90° phase) becomes a special case
of these controlled rotations, namely, RBlð−π=2; πÞ ¼
RBl;xðπÞ ¼ −iCNOTAB and RAlð−π=2; πÞ ¼ RAl;xðπÞ ¼
−iCNOTBA, where ϕ ¼ −π=2 denotes rotation about the
x axis.

APPENDIX E: SINGLE-QUBIT RANDOMIZED
BENCHMARKING

In order to characterize single-qubit gate fidelities, we
perform randomized benchmarking for qubits A and B
using the protocol described by Chow et al. [30]. The
average gate fidelities of qubits A and B as a function
of the number of computational gates are shown in
Fig. 7. Each computational gate consists of a random-
ized Pauli gate and a randomized Clifford generator,
both comprising two pulses at upper and lower bands,
generated using the sideband modulation technique

described in Appendix B. Each sequence of random
gates is preceded by a strong measurement in order to
herald the j000i state.

APPENDIX F: TWO-QUBIT STATE
TOMOGRAPHY

For a two-qubit system, the density matrix (ρ) can be
constructed by a set of 16 linearly independent
operators fOig:

ρ ¼
X15
i¼0

ciOi: ðF1Þ

The goal of tomography is to determine the set of
coefficients fcig from the expectation values of the
observables fOig. One such set is the Kronecker product
of the Pauli matrices σi,

ρ ¼ 1

4

X
i;j¼x;y;z;0

Sijσi ⊗ σj: ðF2Þ

The coefficients Sij are called the Stokes parameters. From
trace normalization S00 should always be unity. The
problem then reduces to estimating the remaining 15
coefficients from the results of six single-qubit measure-
ments of the type σi ⊗ I or I ⊗ σi and nine two-qubit
measurements of the type σi ⊗ σj, where fi; j ¼ x; y; zg.
The generic form of our two-qubit joint measurement

operator can be written as [40]

O ¼ β0 þ β1σ
A
z þ β2σ

B
z þ β12σ

A
z ⊗ σBz : ðF3Þ

Since our measurement operator involves both one- and
two-qubit observables, the complete set of independent
observables can be obtained by applying single-qubit
rotations prior to the measurements [41].
We use the standard MLE technique [42,43] to recon-

struct the density matrices. MLE searches in the parameter
space of all physical density matrices and finds the density
matrix ρ which is most likely to have produced the
observed experimental data D by constructing the like-
lihood functional. The likelihood functional is a probability
distribution for obtaining the measured data given a state ρ;
hence, it is a function of the independent parameters
characterizing the density matrix. For all physical states,
the density matrix can be written as the Cholesky decom-
posed form

ρ ¼ T †T
Tr½T †T � ; ðF4Þ

where T is an upper-triangular matrix given by
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ge

 fi
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No. of computational gates

Qubit B

Qubit A

FIG. 7. Average gate fidelity vs number of randomized com-
putational gates for qubits A (red) and B (blue). Solid dots are the
experimentally obtained data after 180 000 averages. Fits to the
data (solid lines) show mean fidelities of 0.9928� 0.0001 and
0.9858� 0.0002 for qubits A and B, respectively.
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T ¼

2
6664
t1 t5 − it6 t11 − it12 t15 − it16
0 t2 t7 − it8 t13 − it14
0 0 t3 t9 − it10
0 0 0 t4

3
7775: ðF5Þ

The likelihood functional is defined as

LðDkjρftigÞ ¼
Y16
k¼1

PðDkjρftigÞ ¼
Y16
k¼1

½hψkjρðtiÞjψki�fk :

ðF6Þ

Here, PðDkjρftigÞ is the probability of having the meas-
urement data Dk corresponding to the kth measurement
given the density matrix ρftig. The term hψkjρftigjψki
denotes the probability of having the kth state, and fk is
the occurrence frequency of that state in an experiment.
We can further simplify the expression if we assume
Gaussian counting statistics and define the log-likelihood
functional as

LðDkjρftigÞ ¼ logLðDkjρftigÞ

¼ −
X16
k¼1

ðhψkjρftigjψki − fkÞ2
2hψkjρftigjψki

; ðF7Þ

where we have set any proportionality constant to unity.
Our goal is then to maximize this function with respect to
the parameters ftig.
In our setup, the measurement is implemented by

sending a microwave pulse at the cavity frequency. The
signal transmitted through the cavity acquires a phase shift
which is dependent on the joint state of the two qubits. This
signal is first amplified by a near-quantum-limited LJPA
[27], followed by more amplification using a cryogenic
(4 K) HEMT amplifier and a room-temperature low-noise
amplifier. The amplified signal is then demodulated using
the homodyne technique and digitized. The digitized signal
is integrated for 700 ns to create one measurement result
(Vp), and repeating this process several thousand times
allows us to create a population histogram, as shown in
Fig. 9(a).
The occurrence frequencies fk are obtained from the

population histograms with different prerotations, as
shown in Fig. 8. In our experimental setup, the histograms
corresponding to j00i and j11i are well separated from
each other and also from j01i and j10i, but the latter
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FIG. 9. (a) Population histograms corresponding to individual states j00i (the black line), j10i (the red line), j01i (the blue line), and
j11i (the green line), with thresholds Vþ

th and V
−
th. Any outcome above the threshold Vþ

th (the light-blue shaded region) is registered as the
j00i state. (b) Histograms of measurement results (Vp) for the state ðj01i þ j10iÞ= ffiffiffi

2
p

. Outcomes Vp < V−
th and Vp > Vþ

th are considered
to be in the states j11i and j00i, respectively. The red histogram shows an overlapping distribution of states j01i and j10i before
population transfer, and the dashed blue histogram depicts the outcome after application of the controlled-rotations, thereby making
them distinguishable.

FIG. 8. Pulse sequence for tomography. State preparation (the
blue boxes) involves the strong measurement for selecting the
initial j000i state (heralding), followed by pulses to initialize
the two-qubit state. With the default measurement direction
being the z axis, measurements along the x and y axes for each
qubit are done by performing prerotations by −π=2 along the y
axis and π=2 along the x axis, respectively. The yellow boxes
represent nine possible prerotations and, ideally, should form a
complete set for tomography. However, in our experiments,
distributions for states j01i and j10i are largely overlapping
(see Fig. 9), but distinguishable from those of j00i and j11i. In
order to differentiate j01i and j10i, we repeat the same sequence
with two controlled rotations prior to the prerotations transferring
populations to j00i and j11i, respectively.
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two are largely overlapping and hence indistinguishable
[see Fig. 9(a)]. This is because of similar values for χA and
χB (see Table II). The measurement result is identified as
the state j00i or j11i depending on whether Vp is above or
below some appropriately chosen thresholds Vþ

th and V−
th,

as shown in Fig. 9. All other values of Vp between
these two thresholds are discarded. In order to obtain
the population corresponding to j01i and j10i, we per-
form an additional measurement set by applying two
controlled rotations prior to the single-qubit rotations.
These two pulses exchange the population j01i ↔ j00i
and j10i ↔ j11i, making them distinguishable. We keep
the same thresholds Vþ

th and V−
th to digitize the result. The

schematic of the tomographic pulse sequence is shown
in Fig. 8.
We determine the density matrix ρ of the two-qubit

system by measuring the state along all 9 basis directions

performed by applying appropriate single-qubit prerota-
tions. Any particular single qubit observable is measured
by tracing over outcomes of the other qubit. Since the
population histograms will always have some overlap
with each other, the tail of the distribution beyond the
threshold will lead to an incorrect detection of a meas-
urement result and will, eventually, reduce fidelity of the
reconstructed density matrix. The fidelity numbers
quoted in the main text and in Fig. 10 are thus limited
by these finite overlaps.
We would like to add that the density matrix is first

computed by the “forced purity” method [44] (which is
much faster than MLE, but not very accurate), and its
outcome is used to initialize the search in parameter space
to obtain the density matrix ρMLE. The fidelity to the target
state (ρth) is calculated using the formula

F ðρth; ρMLEÞ ¼ Tr
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρth
p

ρMLE
ffiffiffiffiffiffi
ρth

pq i
: ðF8Þ

APPENDIX G: TRANSFER GATE

Transfer gate is a special case of SWAP gate where the
target qubit is initialized to its ground state and can be
accomplished using only two CNOT gates on the two
participant qubits. We demonstrate transfer of the state
ðj0i þ j1iÞ= ffiffiffi

2
p

from qubit A to B. The reconstructed
density matrices before and after the transfer gate along
with the pulse protocol are shown in Fig. 10. The initial
state ½ðj0i þ j1iÞ= ffiffiffi

2
p �A ⊗ j0iB is prepared with the fidel-

ity 0.984� 0.005, while the final state j0iA ⊗ ½ðj0i þ
j1iÞ= ffiffiffi

2
p �B after the transfer showed a fidelity of 0.973�

0.005.
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