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The time-domain technique for impedance spectroscopy consists of computing the excitation voltage
and current response Fourier images by fast or discrete Fourier transformation and calculating their relation.
Here we propose an alternative method for excitation voltage and current response processing for deriving a
system impedance spectrum based on a fast and flexible adaptive filtering method. We show the
equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum.
To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling
property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally
show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise
conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance
spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain
impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance
measurements.
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I. INTRODUCTION

Electrical immittance (impedance and admittance) spec-
troscopy [1,2] (EIS) is a powerful tool for electronic device
diagnostics [3–5], materials characterization [6–11],
electrochemistry [12–14], alternative energy sources inves-
tigation [15–18], and experiments in biophysics [19–24].
The research of dynamic systems has become a hot topic of
impedance spectroscopy in recent years. The excitation
voltage (EV) with broad-frequency spectrum such as like
rectangular pulses, peaks, various types of noise, linear
sweep, or superposition of sine waves is commonly used for
time-resolved immittance spectroscopy. Employing such
excitation signals allows one to scan the sample in the wide-
frequency range, which gives a significant advantage in
performance and time resolution with respect to single-sine
methods. To obtain the immittance spectrum (IS) from the
collected data, the fast and discrete Fourier transform (FFT
DFT) [25,26] of the EV and current response is used
[27–29]. Further which, the investigated system parameters
are estimated by fitting the obtained IS with the complex
nonlinear least squares (CNLS) method [30].
Obviously, the nature of dynamic and nonreversible

systems does not allow experiment replication for data
accumulation for the following statistical noise canceling
(averaging signal technique). To study them, technological

improvements such as shielding, increasing the EV, varying
the geometry of electrodes, or low-noise electronics usage
are required for increasing the signal-to-noise ratio (SNR).
If the sample produces its own noise or when the above-
mentioned methods are impractical, the obtained raw IS is
distorted by noises and interferences, which complexifies
the data analysis. The FFT does not provide the noise-
canceling option by itself, and, thus, the results of the
CNLS method can be unreliable. To the best of our
knowledge, only the weighting method is currently used
in this case for the CNLS fit [1,2,31]. If this approach does
not succeed, the IS data cannot be interpreted, and no
information about the studied system can be gained.
The progressive signal processing methods (Kalman

filtering [32,33], adaptive filtering [34], and other [26])
allows the extraction more information from high-noise
data. The possibility of the adaptive filtering (AF) appli-
cation for IS processing has been previously noticed [15].
This approach can provide the solution to the problem
mentioned above due to the noise-canceling property of AF
in the identification mode (learning) [34]. Combination of
AF with the usage of the broad-frequency-spectrum exci-
tation signal, like in the standard FFT method, provides
decreasing the instrument influence on the sample and
increasing the time and frequency resolution [27–29,35,36]
as high as it is principally possible. In addition, AF requires
relatively small computation power and available memory,
which is important for online applications and creating*Stu87@ya.ru, Stupin@spbau.ru
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portable devices. The information about the IS is stored in
weight coefficients (WC), which results in decreasing the
memory requirement for IS data storage and increasing the
IS data transfer speed. Finally, after the adaptive filter
learning phase, AF opens the direct way to create a digital
model resembling the behavior of the investigated system,
which is useful for its further simulation.
Despite the successful application of the AF algorithm

for the IS treatment in Ref. [15], no theoretical background
has been given for this approach, and no comparison with
other methods has been done. The present study is devoted
to the elucidation of these aspects.
In this paper, we develop the theory of AF application for

EIS. We analyze the relationship between the adaptive filter
weight coefficients and the IS, derive the apparatus and
weight functions of the AF method, and theoretically
justify its noise immunity. We experimentally show that
the AF method is more accurate than the FFT method,
especially for high-noise raw data.
The paper is organized as follows. In Sec. II A, we

introduce the AF model employed, and in Sec. II B, we
provide the derivation of the system immittance on the
basis of AF parameters, namely, weight coefficients. In
Sec. III, we describe the experimental setup for measuring
the immittance. In Sec. IV, on the basis of the obtained
experimental data, we justify the noise immunity property
of AF with respect to the FFT. In Sec. V, we illustrate the
power of AF by demonstrating its application in EIS-based
in vitro cell biosensing.

II. THEORY

A. Model

For processing the IS on the basis of the AF method, the
investigated sample can be considered as a linear “black
box” (Fig. 1). The experimentally measured quantities are
the excitation voltage Vk being the input signal and current
response Jk being the output signal, or in the terms of AF,
the desired signal. Index k here is the time counter. The
additive current noise εk can also arise during measure-
ments due to the sample’s own noise, external noise, or
interferences. We now introduce Jak as predictions of the
adaptive filter:

Jak ¼
Xld
j¼1

djJak−j þ
Xln
j¼0

njVk−j; ð1Þ

where dj and nj are WC, and the maximum value between
ld and ln is the filtering order. So, Eq. (1) describes the
causal (without loss of generality) discrete filter with
infinite impulse response (IIR) [26]. By adjusting the
WC, the following functional is minimized over all
measurement result,

XL
k¼maxðln;ldÞ

jJak − Jkj2 ¼ min; ð2Þ

where Lþ 1 is the total number of collected samples. The
transfer function of Eq. (1) with the adjusted WC can be
considered as an approximation of the sample admittance
[15], as we show in Sec. II B.
It is well known that the IIR filters are more flexible than

the FIR filters. However, searching for theWC values of the
IIR filters requires sufficient computation power, and a
principal problem of the functional (2) local minimums
exists [34]. To increase flexibility on the one hand and to
simplify the WC search on another hand, this paper
introduces the semi-IIR filter model. Namely, we replace
in the right-hand part of Eq. (1) Jk with Jak before
substituting it to Eq. (2). Thus, the functional to be
minimized takes the form

XL
k¼maxðln;ldÞ

����Jk −Xld
j¼1

djJk−j −
Xln
j¼0

njVk−j

����2 ¼ min : ð3Þ

Equation (3) describes the operating principle of AF with
Vk for the input signal and Jk for the desired response and
for the AF prediction simultaneously. Note that the begin-
ning of the summation from j ¼ 1 for dj in Eq. (3) prevents
the trivial solution d0 ¼ 1, dj ¼ 0 when j > 0 and nj ¼ 0.
The developed theory is also applicable to the FIR filters
[15] characterized by fixing dj ¼ 0 and ld ¼ 0, and to the
noncausal FIR and the noncausal semi-IIR filter models.

FIG. 1. Processing the IS on the basis of the AF method. The
classical AF identification system with infinite impulse response
(IIR) corresponds to the enabled IIR link (red) and disabled semi-
IIR link (green). If the IIR link is disabled and if the semi-IIR link
is enabled this scheme describes the semi-IIR model. If both links
are disabled, the scheme describes the model with finite impulse
response (FIR). The acronyms used in the figure are weight
coefficients (WC), transfer function (TF), and immittance
spectrum (IS).
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B. The relation between the time and frequency domain

We now discuss the possibility of IS estimation with
Eq. (3). To simplify our analysis, we neglect the measure-
ment noise εk. If the sample rate f0 is high enough, one can
change the summation by k in Eq. (3) with integration over
the data-collecting interval ½−T=2; T=2�. On the basis of
Parseval’s identity, one can write the following:

Z
T=2

−T=2

����JðtÞ−Xld
j¼1

djJðt− jΔtÞ−
Xln
j¼0

njVðt− jΔtÞ
����
2

dt

¼
Z þ∞

−∞

����JðtÞ−Xld
j¼1

djJðt− jΔtÞ−
Xln
j¼0

njVðt− jΔtÞ
����
2

Πdt

¼ 2π

Z þ∞

−∞

����
�
1−

Xld
j¼1

djφj

�
JðfÞ−VðfÞ

Xln
j¼0

njφj

����2 �Kdf;
ð4Þ

where Π is rectangular function with ½−T=2; T=2� width,
with the Fourier image given by the sinc function

K ¼ sinðπfTÞ
πf

; ð5Þ

φjðfÞ ¼ exp½2πijðf=f0Þ� is the Fourier image of the
impulse delayed by Δt ¼ 1=f0, f is the frequency, the
asterisk * denotes convolution, and VðfÞ and JðfÞ are
Fourier images of the voltage and current, respectively.
Now we use Ohm’s law JðfÞ ¼ YVðfÞ, where Y is the
admittance of the system at frequency f, and we omit the 2π
multiplier. Thus, from Eq. (4), one can write for the
functional to be minimized:

Z þ∞

−∞

�����
�
1 −

Xld
j¼1

djφj

�
Y −

Xln

j¼0

njφj

����2

× jVðfÞj2
�
� Kdf ¼ min : ð6Þ

Let us analyze Eq. (6). It is simple to see that K plays the
role of the apparatus function, which defines the frequency
resolution of the methodΔf. The latter can be calculated as
the distance between the first positive and the first negative
roots of K, which can be estimated as

Δf ¼ 1

T
: ð7Þ

If the data-collection time T is long enough, K can be
replaced with the δ function, which allows us to omit the
convolution in Eq. (6). Henceforth, we take convolution
into account only as the restriction on the frequency
resolution.

In these assumptions, the squared magnitude of the EV
image jVðfÞj2 is the weight function. Variation of its shape
gives the possibility to control the influence of the selected
frequency ranges on the IS processing.
According to Kotelnikov’s theorem, the condition

fB ≤ f0=2 must be met, where fB is the highest harmonic
the exciting signal generator can produce. As a result, we
obtain the following hierarchy of the characteristic setup
frequencies:

Δf ≪ fB ≤ f0=2: ð8Þ

The most illustrative and practical case is the case of the
excitation voltage with jVðfÞj ¼ const in the frequency
band f ≤ fB. The excitation voltage types satisfying this
condition are the white-noise, linear-sweep, and δ-function
signals. Thus, Eq. (6) takes the form

Z þfB

−fB

����
�
1 −

Xld
j¼1

djφj

�
Y −

Xln
j¼0

njφj

����2df ¼ min : ð9Þ

The integrand for the case of IIR filter usage can be
obtained by dividing the integrand in Eq. (9) by the squared
absolute value of the expression in parentheses.
Equation (9) is, in fact, the Levy approximation [37] for

the admittance Y with φj being the basis functions, and one
can write the following estimation of the admittance:

Y ≈
�Xln

j¼0

njφj

���
1 −

Xld
j¼1

djφj

�
: ð10Þ

One sees that the admittance Y is directly derived from
WC obtained by minimization of the functional in Eq. (3)
with experimentally measured sequences of Vk and Jk
substituted. The AF method does not rely on the FFT,
which gives the advantage of memory economy. Since the
admittance estimation (10) is derived from Eq. (9) heuris-
tically, there is no obvious preference to use admittance Y
or impedance Z ¼ 1=Y for the IS analysis.
In the special case of the FIR filter [the denominator in

Eq. (10) is equal to 1] together with the additional condition
fB ¼ f0=2, the WC nj are straightforwardly the Fourier
coefficients of admittance. This means that any admittance,
which can be expanded into Fourier series in the �fb
interval (including ideal circuits and the Warburg imped-
ance), can be estimated by AF with any accuracy. In
practice, the most actual case is f0 ≫ fB. Thus, for low
enough AF order (ld, ln ≪ f0=fB), the φjðfÞ arguments
2πijðf=f0Þ are much less than 1. This means that the
exponential functions φjðfÞ can be expanded into the
Taylor series, and Eq. (10) becomes a rational function
(standard Levy approximation) with the coefficients being a
linear combination of nj and dj.
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Typically, the admittances of real systems are given by
rational functions or expandable into the Taylor and Fourier
series. However, the straight algebraic relation between the
parameters of the studied system (the ratings of resistors,
capacitors, and inductors the system is formed of) and the
WC is complicated. Therefore, we suggest using Eq. (10) to
obtain the frequency dependence of immittance. Because of
the noise-canceling property of AF, the yield of Eq. (10)
can be considered as a noise-free approximation of the real
IS. Then, the system parameters can be derived by applying
the standard methods to the obtained IS: algebraic method
(AM) [38], geometric methods [39], or CNLS [30].
The procedure of the functional (3) minimization

and the noise-canceling property of AF are discussed in
Appendixes A and B, respectively.

III. EXPERIMENT

The linear-sweep-shape signal with 20-mV peak-to-peak
amplitude generated by the signal generator AKIP-3413-3
(AKIP, Russia, two channels) is used as excitation voltage.
The frequency range is from 10 Hz to 40 kHz, and the
sweep time is 500 ms.
For the Jk measurements, an ammeter (current-to-voltage

converter) based on the operational amplifier AD8606
(Analog Devices, USA) is assembled. It should be noticed
that the AD8606 has unity-gain frequency fs ¼ 10 MHz,
and virtual inductance LV of about several millihenrys can
arise due to the used backfeed resistor R0 ¼ 100 kΩ. The
corresponding equation reads as LV ¼ R0=ð2πfsÞ.
The L-Card E20-10 analog-to-digital converter (ADC)

(LCard, Russia, 10 MHz band, 12 bits, four channels) is
used in this study to record the excitation voltage Vk and
current response Jk from the ammeter output. The data
collection time T is 500 ms and the sampling rate
f0 ¼ 500 kHz, which yields 250 000 collected samples.
One sees that the experimental setup parameters obey the
required frequencies’ hierarchy Eq. (8) and the constant EV
spectrum assumption (see Appendix C). The setup scheme
is shown in Fig. 2.
The serial RLC circuit is used as a sample. The DT9205A

multimeter (Resanta, Russia) yields the reference values of

the circuit elements Cm ¼ 10 nF, Rm ¼ 250 Ω, and the
inductance factory rating is 15 mH. The measurements are
conducted with various SNRs. To decrease the SNR, the
interference source (transformer connected to the generating
white-noise-shaped signal second channel of the AKIP-
3413-3) is placed near the RLC circuit. This is a simulation
of the usual experimental practice: any electronic device
(microscope, computer, display, motors, transformers, and
power electronics) located in close proximity to the sample
produces interference. This method resembles, e.g., an
electrical biological cell-substrate impedance-sensing device
[20] or single-cell EIS [40] with microscope control (see
Sec. V). The SNR values are calculated as the relation
between the noise-free Jk root-mean-squares (rms) (EV
output on, noise generator off) and the noise rms (EVoutput
off, noise generator output on).
To obtain lower values of the SNR, a simulation with

digital artificial noise is conducted. The values εk are
generated by the MATLABs’ random routine randn and
added to the current response Jk obtained with the highest
experimental SNR (30 dB). To achieve the statistics, the
data are collected over four experiments for each SNR for
experimental and artificial digital noise.
To implement the AF-based derivation of the IS, the

above-introduced semi-IIR model with ld ¼ 49 and
ln ¼ 101 is used. To obtain the IS with the FFT,
the Fourier images of Vk and Jk are calculated in
MATLAB.
For further IS CNLS parameters fitting the MATLAB code

NELM based on the Nelder-Mead simplex algorithm [41] is
written. The latter may be obtained from the authors. The
freeware LEVM program [31] by Ross Macdonald and the
ORIGIN package are not suitable for this purpose due
to the impossibility of processing a large input data set
and supporting CUDA technology to decrease the runtime.
The initial values of R, L, and C for the CNLS fit are
256 Ω, 19.4 mH, and 9.207 nF, respectively.

IV. RESULTS AND DISCUSSION

The dependence of the circuit elements’ ratings obtained
by CNLS fit on the SNR for the IS obtained by the AF and
FFT methods are presented in Fig. 4. In Fig. 3, the spectra
and the corresponding CNLS fits for the 30- and 3-dB
SNRs are shown. The corresponding CNLS fit results are
listed in Table I. One sees that the AF method is robust with
respect to the decreasing SNR.
At low SNR, the spectra obtained by the FFT are

drastically distorted, which leads to incorrect estimation
of R, L, and C in the CNLS fit. The FFT and CNLS fits fail
at low SNR even in the case where the correct ratings
obtained at high SNR are used as the initial fitting
parameters. The discrepancy in the capacitance value is
especially high. No significant difference between the unit,
proportional, modulus, and jVðfÞj2 weighting (see Table I
in Ref. [31]) on the FFT and CNLS fit results is observed.

FIG. 2. Setup for IS measurement using the time-domain
technique. The operational amplifier is connected into the
current-to-voltage converter circuit. Here, Z is the unknown
sample impedance, and R0 is the feedback resistor.
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FIG. 3. Frequency dependences of admittance obtained with AF and FFT for the high and low experimentally studied SNRs. Panels
(a), (c), and (e) correspond to SNR ¼ 30 dB and show the admittance real and imaginary part spectra and the Nyquist plot, respectively.
Panels (b), (d), and (f) correspond to SNR ¼ 3 dB. Light green is used to show the raw admittance spectrum obtained by the FFT, and
dark green is used to show the CNLS fit of the corresponding spectra. The admittance spectra obtained by AF are shown in black, and the
CNLS fit of it is shown in red. The CNLS fits for AF and FFT in panels (a), (c), and (e) are overlapping.
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FIG. 4. Dependence of the obtained circuit elements ratings on the signal-to-noise ratio exhibiting the AF advances in noise immunity
with respect to the FFT. Black squares are the results of the CNLS fit of the IS obtained by the FFT. Red circles denote the circuit element
ratings obtained by AF. The statistics over four experiments for each SNR allow us to add the error bars (99.9% reliability). Panels (a),
(c), and (e) are for the experimentally generated noise for resistance, capacitance, and inductance, respectively. Panels (b), (d), and (f) are
for the digital artificial noise for resistance, capacitance, and inductance, respectively. AF gives correct results for all studied SNRs for
both experimental noise and noise modeling. The FFT fails at 5 dB for experimental data and at 0 dB for noise modeling.
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Contrary to the FFT, the IS obtained by the AF method does
not degrade with decreasing SNR, and the R, L, and C
ratings calculated from them stay intact. We relate this
effect to the noise-canceling property of AF. Eliminating
the uncorrelated with excitation voltage noise from the IS
prevents its influence on the circuit parameters’ estimation.
Being the simplest artificial intelligence, AF automatically
recognizes the useful signal in the time-domain data
and separates it from the signal distorted by the background
noise.
It is not surprising that the confidence intervals (CIs) of the

circuit element ratings for both the AF and FFT methods
increase with decreasing SNR. In the AF method, the CI
grows with decreasing SNR slower than in the case of the
FFTmethod. The lower spectrumAFvs FFT rms in the high-
SNR case is also not surprising because, as can be seen from
the FFT data in Fig. 3(e), the RLC-circuit IS is slightly
distorted at high frequencies due toADCnonideality. TheAF
semi-IIRmodel is more flexible than the RLC-circuit model,
so the first one maintains this effect.
Interestingly, in the case of low SNR, the residual error

between the IS obtained by the FFT method and the spectra
obtained with the AF method is higher than that of the FFT
spectra and their CNLS fit. So, the least-mean-squares
criterion is not adequate for the low SNR and highly
distorted IS. The present results ascertain this figure.
The smooth nature of the IS obtained by AF makes it

possible to use simple algebraic methods to estimate the
circuit element ratings,which gives a significant advantage in
computation power and eliminates the human factor. For the
RLC circuit, the element ratings can be expressed via
the impedance magnitude minimum position frequency
fmin, the impedance magnitude minimum value jZðfminÞj,
and the frequency of the admittance imaginary part
maximum position fmax as R ¼ jZðfminÞj, L ¼ Rfmax=
½2πðf2max − f2minÞ�, and C ¼ 1=½Lð2πfminÞ2�. The results of
the AM fit are given in the last two rows of Table I for
comparisonwith the results of the CNLS. The element rating
CI obtained by the AM are not overlapped with the CI for
high-SNRCNLS fits because the AM uses only a few points
from the IS at middle frequencies, and the mentioned high-
frequency systematic distortion (ADC nonideality) does not
affect them.

V. PRACTICAL EXAMPLE: APPLICATION
FOR BIOSENSORS

In this section,we present a practical example of biosensing
in which AF gives a significant advantage with respect to the
FFT. The investigated system is a multielectrode array MEA-
200=30 (Multichannel Systems GmbH, Germany, 30-μm
electrode diameter) covered by HeLa cells in phosphate-
buffered saline (Biolot, Russia) in vitro under microscope

TABLE I. RLC-circuit parameter estimations with 99.9% confidence intervals for different methods and SNRs. The last columns list
the rms between the CNLS fit of the FFT yield and that obtained with the AF spectrum with respect to the FFT.

SNR (dB) Method R (Ω) C (nF) L (mH) Residual type Residual rms (μS)

30 AF and CNLS 256.7� 0.4 9.209� 0.007 19.36� 0.02 AF vs FFT 30
FFT and CNLS 256.7� 0.3 9.207� 0.006 19.360� 0.007 CNLS vs FFT 110

3 AF and CNLS 290� 50 9.7� 0.9 19� 2 AF vs FFT 3000
FFT and CNLS 1000� 2000 4� 3 50� 30 CNLS vs FFT 2000

30 AF and AM 262.1� 0.4 9.37� 0.02 19.04� 0.04 � � �
3 300� 60 9� 1 21� 3 � � �

FIG. 5. Application AF for the biosensing EIS. (a) Photograph
of the empty electrode. (b) Photograph of the electrode covered
by the cell. The diameter of the electrodes is 30 μm. (c) Nyquist
plot of the obtained IS. Red and light green denote the IS obtained
by AF of the empty and the covered by cell electrodes,
respectively. Blue and dark green denote the IS obtained by
FFTof the empty and the covered by cell electrodes, respectively.
One sees that the AF IS is more informative with respect to the
FFT IS; for example, it can be seen acceptance of the Giaever-
Keese model [20]. The acronyms used in figure are immittance
spectrum (IS) and fast Fourier transformation (FFT).
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study. The HeLa cells are obtained from the Bank of Cell
Cultures of the Institute of Cytology of the Russian Academy
of Sciences. The IS is measured between a large rectangle
reference electrode (50 × 250 μm2, not presented in photo-
graphs) and an empty electrode [Fig. 5(a)] and between a
reference electrode and an electrode covered by a single cell
[see Fig. 5(b)]. We use the described setup for the IS
measurement. The feedback resistor rating is 1 MΩ, and all
other parameters are same as the RLC-circuit study. The
results are presented on Fig. 5(c).
One can see that the IS obtained by the FFT is distorted

by interference from the microscope, and no useful
information can be achieved from it. However, the IS
obtained by the AF method is noise-free and more
informative; for example, the bright green and red arcs’
origins (their left ends) are displaced, as predicted by the
Giaever-Keese model [20].

VI. CONCLUSION AND OUTLOOK

In this study, we develop the theory of AF IS processing
and compare this approach with the FFT. The main out-
come is that the processing of time-domain impedance data
collected at low-SNR conditions with the FFT yields
distorted and inadequate IS, but the IS obtained with the
AF method is robust with respect to noises even at negative
SNR. The developed AF-based software for IS data
processing can be obtained from the authors.
The developedAF-based approachmakes impedance and

admittance spectroscopy much more sensitive and brings it

to another level in all areas: material science, biophysics,
electronic devices characterization, and quality control in
the semiconductor industry. Moreover, the time-domain
impedance data (Vk and Jk sequences), which cannot be
interpreted with the FFTapproach, can be analyzed with the
AF-based one with a higher probability of success.
This technique can find practical use in studying

dynamic and nonreversible systems under low-SNR con-
ditions. It is especially important for biological systems
because their investigation requires usage of low excitation
voltage and low current response, which results in decreas-
ing the signal-to-noise ratio. Portable biosensors based on
the developed method will be robust to external interfer-
ences and noises. The moderate computation power and
memory requirements also make AF appropriate to employ
in this area.
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APPENDIX A: FUNCTIONAL MINIMIZATION

One can see that Eq. (1) can be written in the terms of the
Toeplitz matrices

ðA1Þ

where V̂ and Ĵ are the Toeplitz matrices generated by the Vk
and Jk sequences, respectively, w⃗ is a vector obtained by nj
and dj WC concatenation, and J⃗d is the desired current
response. In matrix notation, Eq. (3) takes the form

ð∥ V̂ Ĵ ∥w⃗ − J⃗dÞ2 ¼ min : ðA2Þ
It is well known that the solution of Eq. (A2) can be

reduced to solving the linear system

∥ V̂T

ĴT
∥∥ V̂ Ĵ ∥w⃗ ¼ ∥ V̂T

ĴT
∥J⃗d: ðA3Þ

Thus, the functional Eq. (3) minimization problem leads to
the ðln þ ld þ 1Þ × ðln þ ld þ 1Þ linear system on vector
w⃗ of WC from which the admittance can be directly
obtained with Eq. (10). To prevent any misunderstanding
related with the existence of various physical dimensions
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in Eq. (A3), we suggest the following normalization.
The impedance Z should be normalized to the feedback
resistor R0, and all voltage inputs for the ADC should be
normalized to the ADC range (see Fig. 2). This procedure
makes all elements of V̂, Ĵ, w⃗, and J⃗d dimensionless.

APPENDIX B: NOISE IMMUNITY OF AF

Now we use the normalization notation mentioned above
and explain the noise-canceling property of AF in the
identification mode. To do so, we introduce the Toeplitz
matrix ε̂ generated by the current noise εk sequence in the
same manner as Ĵ is generated by Jk and add ε̂ to Ĵ. Thus,
Eq. (3) transforms into

�∥ V̂TV̂ V̂TĴ

ĴTV̂ ĴT Ĵ ∥þ EL

�
w⃗� ¼ ∥ V̂T J⃗d

ĴT J⃗d
∥þ ER; ðB1Þ

where

EL ¼ ∥ 0 V̂T ε̂

ε̂TV̂ ε̂TĴ þ ĴT ε̂þ ε̂T ε̂ ∥; ðB2Þ

ER ¼ ∥ V̂T ε⃗

ε̂TJ⃗d þ ĴT ε⃗þ ε̂T ε⃗ ∥ ðB3Þ

are perturbations, ε⃗k ¼ εk, and w⃗� is the perturbed WC
vector. If noise ε is uncorrelated with the EV and current,
then all products in ER and EL with V̂ and Ĵ are equal to
zero, and perturbation depends only on the noise correla-
tion function. Moreover, if the noise is autocorrelated, then
ER ¼ 0, and EL is a diagonal matrix with ld nonzero
elements. The L2 norm of EL in this case is the noise mean-
square value hε2i. In the basis of the standard approach for
the linear system error estimation [42–44], one can write

jw⃗ − w⃗�j
jw⃗j ≤

hε2iν
A

; ðB4Þ

where ν and A are the condition number and L2 norm of the
main matrix in Eq. (A3), respectively. The fact that hε2i is
independent of the filtering order allows one to obtain the
following estimation for the root-mean-square of the
relative error (rmserror) in WC from Eq. (B4):

rmserror ¼
1

jw⃗j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPlnþld
j¼0 ðw⃗j − w⃗�

jÞ2
ln þ ld þ 1

s
≤

hε2iν
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln þ ld þ 1

p :

ðB5Þ

In the most favorable case, ν ¼ 1 and the rmserror of the WC
falls off as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln þ ld þ 1

p
, which is reminiscent of the

classical statistics law for the signal-averaging technique. If
the FIR model is used, there is no influence of noise on the
WC (compare with Ex. 6 on p. 226 in Ref. [34]).
It should be noticed that the linear dependence of the

columns in ∥ V̂ Ĵ ∥ leads to the increasing of ν, and, as a
corollary, to the instability of the system (A3). Such linear
dependence can arise in the case of a short periodic EVor in
the case of pure resistance-type impedance. In this case, for
better robustness, the singular value decomposition can be
used directly to solve Eq. (A1) [45].

APPENDIX C: ON THE SWEEP-SHAPE
EXCITATION VOLTAGE

The Fourier image of the linear-sweep-shape signal is
numerically investigated in Ref. [28] [see Fig. 4(e)] and
analytically obtained in the general form in Ref. [46]. By
setting rðtÞ in Eq. (9) in Ref. [46] to a rectangular function
with the sweep-time interval width, and by applying
Eqs. (8.250.2) and (8.250.3) from Ref. [47], we obtain
the difference between the Frensel integrals, which is close
to the rectangular function with the �fB interval width.
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