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We propose and theoretically study a parity-time (PT )-symmetric photonic-crystal coupled-resonator
optical waveguide (CROW) based on buried heterostructure nanocavities which has potential scalability
and controllability. We analytically reveal its spectral transport properties with a tight-binding model and
show the possibility of the wide-range control of its group velocity using the PT phase transition. While
the group velocity at the PT phase-transition point diverges, the group-velocity dispersion converges.
A numerical estimation of the system response to temporal pulse inputs shows that the pulse broadening is
not severe in a device of hundreds of micrometers in size. Furthermore, a longer pulse duration results in a
higher upper limit of the pulse peak velocity, which can be, in principle, superluminal. We next perform
numerical simulations on the considered photonic-crystal slab structures with the finite-element method,
and we successfully observe PT phase transitions. In the simulated parameter range, gain and loss
coefficients of the order of 100 cm−1 meet the condition for the maximum group-velocity coefficient in the
context of the tight-binding approach. A 9.3-fold increase in the group velocity at 1502 nm is obtained in a
three-dimensional device by switching between the conventional and PT -symmetric CROWs. Meanwhile,
we also encounter band smoothing around the phase transition, which hampers the group-velocity
divergence. Our simulation result indicates that it arises from interfering evanescent waves decaying out of
the device structure, and we discuss ways to suppress this effect.
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I. INTRODUCTION

It has been a long-standing goal to fully control the speed
of light in photonic devices. With respect to slowing the
light, an array of optical microcavities with evanescent
coupling, called a coupled-resonator optical waveguide
(CROW) [1,2], is one of the most promising platforms.
In such a system, the confinement of photons in cavities
and their limited tunneling give their effective mass, and
hence a gentle cosine-shaped photonic band curve. As a
result, a CROW can achieve an optical group velocity
orders of magnitude smaller than the speed of light in
vacuum and a negligible group-velocity dispersion at the
band center. Applications such as a compact optical delay
line [3], enhancement of the nonlinear optical effect [4] and
mode locking [5,6] have been proposed. Also, the number
of coherently coupled resonators in the experimental
demonstration has been extended to over one thousand,
which amounts to as long as 1 mm in terms of device length
[7]. Here, the practical challenge is to significantly tune
their optical response with external signals.
To realize optical devices with extra controllability and

functionality, an emerging feature in artificial dielectric
structures with balanced gain and loss has recently been
studied. It originates from a quantum-mechanical concept,
known as parity-time (PT ) symmetry [8], in which the
system Hamiltonian is invariant to the parity- (P̂) and time-
(T̂ ) reversal operation set. It has suggested an exotic class of

systems that retain their real, and hence their observable
energy eigenvalues, even in the presence of partial non-
Hermitian factors such as amplification and dissipation. In
addition, it is known that its protection of quasi-Hermiticity is
not always perfect, meaning that increasing the imaginary
potential can induce a phase transition from real to imaginary
eigenvalues. Because of the correspondence between the
Schrödinger equation and the paraxial wave equation,
classical optics has been suggested as a good test bed for
PT symmetry and its symmetry breaking [9–11]. A certain
condition is required for the complex refractive index
nðrÞ ¼ n�ð−rÞ, meaning that its real part has an even spatial
parity, while the imaginary part is an odd function, thereby
leading to PT symmetry. Various interesting phenomena
have already been observed in such systems, for example,
power oscillation [9,12], double refraction [9], unidirectional
reflectivity [13,14], and single-mode lasing [15,16]. Here,
large PT -symmetric waveguide arrays in the time domain
have been reported [12,17]; however, practical demonstra-
tions using spatial gain and loss structures are still challeng-
ing in terms of scale or gain control.
PT -symmetric CROWs have both strong light confine-

ment and optical gain and loss in their constituent cavities.
Thus, their non-Hermitian structures, along with the propa-
gation direction, greatly affect their dispersion relation, and
hence their group velocity. A theoretical analysis [18] shows
that large systems can show significant unidirectional
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reflectivity and transmission restriction. Furthermore, a non-
Hermitian CROW is expected to show the divergence of its
group velocity due to an exceptional point [19]. However,
experimental realization of such theoretical bulk features has
not been extensively pursued. Demonstrations are still
limited to two coupled high-Q microtoroid resonators
[20,21] showing nonlinearity-induced isolation, which need
optical pumping and fine-tuning of their positions, and hence
coupling.
In this paper, we propose and study theoretically an

alternative PT -symmetric CROW based on photonic-
crystal buried heterostructure mode-gap (BHM) nanocav-
ities [22–24], which will have both experimental scalability
and gain controllability. We first illustrate the device and
describe it with a coupled-mode equation corresponding
to the tight-binding model. Here, we derive the input
frequency dependences of its group velocity and group-
velocity dispersion, which are of practical importance.
They show that the group velocity diverges at the phase-
transition frequency, while the group-velocity dispersion
converges. This feature suggests that the switching from the
slow light transport of a conventional CROW to fast light
transport in a PT -symmetric CROW might be realized by
external pumping control. The result also clarifies that the
optimum group velocity and group-velocity dispersion can
be estimated by the cavity coupling and cavity spatial
interval of a given conventional CROW without gain and
loss. This fact supports the advantage of our system based
on compact and then strongly coupling nanocavities. Next,
we perform a numerical analysis of the temporal system
response to pulse inputs. Our analysis shows that the
fundamental upper limit of the pulse peak velocity depends
on the input pulse width, although the system might allow
superluminal propagation. Furthermore, propagation in the
device of over 200 μm does not significantly broaden input
pulses with durations of tens of picoseconds. Finally, we
simulate realistic device structures composed of photonic-
crystal nanocavities with complex refractive indices
and examine their band structures. Here, the PT phase
transition is successfully observed assuming realistic
gain-coefficient values. The simulated band curves are
reproduced by a theoretical model that includes up to
the second-nearest-neighbor coupling, where the coupling
rates can be estimated with moderate data points. However,
we observed the smoothing of the exceptional-point sin-
gularity [25]. It can lead to a small available group velocity
and can impede possible exotic phenomena based on the
PT phase transition. Our result suggests that this is because
of the interfering light radiating out of the structure, which
can be modeled by a small imaginary part of the cavity-
cavity coupling [26]. Here, a high systemQ factor is shown
to be essential to obtain a large group velocity. Our
structure tuning achieves a 9.3-fold increase in the velocity
by switching between the conventional and PT -symmetric
CROWs in three dimensions.

The remainder of this paper is organized as follows. In
Sec. II, we describe the device proposed in this study.
Section III shows theoretical transport properties of the
system based on the tight-binding approach. Section IV
provides the result of a numerical simulation of realistic
photonic-crystal structures. Section V discusses the trade-
off between the possible group velocity and the required
gain and loss. It also mentions ways to recover the
singularity in imperfect systems. Section VI concludes
the paper.

II. PT -SYMMETRIC CROW BASED ON BURIED
HETEROSTRUCTURE NANOCAVITIES

In this section, we describe the device structure proposed
in this study. Figure 1(a) shows the structure schematically.
The system is composed of a semiconductor photonic-
crystal slab, a line defect, BHM nanocavities along with the
line defect, and an appropriate pumping mechanism for
each cavity. The photonic-crystal structure is omitted from
Fig. 1(a) for simplicity. A periodic gain and loss profile is
realized by electrical or optical pumping in BHM cavities.
Figure 1(a) shows the case for electrical pumping. Here, the
green and purple parts in the semiconductor slab are p
doped and n doped, respectively, for each independent
current-injection channel to control gain and loss in each
cavity. The red (blue) rectangular BHM nanocavities
indicate their gain by the current injection (loss by the
material absorption). Closely placed nanocavities give large
cavity coupling rates, which result in the CROW bandwidth
of ≳1 nm. Figure 1(b) shows the complex refractive-index
profile along with the center of the line defect. Here, each
BHM works as a cavity due to a sharp index modulation
and, at the same time, induces gain or loss [a finite ImðnÞ]
as a result of pumping and intrinsic material absorption.

FIG. 1. (a) Schematic of the proposed PT -symmetric CROW
with electrical pumping. (b) The refractive-index profile along
with the line defect and the array of BHM cavities.
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When we use the x axis at the center of the BHM cavity
array as a reference, ReðnÞ is even in x and ImðnÞ is odd.
Thus, the system guarantees the existence of PT symmetry
for suitable amounts of equal gain and loss.

III. THEORETICAL ANALYSIS WITH A
TIGHT-BINDING MODEL

A. Theoretical model

For a theoretical analysis of the system, we consider a
simplified coupled-mode-equation analysis equivalent to
the tight-binding model illustrated in Fig. 2(a). Here, each
cavity mode is described by the slowly varying electric-
field amplitude EmðtÞ, where m is the cavity index. The
system comprises N pairs of cavities with alternating loss
and gain, and the periodic boundary is set by the perfect
electric conductors at its edges, requiring E0 ¼ E2Nþ1 ¼ 0.
The real part of the local index for each BHM cavity nBH is
assumed to be constant, whereas its imaginary part varies
depending on whether the cavity undergoes gain (þg) or
loss (−g). The cavities are evanescently coupled and their
real coupling coefficient is expressed by κ. The spatial
interval of the cavities LCC affects the transport properties
estimated later. Note that the period of identical unit cells is
2LCC, namely, a pair of cavities with gain and loss. Thus,
the cosinusoidal band structure of the conventional empty
CROW (g ¼ 0) is folded in half, as shown in Fig. 2(b). We
obtain some device parameters, such as κ ¼ 2 × 10−3 and
LCC ¼ 2.1 μm, from Ref. [3]. The equation of motion for
each field amplitude can be described as a series of
temporal coupled-mode equations [27,28],

dEm

dt
¼ −

ω0

2Q
Em þ gmc

2nBH
Em − i

κω0

2
ðEmþ1 þ Em−1Þ: ð1Þ

Here, ω0 is the single-cavity resonance frequency, which
equals the frequency of the rotating frame, Q is the cavity
quality factor and ω0=ð2QÞ is the cavity decay rate. c is the
speed of light in vacuum and gmc=ð2nBHÞ is the gain and
loss rate in term of photons with the local phase velocity in
each cavity. We combine the first and second terms in
Eq. (1) and define the cavity-index-dependent coefficient
gm for Em as follows:

gm ¼
� gþ nBHω0

cQ ðm is evenÞ;
−gþ nBHω0

cQ ðm is oddÞ: ð2Þ

This means that the single-cavity decay is just a linear term
in Eq. (1) and hence can be canceled by the controlled gain
and loss. g > 0 is the net gain (even m) and loss (odd m)
coefficient for the considered cavity mode. We also assume
that a large part of the field decay works as photonic
tunneling (evanescent coupling) between the cavities. Thus,
the coupling rate is sufficiently large compared to the decay
rate. The device can then be regarded as a large coherently
coupled cavity system, and its total gain and loss are
balanced. Therefore, PT symmetry will be realized with-
out lasing, as in previous studies [20,21], and we focus on
the linear PT -symmetric system with regard to the gain
and loss terms. Note that g parametrizes various factors,
such as mode confinement, carrier dynamics, and gain
saturation.
After substituting Eq. (2) into Eq. (1), we find that the

resultant field equation corresponds to the Schrödinger
equation of a non-Hermitian tight-binding model [18],

i
dΨm

dt
¼ ig0mΨm þ κ0ðΨmþ1 þ Ψm−1Þ; ð3Þ

with simplification,

κ0 ¼ 1

2
κω0;

g0m ¼
� gc

2nBH
¼ g0 ðm is evenÞ;

− gc
2nBH

ðm is oddÞ; ð4Þ

where we have changed the notation of the field Em → Ψm
for visual correspondence. With the ansatz for the differ-
ential equation ΨmðtÞ ¼ expð−iΔωtÞψm, we obtain the
eigenvalue equation for the frequency detuning Δω,

Δωψm ¼ ig0mψm þ κ0ðψmþ1 þ ψm−1Þ: ð5Þ

Here, the reference for Δω in the rotating frame is the
resonance frequency ω0.

B. Complex band structure with
nearest-neighbor coupling

The eigenvalues of Eq. (5) can be derived by using the
Bloch theorem [18],

ΔωðKsÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ02cos2Ks − g02

q
; ð6Þ

where the eigenstates require Bloch phase factors with
discrete values,

Ks ¼
sπ

2N þ 1
ðs ¼ 1;…; NÞ: ð7Þ

FIG. 2. (a) Illustration of the theoretical model for the PT -
symmetric CROW. (b) Sketch of the half-folded band structure of
the conventional CROW (g ¼ 0) with a spatial period of 2LCC.
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Note that Ks is dimensionless and that the wave number is
Ks=LCC < π=ð2LCCÞ. The negative Ks case is omitted for
simplicity. The effect of the gain and loss shows up as −g02
in the square root of Eq. (6), and it enables the eigenvalues
to be purely imaginary. Here, the shape of the band
structure does not depend on N. We hence focus on
N → ∞, leading to band curves formed by the continuum
of eigenstates (Ks → kLCC ∈ R, where k is the Bloch wave
number). Figures 3(a) and 3(b) show the real and imaginary
eigenfrequency detuningΔωðkÞ for different magnitudes of
the net gain and loss, g ¼ 0, 200, 405, 500 cm−1. The black
curves give the folded cosine-shaped band structure of the
empty CROW. When g is finite, the two real branches
coalesce inside the first Brillouin zone, and nondegenerate
imaginary branches appear. The point with ReðΔωÞ ¼
ImðΔωÞ ¼ 0 is hence called the PT phase-transition point,
or the exceptional point, and it induces switching from
extended CROW modes to a pair of amplifying and
deamplifying modes localized in the gain and loss parts.
Comparing different curves, we see that as g increases by
hundreds of cm−1, the transition point moves largely
toward the inside of the band for the set of parameters
considered. Many exotic and interesting phenomena occur
around this exceptional point, and here we pay attention to

the divergence of the group velocity, namely, the gradient
of the real branches.

C. Group velocity and group-velocity dispersion

Here, we theoretically clarify the transport properties of
the PT -symmetric CROW with the tight-binding model.
First, differentiation of ΔωðkÞ and variable transformation
give the spectral group velocity. For the lower branch
before the phase transition, the analytical expression is

vgðΔωÞ ¼
dΔω
dk

¼ LCC
dΔω
dKs

¼ −
LCC

Δω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔω2 þ g02Þð4κ02 − Δω2 − g02Þ

q
ðΔω < 0Þ: ð8Þ

Equation (8) for different gain and loss coefficients is
plotted in Fig. 4(a). Here, Δω ¼ 0 indicates the phase-
transition point, as seen in Fig. 3(a). Clear divergence of the
curves for finite g’s due to1=Δω → ∞ðΔω → 0Þ inEq. (8) is
observed.On the other hand, thegroup velocity for the empty
CROW (g ¼ 0) is finite and small atΔω ¼ 0, meaning that a
great change is induced in vg by the introduction of the PT

FIG. 3. (a) Real and (b) imaginary parts of the eigenfrequency
detuning in the PT -symmetric CROW for different gain and loss
rates g. nBH ¼ 3.54, λ0 ¼ c=ω0 ¼ 1.55 μm, κ ¼ 2 × 10−3. The
curve for g ¼ 405 cm−1 in (a) is a parabola with the longest focal
length and hence the largest group-velocity coefficient, satisfying
Eq. (10).

FIG. 4. (a) The spectral group velocity and (b) the group-
velocity dispersion of the PT -symmetric CROW for different
gain and loss rates. nBH ¼ 3.54, λ0 ¼ 2πc=ω0 ¼ 1.55 μm,
κ ¼ 2 × 10−3. The curve for g ¼ 405 cm−1 in (b) gives the
minimum jGVDðΔω ¼ 0Þj in a finite g.
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phase transition. We can easily obtain the asymptotic
behavior of vg from Eq. (8) for Δω ≈ 0,

vg → −
LCC

Δω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02ð4κ02 − g02Þ

q
¼ −

LCC

Δω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðg02 − 2κ02Þ2 þ 4κ04

q
: ð9Þ

We then find that the condition for the largest vg around the
transition point is

g0 ¼
ffiffiffi
2

p
κ0: ð10Þ

With this relation, the continuous solution of Eq. (6) for
Δω ¼ 0 is k ¼ π=ð4LCCÞ. This means that the highest group
velocity is obtained when the transition occurs at the middle
of the band for k > 0. The plot for vg with g ¼ 405 cm−1 in
Fig. 3(a) actually meets this condition [Eq. (10)]. Therefore,
the curve with g ¼ 405 cm−1 in Fig. 4(a) is uppermost for
Δω ≈ 0 of the four g values. The resultant coefficient in
Eq. (9) with Eq. (10) is 2LCCκ

02 ¼ LCCκ
2ω2

0=2, which is
proportional to both the cavity period LCC and the square of
the coupling factor κ2. By contrast, the group velocity for the
empty CROW at Δω ¼ 0 is vg;empty ¼ 2κ0LCC ¼ κω0LCC.
Thus, around the transition point (Δω ≈ 0), vg=vg;empty ≈
κω0=ð2ΔωÞ, showing linear enhancement of the velocity
ratio with the coupling coefficient κ. As shown previously
[3], κ decays exponentially with LCC. A smaller LCC thus
leads to a larger vg for the light near the exceptional point.
Next, we examine the group-velocity dispersion (GVD),

which characterizes the pulse broadening. GVD is defined
as the spectral gradient of the group delay for unit
propagation distance and is derived with Eq. (8),

GVDðΔωÞ ¼ d
dΔω

�
1

vg

�

¼ −Δω4 − 4g02κ02 þ g04

LCC½ðΔω2 þ g02Þð4κ02 − Δω2 − g02Þ�3=2
ðΔω < 0Þ: ð11Þ

The data obtained with Eq. (11) for different g values are
displayed in Fig. 4(b). An empty CROW (g ¼ 0) does not
suffer from any GVD around Δω ¼ 0. On the other hand,
the gain and loss result in a finite GVD in PT -symmetric
CROWs. It diverges under large negative frequency detun-
ing (flatband regime), while it converges at the transition
point because vgðΔω ≈ 0Þ ∝ 1=Δω. Here, the spectral
width of the region with a small jGVDj depends on
4κ02 − g02. The magnitude of the GVD at the transition
point for a finite g0 can be obtained as

jGVDðΔω ¼ 0Þj ¼ 1

LCC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðg02 − 2κ02Þ2 þ 4κ04

p : ð12Þ

We see that the condition for the smallest jGVDðΔω ¼ 0Þj is
the same as Eq. (10). The consequent minimum jGVDj is
1=ð2LCCκ

02Þ ¼ 2=ðLCCκ
2ω2

0Þ, which is the inverse of the
maximum coefficient of vg forΔω ≈ 0. Again, a shorter LCC

leads to an exponentially larger κ, and hence smaller pulse
broadening, depending on 1=κ2. Note that the curve of
g ¼ 405 cm−1 in Fig. 4(b) shows the smallest GVD around
Δω ¼ 0 when the gain and loss rates are nonzero.
Overall, we can estimate the possible group velocity and
group-velocity dispersion in a PT -symmetric CROW from
the device parameters of its conventional counterpart
fκ;ω0; LCCg with no gain or loss introduced. Available
values of κ0 and LCC in in-line coupled photonic-crystal
nanocavities are 200 GHz and 2 μm [3], while those
for microtoroid resonators, which are also good for PT -
symmetric systems, can be 1 GHz and 60 μm [20,21]. Thus,
the optimum coefficient of vg and 1=jGVDj is larger by two
orders of magnitude in photonic-crystal systems. This differ-
ence shows the advantage of our device in terms of achieving
fast light transport.

D. Estimation of the temporal response

We have already studied analytically the group velocity
and group-velocity dispersion of the system, along with their
parameter dependence. Here, we provide a numerical esti-
mation of the temporal response of the bulk system to a pulse
running over a finite distance. As shown in Fig. 3, the band
structure of the system is nonlinear and hence will lead to
non-negligible high-order dispersion. Therefore, a pulsewith
a broad spectral distribution can show propagation slower
than that with the theoretical group velocity. The dependence
of the response on the input pulse duration will hence be of
significant importance. We take these factors into account
and show the upper limit of the pulse peak velocity. In
addition, the finite length of the system limits the temporal
delay of propagating optical pulses. Thus, we see whether a
detectable temporal shift of the pulses are obtained by
switching between empty and PT -symmetric CROWs over
a moderate propagation distance.
The evolving pulse amplitude at cavity site m, Φðm; tÞ is

expressed by the Fourier integral of the Bloch-Floquet
eigenmodes ψ�;mðkÞ, including their wave-number spectral
functionsF�ðkÞ and phase rotations [19,29]. For our system
with a period of two cavities, the pulse amplitude is given by

Φðm; tÞ ¼
Z

π=ð2LCCÞ

−π=ð2LCCÞ
dkFþðkÞψþ;mðkÞ

× exp

�
i2kLCC

�
m
2

�
− iΔωþðkÞt

	

þ
Z

π=ð2LCCÞ

−π=ð2LCCÞ
dkF−ðkÞψ−;mðkÞ

× exp

�
i2kLCC

�
m
2

�
− iΔω−ðkÞt

	
; ð13Þ
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where the subscript fþ;−g corresponds to the sign of the
eigenfrequency detuning ΔωðkÞ [see Eq. (6)], and

ψ�;mðkÞ ¼
(
1 ðm is evenÞ;
−ig0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ02cos2ðkLCCÞ−g02

p
κ0½1þexpði2kLCCÞ� ðm is oddÞ:

ð14Þ

The absence of an offset for m and t in Eq. (13) means that
the initial pulse is excited at the spatial and temporal
references, i.e., m ¼ t ¼ 0.
To set the spectral function F�ðkÞ, we perform a variable

transformation from an input frequency distribution,

FðΔω;Δω0;σtÞ¼
ffiffiffiffiffiffi
2π

p
σt exp



−
σ2t
2
ðΔω−Δω0Þ2

�
; ð15Þ

which corresponds to a temporal Gaussian pulse with a
variance σ2t and a central frequency detuning of Δω0 in free
space. Note that F�ðkÞ is not Gaussian because of the
nonlinear band structure of the considered system, namely,

F�ðkÞ ¼ FðΔω;Δω0; σtÞ ·
dΔω�ðkÞ

dk
: ð16Þ

Indeed, dΔω�ðkÞ=dk in Eq. (16) is the group velocity
[Eq. (8)], diverging at the phase-transition point. However,
the integration represented by Eq. (13) is finite as long as
the amplification by the states with imaginary eigenfre-
quencies in the broken PT phase (after the PT symmetry
breaking) is avoided. Here, we limit the analysis to the
exact PT phase (before the symmetry breaking). This is
because the states in the broken PT phase have flat real
bands (vg ¼ 0) and curved imaginary bands, which only
support monochromatic standing waves with amplification
and deamplification (see Fig. 3). Furthermore, we focus on
a single propagation direction, and hence on the case where
the states are pumped with positive group velocities. As a
result, the integral ranges for the first and second terms of
Eq. (13) can be ½−kPT; 0� and ½0; kPT�, respectively, where
kPT is the phase-transition point in ½0; π=ð2LCCÞ�. Note that
the states with ΔωþðkÞ support positive group velocities in
the negative wave-number region ½−kPT; 0�, although this
region is omitted in the tight-binding analysis in Secs. III B
and III C.
We consider detecting the temporal pulse intensities at

m ¼ 100, corresponding to a distance of mLCC ¼ 210 μm
from the excitation point, for both PT -symmetric and
conventional empty CROWs. Figs. 5(a) and 5(b) show
examples of pulse propagation for different pulse intensity
widths of 10 and 100 ps, with their central frequencies at
the phase-transition point. With a short input pulse, we can
achieve a large relative shift in time by switching between
the PT -symmetric and empty CROWs [Fig. 5(a)]. In
addition, the pulse broadening in the PT -symmetric
CROW is not significant for the propagation distance of
210 μm. However, the maximum peak velocity (ideally

corresponding to the group velocity) is limited because
it is affected by the broad spectral width. A longer pulse
[Fig. 5(b)] has a narrower spectrum and hence enables a
faster peak velocity. However, it is more difficult to detect
the absolute time delay caused by the propagation in the
PT -symmetric CROW and the temporal pulse shift than
with the conventional CROW.
Figure 6 shows the dependence of the forward peak

velocity on the central frequency for different temporal
pulse durations. The maximum peak velocity is obtained
with the central frequency at the exceptional point for both
the PT -symmetric CROW (shown as curves with markers)
and the conventional empty CROW (the dashed-dotted
line). The peak velocity in the PT -symmetric CROW
agrees with the theoretical analysis [Eq. (8)] shown by the
dotted curve for detuning approximately larger than the
spectral width of the input pulse. On the other hand, it does
not diverge around the phase-transition point, Δω ¼ 0.
This is very probably because the peak is delayed by the
third and higher-order dispersion, and the effect is more
significant for pulses with broader spectral widths, and
hence shorter temporal durations. However, a long pulse
can show superluminal peak propagation there, as shown
by the example for 100 ps in Fig. 5(b), which achieves
4.66 × 108 km=s. The ratios of the maximum velocity in

FIG. 5. Examples of the propagation of pulses with the central
frequency at the exceptional point and temporal durations of (a) 10
and (b) 100 ps in the PT -symmetric (red lines) and conventional
(blue lines) CROWs. m ¼ 100. nBH ¼ 3.54, λ0 ¼ 2πc=ω0 ¼
1.55 μm, κ ¼ 2 × 10−3, g ¼ 405 cm−1 [satisfying Eq. (10)].

KENTA TAKATA and MASAYA NOTOMI PHYS. REV. APPLIED 7, 054023 (2017)

054023-6



the PT -symmetric CROW to that in the conventional
CROW for Δω ¼ 0 are 9.72, 18.4, 45.4, and 91.3 for
10-, 20-, 50-, and 100-ps pulses, respectively. Meanwhile,
as shown in the next section, the group velocity around the
exceptional point is decreased by the radiation loss of the
device; thus, a low-loss system will also be needed to keep
the controllability of the velocity.
It is noteworthy that if we excite the bands with positive

and negative group velocities at the same time, a pair of
pulses propagating in the opposite directions is formed.
This bidirectional excitation can cause a sharp decrease in
the apparent pulse velocity around the exceptional point,
which might be seen in previous work for honeycomb
photonic lattices [30]. The velocity drop might also indicate
the flux velocity cancellation discussed in Ref. [19]. To
achieve the sole advancing pulse in our simulation above
within the scope of the exact PT phase, the system needs
the selectivity of the propagation direction (i.e., the wave
number) and frequency in the excitation. The way to realize
this selectivity is nontrivial and to be explored further.

IV. NUMERICAL SIMULATION FOR
PHOTONIC-CRYSTAL STRUCTURES

A. Theoretical model

In this section, we show and discuss the result of a
simulation of realistic photonic-crystal structures based on
the finite-element method. We perform an eigenfreque-
ncy analysis of the Maxwell equation mainly on two-
dimensional structures to explore basic features. We
employ a three-dimensional numerical simulation to con-
firm the main result, compare the devices in two and three
dimensions, and estimate the actual device specifications.
Figures 7(a) and 7(b) show the simulated three-

dimensional device structure and its two-dimensional top
view, respectively. Here, two BHM cavities with dimensions

of 2.1 × 0.3 × 0.15 μm undergo loss (ImnBH > 0) and gain
(ImnBH < 0) via the imaginary parts of their input material
indices (ImnBH). The lattice constant of the triangular
photonic crystal is a ¼ 420 nm, and the airhole radius is
R ¼ 100 nm. Seven rows of airholes are aligned on each
side of the line defect. As shown in Fig. 7(a), symmetric
boundary planes are placed along with the center of the line
defect and on the bottom of the structure in the simulation,
while Fig. 7(b) shows the entire two-dimensional unit cell
for reference. The periodic boundary condition is set to
enable us to analyze the band structure of infinite pairs of
cavities. Perfectly matched layers (PMLs) are attached
outside the main structure. Two widths W of the two-
dimensional line-defect part, W ¼ 0.98W0 and W ¼
0.85W0, are considered. Here, W is defined as the distance
between the airhole rows on the upper and lower sides of
the waveguide, and W0 ¼

ffiffiffi
3

p
a. We find that narrowing the

line defect improves the total Q factor of the leaky lower
CROW supermode. This effect is much more significant in
three-dimensional structures than in two-dimensional ones.
For the two-dimensional system, as in Fig. 7(b), we use the
effective refractive indices nsl ¼ 2.59 for the InP slab and
RenBH ¼ 2.77 for the In-Ga-As-P BHM cavities [22]. In the
three-dimensional simulation, the thickness of the slab is
250 nm, and the material indices nsl ¼ 3.17 and RenBH ¼
3.54 are introduced. In the vertical direction, air layers are
sandwiched between the slab and the PMLs. Typical device

FIG. 6. Dependence of forward peak velocity of the pulse on its
central frequency. Lines with markers are for the PT -symmetric
CROW with different input pulse widths. The dotted line shows
the theoretical group velocity for the PT -symmetric CROW. The
dashed-dotted line is the group velocity of the empty CROW. The
parameters are the same as those in Fig. 5.

FIG. 7. (a) Schematic of the simulated device structure in three
dimensions. (b) Top view of (a) without the symmetry boundary
on the x-z plane, which corresponds to the considered two-
dimensional structure.
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parameters fQ; κ0; LCCg obtained in our simulation are
f106; 130 GHz; 3.4 μmg and f5 × 105; 50 GHz; 3.4 μmg
in two and three dimensions, respectively. The cavity
couplings here are smaller than that in a Si system [3].
This difference might diminish values of vg obtained in this
section compared with our previous tight-binding analysis.
Couplings in a diagonal direction [7] will be available to
increase κ0, although those are beyond the scope of this
work.
Figure 8 shows the considered eigenmodes for the empty

CROW (ImnBH ¼ 0) in terms of the out-of-plane compo-
nent of the magnetic field Hzðx; yÞ. Here, the ground even
mode in terms of Hz is excited and well confined in the
cavities. In the lower-band eigenmode [Fig. 8(a)], an
antinode is formed in the middle of the line-defect part,
and the two BHM cavity modes are in phase. On the other
hand, the upper-band mode [Fig. 8(b)] has a node at the
center of the line-defect and out-of-phase cavity modes.
When the cavities are close, the second- and higher-order

couplings are not negligible and the resultant band structure
verges on that of the line-defect waveguide of the BH
medium. To fit the simulation data, we apply the Rice-
Mele model [29,31], which covers up to the second nearest-
neighbor coupling,

ω�ðkÞ ¼ ω0 − 2ρ cosð2LCCkþ ϕÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g02 þ 2κ02½1þ cosð2LCCkÞ�

q
: ð17Þ

Here,ω0 is the single-cavity resonance frequency.ρ andϕ are
the second nearest-neighbor coupling rate and phase, respec-
tively. Note that the second nearest-neighbor coupling—that
is, the second term in Eq. (17)—adds only a small change in
vg and does not impede its divergence at the transition point.
If we assume that the data obey Eq. (17), all of the parameters
can be determined without any free fitting parameters.
κ0, ρ, and ϕ are obtained from the eigenfrequencies for
ðk; ImnBHÞ ¼ ð0; 0Þ; (π=ð2LCCÞ; 0) (empty CROW). The
ratio between ImnBH and g0 is estimated by using the data
points for k ¼ 0 and various ImnBH values.

B. PT phase transition by loss and gain

We first investigate the complex eigenfrequency depend-
ence on the magnitude of the gain and loss in a two-
dimensional device with LCC ¼ 8a. Here, we fix the Bloch
wave number to the middle of the band for k > 0, i.e.,
k ¼ π=ð4LCCÞ, to find the gain and loss rates that give the
largest group velocities around the phase transition within
the first-order limits (see Sec. III C). Figure 9(a) shows the
wavelength λ (the black curve) and the system gain or loss
rate (the red curve), which are calculated with Reω�ðkÞ and
Imω�ðkÞ, respectively. Positive and negative Imω�ðkÞ
values correspond to the system loss and gain. The markers
show the result of the numerical simulation, and the curves
are drawn with Eq. (17). We find that Eq. (17) with
the calculated device parameters does not reproduce the
simulation data well in terms of the position of the phase-
transition point. We attribute this deviation to the higher-
order couplings and then reduce κ0 by 4% to take it into
account approximately within the scope of the theoretical
model. With this shift, the data points agree well with the
dependence on g0 in Eq. (17) without any other fitting
parameters. The result presents a sharp PT phase transition
from real to imaginary detuning eigenvalues ω�ðkÞ − ω0

around λ ≈ 1587.25 nm. Here, the material imaginary
index to reach the transition is ImnBH ¼ �0.0103, and
the corresponding spatial loss and gain rates are
gBH ¼ �823 cm−1. This means that the PT phase

FIG. 8. Hz fields of the considered supermodes for the empty
CROW (ImnBH ¼ 0). The (a) lower and (b) upper modes have
in-phase and out-of-phase couplings, respectively. k ¼ 0.

FIG. 9. (a) Dependence of the
eigenwavelength (black curves)
and system gain or loss rate (red
curves) on the imaginary part of the
cavity refractive index jImnBHj at
the middle of the band for k > 0:
k ¼ π=ð4LCCÞ. Markers show the
simulated data points. Curves are
based on Eq. (17), with ω0 ¼
189.0 THz, κ0 ¼ 124.0 GHz, ρ ¼
16.17 GHz, ϕ ¼ 0.008730 rad,
and g0 ¼ 1.700 × 104ImnBH GHz.
(b) Magnitudes of the magnetic
fields for the eigenmodes with
ImnBH ¼ �0.015. LCC ¼ 8a, in
two dimensions.
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transition for a large change in vg will be achievable with a
realistic carrier-injection gain in III-V quantum wells [32].
Figure 9(b) depicts the norm of the magnetic field for the
eigenmodes after phase transition, with ImnBH ¼ �0.015.
We see that we can attribute the two states with loss
[Imω�ðkÞ > 0] and gain [Imω�ðkÞ < 0] to the localized
modes in the left (ImnBH > 0) and right (ImnBH < 0)
cavities, respectively. Note that the cavity-mode profiles
before and at the phase transition are similar to those shown
in Fig. 8. This means that the localization effect gradually
appears as the imaginary part of the eigenfrequency increases.

C. Band structure and group index for two- and
three-dimensional structures

With the gain and loss coefficients inducing the phase
transition at k ¼ π=ð4LCCÞ, we next explore the complex
band structure to examine the behavior of the PT phase
transition and the possible group velocity in the wave-
number space of realistic systems. Figure 10(a) shows the
band curves in terms of the wavelength and the gain or loss
rate for a two-dimensional system with W ¼ 0.98W0. The
parameters used here are the same as those in Fig. 9. The
small deviation between the simulated data points and
the theoretical curves can probably be attributed to the
insufficient compensation of the effect of the third and higher
nearest-neighbor couplings. We use ImnBH ¼ �0.0104 by

considering Fig. 9(a) and successfully observe a PT phase
transition around k ¼ π=ð4LCCÞ. It is seen that the real
band has finite slopes after the phase transition due to
hopping propagation via the second nearest-neighbor cou-
pling. Figure 10(b) shows the wavelength-dependent group
index ng ¼ c=vg for the two-dimensional device. It includes
finer data points around the phase transition than in
Fig. 10(a). When the ng of the PT -symmetric CROW is
minimal, the ratio of ng relative to the empty CROW reaches
7.2. Note that the magnitude of vg itself depends on the
coupling κ0.
We find that a narrower line defect results in a faster vg,

probably due to the balanced and high-Q factors of
the CROW supermodes. Figures 10(c) and 10(d) show the
complex band curves and the group index around the
transition point for W ¼ 0.85W0. Here, we have Q ¼
1.5 × 106 for the upper mode and 2.0 × 106 for the lower
mode with k ¼ g ¼ 0. The coupling rates are increased
slightly due to the better field confinement, and the entire
band structure appears nearly unchanged, except for the
shorter wavelengths resulting from the narrower line defect.
However, a closer look at Fig. 10(d) reveals that a smaller ng
of 2.69 is obtained, and this value results in as much as a
19-fold acceleration. Note that the minimum value is slightly
below the two-dimensionalBHmaterial indexRenBH¼2.77.

FIG. 10. (a) Complex band structure shown as the eigenwavelength (black curves) and gain or loss rate (red curves—positive for loss,
negative for gain) in a two-dimensional device with a line-defect width of 0.98W0. Markers indicate the simulated data. The parameters for
the theoretical curves are the same as those in Fig. 9. (b) Dependence of the group index on the wavelength in the same two-dimensional
device. (c) Band curves of a two-dimensional device with a narrower line defectW ¼ 0.85W0. The dashed lines indicate theoretical curves
with ω0 ¼ 198.0 THz, κ0 ¼ 134.340 GHz, ρ ¼ −14.26 GHz, ϕ ¼ 0.007432 rad, and g0 ¼ 2.0503 × 104ImnBH GHz. Here, the calcu-
lated κ0 is decreased by 3.5% to fit the simulated data points. (d) Fine data of the group index around the phase-transition wavelength for a
two-dimensional devicewith the line-defect width of 0.85W0. The minimum index ng ¼ 2.69 is slightly below the cavitymaterial effective
index RenBH ¼ 2.77.
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Figures 11(a) and 11(b) show the complex band structure
and the group index of a three-dimensional device with
W ¼ 0.85W0. Its coupling rates, including higher nearest-
neighbor coupling rates, are smaller than those for two-
dimensional systems because of the radiation loss in the z
direction. Thus, the data points in Fig. 11(c) agree well with
the theoretical curves, assuming Eq. (17) (without any
parameter adjustment). The CROW bandwidth is about
1 nm, and the magnitude of the applied loss and gain is
334.6 cm−1. In Fig. 11(b), we have a relatively large
minimum index of 15.91 due to the small coupling rates.
However, the index ng shows a steep change around the
phase transition and hence gives a large maximum ratio in
ng of 9.3 compared to the empty CROW.

D. Band smoothing around the phase transition

As previously seen, the group velocity for the realistic
photonic-crystal structure does not exhibit divergent behav-
ior despite the fine data points under the periodic boundary
condition. This is because the band around the phase
transition is smoothed by the field decay from the system.
Figures 12(a) and 12(b) depict the complex band curves
for the two-dimensional devices with 7 and 15 rows of
photonic-crystal airholes, respectively. Here, the cavity

spacing is larger, LCC ¼ 10a; thus, the couplings are
smaller than those in the previous two-dimensional exam-
ples. In Fig. 12(a), the sharp phase transition is lost due to
the radiation loss and weak coupling, and the minimum ng
in the PT -symmetric CROW is as large as 35.7. At this
wavelength, there is only a 3.4-fold change in ng compared
to the empty CROW. The Q factors of the upper and lower
CROW supermodes for k ¼ g ¼ 0 are 5.0 × 104 and
8.8 × 105, meaning that there is a low-Q state and imbal-
ance of the loss in the supermodes. As shown in Fig. 12(b),
a stronger confinement of light in the system with more
airholes restores the large vg around the transition. Here, the
minimum ng and the maximum group-index ratio are 12.7
and 10.3, respectively. Nevertheless, the improved Q
factors are 2.9 × 105 and 1.4 × 108; thus, there is still a
large difference between them.
In our system, disproportionate Q factors in the superm-

odes, hampering a large group velocity around the tran-
sition, stem from the interference of the evanescent fields.
This means that the gain in the BHM cavities cannot
compensate for the radiation of the superposed evanescent
fields to the outside the structure. This effect is expressed
by the non-self-conjugate complex-coupling terms, which

FIG. 11. (c) Band structure for a three-dimensional device with
LCC ¼ 8a and a line-defect width of 0.85W0. ω0 ¼ 199.7 THz,
κ0 ¼ 46.87 GHz, ρ ¼ −4.089 GHz, ϕ ¼ −0.006088 rad, and
g0 ¼ 1.661 × 104ImnBH GHz for theoretical curves (the dashed
lines). (d) Group index versus the eigenwavelength in the same
three-dimensional device.

FIG. 12. Complex band curves for two-dimensional devices
with different numbers of rows of airholes for photonic crystals,
namely, different system Q factors. (a) 7 rows and (b) 15 rows on
both sides of the line defect. (a) shows the band smoothing caused
by significant radiation loss, and the enhancement of vg is limited.
In (b), a sharp phase-transition structure is restored by a larger Q
factor. LCC ¼ 10a, and the line-defect width is 0.98 W0.
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were phenomenologically considered [25] and then con-
firmed theoretically and experimentally [26] in the context
of coupled waveguides. We can introduce this effect by the
replacement of κ02 with κ02 expðiθÞ in Eq. (6). Indeed,
θ ¼ 0.02024 is used in the theoretical curves in Fig. 12(a),
which agree well with the data points. Such a non-
Hermitian term breaks the unitarity—and hence the pho-
ton-number conservation—in the time evolution of the
effective system Hamiltonian. Thus, it can be a reason for
additional loss in our system and detrimental effects. We
emphasize that Ref. [26] focuses on the material absorption
in the waveguide cores and the surrounding medium, but
the radiation loss in our system (caused by the additional
system-reservoir coupling [33]) behaves equivalently. This
point is implied in the experiment of Ref. [26] using
scattering loss and is indicated by nearly cosinusoidal
imaginary bands obtained in the case of our conventional
CROWs with low Q and no material gain or loss.
It is noteworthy that such a complex-coupling compo-

nent is beyond the limits of the standard tight-binding
model discussed in Sec. III. However, evanescent waves
come from the cavity decay; thus, this term would be
implicitly dependent on the cavity Q factor. If we assume
that the complex-coupling rate has the same order of
the cavity decay rate, the approximate single-cavity
Q factor showing significant band smoothing would be
ω0=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ02 sin θ

p
Þ ∼ 104. This result supports the loss

magnitude of the low-Q supermodes in Fig. 12(a).
In the supermode where the evanescent fields outside the

BH cavities are enhanced, the decay is significant. When
the evanescent fields are canceled, however, the loss is
small while the coupling is maintained. A narrow line
defect contributes to the balanced high-Q factors of the
CROW modes, and hence to a fast vg around the phase
transition, probably because it broadens the mode gap
between the CROW and the photonic crystal. Note that the
defect modification does not change the band structure of
the surrounding photonic crystal.
Basically, three-dimensional structures are more likely to

suffer from band smoothing than two-dimensional systems
because of the loss in the vertical direction. As shown in
Fig. 11, however, narrowing the line defect in the device
largely suppresses this effect, which is significant other-
wise. Our design will hence open up the possibility of the
experimental realization of PT -symmetric cavity lattices
maintaining sharp exceptional-point behavior, which will
contribute to group-velocity control and also other phe-
nomena, such as unidirectional reflection and nonlinear
optical isolation.

V. DISCUSSION

Here, we discuss the design and the setting of the PT -
symmetric CROW described in this study. First, in Sec. III
we anticipated that a larger nearest-neighbor coupling rate κ

would lead to a faster vg and a smaller GVD. On the other
hand, a larger magnitude g of gain and loss is needed to
achieve the condition for the maximum vg around the phase
transition [Eq. (10)]. Our simulation result shows that the
required g for the three-dimensional deviceswithLCC ¼ 2a,
3a, and 4a are 460.1, 334.6, and 110.4 cm−1, respectively.
These values are typical in reports for other photonic devices
[15,34], and thus will also be realizable in our devices.
However, we have to design the cavity interval LCC with
caution. A long LCC results in a small κ and induces
significant band-smoothing effects. On the other hand, a
shortLCC complicates the band structure due to large higher-
order couplings, in addition to the need for a large g.
Finally, we mention the literature of ways to keep thePT

symmetry in realistic systems. A recent theoretical report
[35] showed that the gain-induced dispersion in coupled
GaAs waveguide cores could wash out the phase change
itself, as well as the singularity. Here, the mode index
detuning caused by the structural asymmetry and imbal-
anced gain and loss in the waveguides are introduced to
restore their PT -symmetric behavior. As the detuning of
constituent waveguides has been examined to dominate the
imaginary part of the coupling and heal the singularity [25],
the radiation loss might conversely work as a dispersion and
detuning compensator, although that prospect is beyond the
scope of this paper. In a future experiment, slightly detuned
cavity arrays might be picked for small system demonstra-
tions. Delicate injection-current control, including biased
pumping, will also be considered at that time.

VI. CONCLUSION

In this paper, we propose a PT -symmetric CROW based
on buried heterostructure photonic-crystal nanocavities
and study theoretically its application for controlling trans-
port properties. Using the one-dimensional tight-binding
model, we derive analytical expressions of the frequency
dependence of its group velocity and group-velocity
dispersion. Within the limits of this first-order approxima-
tion, the group velocity diverges, while the group-velocity
dispersion converges at the PT phase-transition point,
showing good potential for the device. Here, the condition
for the maximum velocity and the minimum group-velocity
dispersion around the transition point is the same. In this
case, the velocity is enhanced and the dispersion is sup-
pressed, depending on the square of the cavity coupling
rate. An estimation of the system temporal response to
input pulses shows that a pulse duration of 10 ps is short
enough to detect a boost by switching between conven-
tional and PT -symmetric CROWs with a length of
210 μm, while the ratio of their pulse peak velocities is
relatively limited. A longer duration, and hence a narrower
spectral distribution of the pulse, provides us with a higher
upper limit of the velocity around the PT phase-transition
point, although a judicious pulse excitation setup could be
required in an experiment. In a device simulation based on
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the finite-element method, we successfully observe the PT
phase transition in the proposed photonic-crystal structures
with controlled amplification and absorption. In the param-
eter range we examine, the second nearest-neighbor cou-
pling is not negligible and it bends the band curves after the
phase transition. For three-dimensional devices, loss and
gain magnitudes with an order of 100 cm−1 are sufficient to
satisfy the condition for the maximum group velocity
around the phase transition. A problem with achieving a
large group velocity in the actual device is the band
smoothing that destroys the exceptional-point singularity.
Our simulation result indicates that the main reason for this
imperfection is the decay of the interfering evanescent
waves from the pairs of cavities, which can be considered
the imaginary part of the cavity coupling rate. Increasing
and balancing theQ factors of the CROW supermodes with
an appropriate design opens up the possibility of wide-
range controllability of optical transport, potentially includ-
ing superluminal light propagation.
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