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We investigate the spin-transfer torque in a magnetic multilayer structure by means of a spin-diffusion
model. The torque in the considered system, consisting of two magnetic layers separated by a conducting
layer, is caused by a perpendicular-to-plane current. We compute the strength of the fieldlike and the
dampinglike torque for different material parameters and geometries. Our studies suggest that the fieldlike
torque highly depends on the exchange-coupling strength of the itinerant electrons with the magnetization
both in the pinned and the free layer. While a low coupling leads to very high fieldlike torques, a high
coupling leads to low or even negative fieldlike torques. Furthermore, we demonstrate the significant
impact of the fieldlike torque on the critical switching current of a magnetic multilayer. Thus, the
dependence of the fieldlike torque on material parameters is considered very important for the development
of applications such as spin-transfer-torque magnetic random-access memories and spin-torque oscillators.
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I. INTRODUCTION

Recently proposed magnetic storage technologies
exploit the interaction of spin-polarized currents with the
magnetization due to spin torque. Prominent examples for
such devices are spin-transfer-torque magnetic random-
access memories [1–3] and spin-torque oscillators that
serve as field generators for microwave-assisted recording
of hard-disk drives [4,5].
It is understood that the origin of spin torque is the

interaction of spin-polarized conducting electrons with
localized magnetic moments [6]. In semiclassical theories,
such as micromagnetics, this polarization is represented by
the spin accumulation s which describes the deviation of
the spin carried by conducting electrons in the presence of
charge current je > 0 from the equilibrium situation at
je ¼ 0. Magnetization dynamics under the influence of an
effective field heff and spin accumulation s is governed by
the Landau-Lifshitz-Gilbert equation

∂m
∂t ¼ −γm ×

�
heff þ

J
ℏγMs

s

�
þ αm ×

∂m
∂t ; ð1Þ

where m is the normalized magnetization, γ is the
gyromagnetic ratio, α is the Gilbert damping, and J is
the exchange strength between conducting electrons and
magnetization.

A well-known system that exploits spin-torque effects is
a three-layer structure consisting of two magnetic layers
separated by a conducting nonmagnetic spacer layer. When
applying a charge current perpendicular to the layers, one
of the magnetic layers, referred to as the pinned layer,
acts as a spin polarizer. When the spin-polarized electrons
reach the second layer, referred to as the free layer, they
accumulate at the interface and thereby exert a torque onto
the free layer. The pinned layer generates a current with a
spin polarization M parallel to its magnetization mpinned.
Hence, it is natural to investigate the torque with respect to
the polarization M. The spin diffusion s can be written in a
basis constructed by the magnetization m and a reference
polarization M

s ¼ aM ×mþ bðm ×MÞ ×mþ cm: ð2Þ
Inserting into (1) and considering ∥m∥ ¼ 1 yields

∂m
∂t ¼ −γm ×

�
heff þ

Jb
ℏγMs

M

�
−m ×

�
Ja
ℏMs

M ×m

�

þ αm ×
∂m
∂t : ð3Þ

The torque term added to the effective field heff is usually
referred to as fieldlike torque [7]. The second term is called
spin-transfer torque or dampinglike torque, since it essen-
tially leads to a relaxation of the magnetization m in the
direction of the polarization M. Accordingly, the coeffi-
cients a and b are proportional to the strength of the
dampinglike and fieldlike torques, respectively.*claas.abert@univie.ac.at
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Despite its naming, the dampinglike torque does also
contribute to the precessional motion of the magnetization.
Also, the fieldlike torque leads to both precessional and
dampinglike motion of the magnetization. This can be seen
by transforming (3) into the explicit form of the Landau-
Lifshitz-Gilbert equation that reads

∂m
∂t ¼ J

ℏMsð1þ α2Þ ½−ðbþ αaÞm ×M

− ð−aþ αbÞm × ðm ×MÞ�: ð4Þ
In materials with low damping α ≪ 1, the fieldlike torque
and the dampinglike torque, as previously defined, can be
identified with precessional and dampinglike motion of
the magnetization, respectively. However, in materials with
high damping α ≈ 1 there is a strong intermixing of the
fieldlike and dampinglike contributions.
A simple model for the description of spin torque in

multilayer structures is the macrospin model by
Slonczewski [8]. In this model, the coefficients a and b
are defined in terms of the angle between polarization M
and the magnetization in the free layer m as well as some
general constants that depend on material parameters and
the geometry of the system. However, the exact nature of
this dependency is not provided by the model and thus the
model constants are usually obtained by fitting simulation
results to experimental data.
In this work, we use a drift-diffusion model to compute

the spin accumulation s directly from material parameters
and geometry. By projection onto the basis functions
M ×m and ðm ×MÞ ×m we obtain the spatially resolved
coefficients a and b.

II. MODEL

Manymodels have been proposed in order to describe spin
transport and spin torque in magnetic multilayers, among
them Green’s function [9,10] and different noncollinear
generalizations of the work by Valet and Fert [11], see, e.g.,
Refs. [12–14]. In this work we use the drift-diffusion model
introduced by Zhang, Levy, and Fert in Ref. [15] generalized
to 3D [16]. The generalizedValet Fertmodels usually describe
spin torque as an interface effect with the spin-mixing
conductance being the constant of interest, which conflicts
with experimental findings [17]. In contrast, the model used
in this work describes the spin torque as a continuous effect
whose penetration depth depends on the exchange coupling
of the conducting electrons with the magnetization. In this
model, the spin accumulation s is defined as

∂s
∂t ¼ −∇ · js −

s
τsf

− J
s ×m
ℏ

; ð5Þ

where js is the spin current, τsf is the spin-flip relaxation time,
and J is the same coupling constant as in Eq. (1). The spin
current is given by

js ¼ β
μB
e
m ⊗ je − 2D0f∇s − ββ0m ⊗ ½ð∇sÞTm�g; ð6Þ

where β and β0 are dimensionless polarization parameters and
D0 is the diffusion constant. Instead of the spin-flip relaxation
time τsf and the coupling constant J, the material is often
described in terms of the characteristic lengths λsf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0τsf

p
and λJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0ℏ=J

p
. While λsf is a measure for the decay

of the spin accumulation due to spin-flip relaxation, λJ is a
measure for the penetration depth of the spin torque.
Throughout this work we will use these material parameters
that are more common in the experimental community. We
numerically solve Eq. (5) assuming equilibrium ∂s=∂t ¼ 0
with the finite-element method along the lines of Ref. [18].
Since the spin accumulation relaxes 2 orders of magnitude
faster than the magnetization, this assumption has no signifi-
cant influence on the magnetization dynamics. We apply
homogeneous Neumann boundary conditions for s which
corresponds to vanishing spin current at the boundaries, see
Ref. [19]. In the experiments, the multilayer structure is
usually contacted with nonmagnetic leads whose thicknesses
are well above the decay length of the spin accumulation. In
this case, no residual spin accumulation is expected at the outer
interfaces of the leads which justifies the no-flux boundary
conditions. However, for the numerical solution of Eq. (5) this
would require a huge amount of finite elements to discretize
the leads. In order to avoid computational overhead we use
effective material parameters that allow us to model infinite
leads with relatively thin nonmagnetic layers. This approach
provides the exact same result for the spin accumulationwithin
the magnetic regions as for infinite leads, see the Appendix.
In order to investigate the influence of material param-

eters and geometry onto the different torque terms, we
consider the quasi-one-dimensional system depicted in
Fig. 1. The system consists of two magnetic layers, a
pinned layer (10 nm) and a free layer (5 nm). It is
completed with a nonmagnetic spacer layer (5 nm) and
two nonmagnetic leads (4 nm). For the magnetic layers, we
choose material parameters similar to those of Heusler
alloys, namely, D0 ¼ 1 × 10−3 m2=s, β ¼ β0 ¼ 0.8,

FIG. 1. The quasi-one-dimensional model. The fixed layer
marked in blue is homogeneously magnetized in the z direction.
The free layer marked in red is homogeneously magnetized in
the yz plane. Two different configurations of the free layer are
depicted.
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λsf ¼ 8 nm, and λJ ¼ 1 nm [20]. For the spacer we choose
parameters similiar to Ag (D0 ¼ 5 × 10−3 m2=s and
λsf ¼ 100 nm) and for the leads we choose parameters
similar to Au (D0 ¼ 5 × 10−3 m2=s and λsf ¼ 35 nm) [21].
For homogeneous magnetization configurations, as con-
sidered in this work, the lateral dimension of the system
does not have any impact on the solution of the spin
accumulation and spin torque. Hence, we choose very small
lateral dimensions (quasi–one dimensional) in order to
speed up computations. Note, that in order to simulate
infinite leads, we compute an effective diffusion length
according to Eq. (A11), which leads to λeffsf ≈ 11.6 nm for a
lead width of 4 nm.

III. RESULTS

The spin accumulation for the multilayer stack described
in the preceding section is computed for a constant current
je ¼ 1012 A=m2 flowing perpendicular to the layers. Note
that we compute the torques for a given magnetization
configuration without considering the resulting dynamics
of the magnetization. Since the spin accumulation, and thus
also the torques, scale linearly with the current strength je,
the choice of je does not have any influence on the
qualitative results of this work. The current direction is
chosen such that the conducting electrons pass the pinned
layer before entering the free layer. The magnetization in
the pinned layer (and thus alsoM) is set homogeneously in
the z direction, perpendicular to the layers. Unless specified
differently, the magnetization in the free layer is set
homogeneously in the y direction and the geometry as
well as the material parameters are chosen according to the
preceding section. The resulting spin accumulation s is
projected onto M ×m and ðm ×MÞ ×m, respectively, to
obtain the strength of the dampinglike torque Tdamp ¼
−Ja=ℏγMs and the strength of the fieldlike torque
Tfield ¼ Jb=ℏγMs. Averaging over the free layer results
in hTdampi ¼ 42 444 A=m and hTfieldi ¼ 2712 A=m. These
values are in good accordance with experimental findings
[22]. The torques have a positive sign, i.e., the rotation
caused by the fieldlike torque has the same direction as the
rotation caused by an external field directed in the ori-
entation of the pinned layer and the dampinglike torque is

directed towards the orientation of the pinned layer.
Moreover, the dampinglike torque is an order of magnitude
larger than the fieldlike torque.
In a next experiment the influence of the exchange

coupling of itinerant electrons and magnetization onto the
different torque terms is investigated. Figure 2 shows the
resulting hTdampi and hTfieldi for varying λJ both in the free
layer and the pinned layer. We choose λJ as 0–4 nm, which
is a realistic range according to Ref. [23]. The strength of
the dampinglike torque does not significantly depend on
the choice of λJ, see Fig. 2(a). However, the fieldlike torque
strength shows a very pronounced dependency. As shown
in Fig. 2(b), not only the strength, but also the sign of the
fieldlike torque may change depending on the choice of λJ
in the pinned and free layer.
For the magnetization configuration described above,

namely homogeneous magnetization in the z direction in
the pinned layer and homogeneous magnetization in the y
direction in the free layer, the fieldlike torque strength Tfield
is, apart from a constant prefactor, given by the z compo-
nent of the spin accumulation sz. This component is plotted
in Fig. 3 for varying characteristic lengths λJ. The spin
accumulation, and thus the fieldlike torque, is always
positive at the interface between free layer and spacer
layer. However, depending on λJ in the free and pinned
layer the spin accumulation performs a rotation, which may
lead to negative values of sz in parts of the free layer.
Comparing Figs. 3(a) and 3(b) reveals that the influence of
λJ in the free layer has a significantly larger impact on this
behavior. A high λJ corresponds to a low J and thus a low
spin coupling of the itinerant electrons with the magneti-
zation. In this case, the behavior of the spin accumulation in
the free layer is similar to the behavior in a nonmagnetic
region, namely, the spin accumulation decays as e−x=λsf . In
the case of low λJ, the spin accumulation experiences a
torque due to the magnetization as the magnetization
experiences a torque due to the spin accumulation. This
torque explains the rotational behavior of the spin accu-
mulation and thus also the possibility of negative values for
sz. Depending on the characteristics of this oscillation, the
fieldlike torque becomes negative not only in parts of the
free layer, but also in average. For strongly exchange-
coupled systems this means that the overall fieldlike torque

(a) (b) FIG. 2. Dampinglike and fieldlike torque
for different exchange lengths in the
pinned layer λpinnedJ and the free layer λfreeJ .
(a) Dampinglike torque Tdamp. (b) Fieldlike
torque Tfield.
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in the free layer can have a negative sign. Not only the free
layer but also the pinned layer exhibits a negative spin
accumulation sz at a large distance from the pinned layer-
spacer interface. However, the reason for this is not the
torque exerted onto the spin accumulation as in the case of
the free layer, but the contribution of the lead-pinned layer
interface that is not shown in Fig. 3. The z component of the
spin accumulation of a homogeneously z magnetized layer
enclosed by two nonmagnetic leads is negative at one
interface and positive at the other depending on the sign of
the electric current.
Besides the possible sign change of the fieldlike torque

in the free layer, it should be noted that, depending on λJ,
the fieldlike torque may become as large as or even larger
than the dampinglike torque. This is interesting since the
fieldlike torque is usually assumed to be much smaller than
the dampinglike torque and hence it is not considered
to be relevant for applications. This behavior occurs at high
λJ in the free layer and low λJ in the pinned layer, e.g.,

λfreeJ ¼ 4 nm and λpinnedJ ¼ 1 nm results in Tdamp ¼
19 456 A=m and Tfield ¼ 27 933 A=m.
Up to now, the free layer was considered to be mag-

netized in the y direction and thus perpendicular to the
pinned layer. Figure 4 shows the averaged dampinglike
and fieldlike torques for different tilting angles θ of the
magnetization in the pinned layer and free layer. Here,
θ ¼ 0° means that the magnetization of the free layer points
in the z direction like the pinned layer and θ ¼ 90° means
that the free-layer magnetization points in the y direction.
The dampinglike torque shows the expected sinðθÞ-like
behavior with no notable dependence on λpinnedJ . However,
the fieldlike torque shows a more complex dependence on
the tilting angle θ. For large λpinnedJ the fieldlike torque may
even change its sign depending on θ.
In a final experiment, the interplay of the free-layer

thickness d and the exchange length λJ in the free layer is
investigated. Figure 5 shows the dampinglike and fieldlike

(a) (b) FIG. 3. Space-resolved z component of
the spin accumulation sz which is propor-
tional to the fieldlike torque in the free
layer. (a) λpinnedJ ¼ 1 nm and different λfreeJ .
(b) λfreeJ ¼ 1 nm and different λpinnedJ .

(a) (b)

deg deg

FIG. 4. Dampinglike and fieldlike torque
for different exchange lengths in the pinned
layer λpinnedJ and tilting angle between mag-
netization in free and pinned layer θ.
(a) Dampinglike torque Tdamp. (b) Fieldlike
torque Tfield.

(a) (b) FIG. 5. Dampinglike and fieldlike torque
for different thicknesses d and exchange
lengths λJ of the free layer. (a) Integrated
dampinglike torque

R
Tdampdx. (b) Inte-

grated fieldlike torque
R
Tfielddx.
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torque in the free layer. In contrast to the previous experi-
ments, the torque is integrated and not averaged over the
free layer in order to give a proper measure of the overall
torque for the different layer thicknesses. The results can be
explained with two different effects. For very small free-
layer thicknesses, well below the characteristic length λJ,
the spin of the itinerant electrons is not completely trans-
ferred to the magnetization which results in a low overall
torque. The critical thickness decreases for increasing λJ
which corresponds to low spin coupling. This effect can be
clearly seen in both torque terms, Figs. 5(a) and 5(b). For
the fieldlike torque, the rotation in the spin accumulation,
as seen in the previous experiments, leads to low or even
negative values for low λJ. Figure 5(b) shows an approx-
imately linear region of maximum fieldlike torque. It
should be noted that the fieldlike torque is of the same
order of magnitude as the dampinglike torque in the
maximum region.

IV. MULTILAYER SWITCHING

Most spin-transfer-torque applications mainly exploit the
dampinglike torque [24], both because it is usually con-
sidered much larger than the fieldlike torque in metallic
junctions [24–26] and because it has a negligible impact on
many processes due to its nature [27]. However, recent
publications suggest that the fieldlike torque may have a
significant impact on spin-torque oscillators [28,29] as well
as on spin-transfer-torque magnetic random-access memo-
ries [30]. Here, we perform time-resolved simulations of
the switching process in a magnetic multilayer in order to
investigate the importance of the fieldlike torque. The
system under consideration is the same as introduced in
the preceding section. A perpendicular current is linearly
increased with a rate of 1010 A=m2 ns and the magnetiza-
tion dynamics of the free layer are solved with a second-
order backward-differentiation-formula scheme [31]
according to Eq. (1). The free layer is considered to have
perpendicular anisotropy with K ¼ 104 J=m3, a saturation
magnetization of Ms ¼ 8 × 105 A=m2, and a Gilbert
damping of α ¼ 0.01. Furthermore, the exchange constant
in the free layer is set to a very high value of A ¼ 1010 J=m

in order to obtain a macrospinlike behavior and the pinned
layer is tilted by θ ¼ 5° in order to avoid a metastable state.
The switching is simulated once with the full spin-diffusion
model and once with the dampinglike contribution of the
model only. In the second case, the full spin-diffusion
model is solved and the fieldlike contribution to the torque
is removed from the result.
Figure 6 shows the simulated critical current jc for

different λJ in free and pinned layer. In regions of high λfreeJ

and low λpinnedJ the critical current is significantly lower for
the full model compared to the model without fieldlike
torque. Since this is exactly the region of high fieldlike
torque, as shown in Fig. 2, we conclude that the switching
process is strongly supported by the fieldlike torque.
Figure 7 shows the time evolution of the free-layer

magnetization for λpinnedJ ¼ 1 nm and λfreeJ ¼ 5 nm. The
results for the full spin-diffusion model are compared to the
results of the spin-diffusion model without fieldlike torque.
The difference of the switching mechanisms in these two
cases can be seen most clearly in the in-plane component of
the magnetization mx. While the in-plane magnetization
performs strong oscillations in the case of the full simu-
lation, these oscillations are pronounced less in the case
of missing fieldlike torque. The in-plane oscillations are
obviously caused by the fieldlike torque and have a large
impact on the critical switching current for the investigated
structure.

(a) (b) FIG. 6. Critical current for free-layer
switching in magnetic multilayer. (a) Critical
current for the full spin-diffusion model
including fieldlike and dampinglike torque.
(b) Ratio of critical switching current
without fieldlike torque and with fieldlike
torque jc;DLT=jc;full.

FIG. 7. Time evolution of free-layer magnetization during
switching. The results for the complete solution of spin-diffusion
model (full) are compared to the results of the model considering
only the dampinglike torque (DLT).
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V. CONCLUSION

The dampinglike and fieldlike torque in the free layer of
a magnetic trilayer structure has been investigated with a
spin-diffusion model. The exchange coupling of the itin-
erant electrons with the magnetization has been found to
have a major impact on the strength and sign of the fieldlike
torque. While the fieldlike torque is usually considered to
be small compared with the dampinglike torque, we show
that for a weak exchange coupling in the free layer, the
fieldlike torque can excel the dampinglike torque. On
the other hand, for a very strong coupling the sign of
the fieldlike torque may change. In order to demonstrate the
importance of the fieldlike torque strength, we compute the
critical switching currents of a magnetic multilayer once
with the full spin-diffusion model and once with the
dampinglike torque only. The simulations suggest that a
strong fieldlike torque is able to reduce the critical switch-
ing current significantly by a factor of 2 and more.
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APPENDIX: EFFECTIVE MATERIAL
PARAMETER FOR FINITE LEADS

In the experiments, the size of the leads is usually much
larger than the spin-diffusion length λsdl in the lead
material. In order to retrieve accurate simulation results,
the size of the leads has to be chosen accordingly, which
adds a huge amount of additional degrees of freedom.
However, by the choice of an appropriate effective spin-
diffusion length, the effect of infinite decay can be perfectly
modeled with finite leads. Without loss of generality, we
consider the interface between the lead and magnetic region
to be at x ¼ 0, see Fig. 8. Assuming an infinite decay of the
spin accumulation towards −∞ yields

sðxÞ ¼ aex=λsf ; ðA1Þ

where λsf is the spin-flip relaxation length, which equals
the spin-diffusion length λsdl in metal, and a is constant
determined by the solution of the model in the complete
space. In order to simulate the infinite leads with finite
leads, we introduce an effective spin accumulation seff that
may contain decaying and ascending contributions

seffðxÞ ¼ a0ex=λ0sf þ b0e−x=λ0sf : ðA2Þ

For the accurate solution of the spin accumulation in the
magnetic material, both the spin accumulation seff and its
first spatial derivative s0eff have to be correct at the lead-
magnet interface

seffð0Þ ¼ sð0Þ; ðA3Þ

s0effð0Þ ¼ s0ð0Þ: ðA4Þ

We solve the spin-diffusion equation with homogeneous
Neumann boundary conditions. Hence, additionally it
holds

s0effð−dÞ ¼ 0; ðA5Þ

where d is the finite thickness of the lead. Inserting the
definitions (A1) and (A2) yields the system

a0 þ b0 ¼ a; ðA6Þ

a0

λ0sf
−

b0

λ0sf
¼ a

λsf
; ðA7Þ

a0

λ0sf
e−d=λ

0
sf −

b0

λ0sf
ed=λ

0
sf ¼ 0: ðA8Þ

From (A6) and (A7) we can derive

a0 ¼ a
2

�
1þ λ0sf

λsf

�
; ðA9Þ

b0 ¼ a
2

�
1 −

λ0sf
λsf

�
: ðA10Þ

Inserting into (A8) yields

�
1þ λ0sf

λsf

�
e−d=λ

0
sf −

�
1 −

λ0sf
λsf

�
ed=λ

0
sf ¼ 0: ðA11Þ

FIG. 8. Realistic spin accumulation s for infinite leads and
effective spin accumulation seff for finite leads.
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Given the real diffusion length of the infinite lead λsf and a
finite lead thickness d, this system can be solved for the
effective diffusion length λ0sf . This procedure is precise and
only suffers from discretization errors.
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