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We study high-frequency generation in a system of electromagnetically coupled semiconductor
superlattices fabricated on the same doped substrate. Applying a bias voltage to a single superlattice
generates high-frequency current oscillations. We demonstrate that within a certain range of the applied
voltage, the current oscillations within the superlattices can be self-synchronized, which leads to a dramatic
rise in the generated microwave power. These results, which are in good agreement with our numerical
model, open a promising practical route towards the design of high-power miniature microwave generators.
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I. INTRODUCTION

Emergent phenomena resulting from the complex co-
operative behavior of coupled elements are among the most
topical and important subjects of modern physical science.
These phenomena cannot be observed in individual ele-
ments and come into existence only due to an interaction
between entities. Recent examples in condensed matter
physics embrace such interesting findings as monopoles
in spin ice [1], Skyrmion lattices in chiral magnets [2],
and light-induced superconductivity [3,4]. Other instances
of emergent behavior relate to dynamical self-organization
such as dynamical phases of a driven Bose-Einstein
condensate [5], synchronization of micromechanical oscil-
lators coupled through an optical radiation field [6], and
coherent terahertz emission from layered high-temperature
superconductors [7,8].
Here we investigate cooperative effects in the generation

of microwaves from an array of miniband semiconductor
superlattices (SLs) [9,10] arranged on the same doped
substrate. Once the bias voltage exceeds a certain threshold,
each individual SL exhibits current oscillations produced
by moving charge domains [11,12]. Our measurements
for two nonidentical superlattices show that despite the
frequencies of the single SLs being considerably different
from each other, electromagnetic (EM) coupling mediated
by the substrate can force all of the SLs to generate current
oscillations at the same frequency, thus, producing fre-
quency synchronization [13,14]. Moreover, within a certain
range of the applied voltage, the synchronization phenom-
ena can significantly (up to 300%) enhance the collective
microwave power output. Our measurements are in a good
agreement with the results of corresponding numerical
simulations. Further numerical investigations show that
synchronization is possible for three and four SLs on the
same substrate, leading to an even more dramatic increase
in the generated ac power. Earlier experimental work

has demonstrated that charge domains traveling along
miniband SLs are able to produce current oscillations with
frequencies up to 300 GHz [15]. Thus, our results suggest a
way to solve the long-standing problem of power ampli-
fication in solid-state generators operating in the subter-
ahertz or terahertz regime.

II. EXPERIMENTAL RESULTS

In our experiments, we use three SLs grown on the
same Si-doped 500-μm-thick GaAs substrate (Fig. 1). Each
SL consists of 15 periods, which are separated from two
heavily n-doped GaAs contacts by Si-doped GaAs layers of
width 50 nm and doping concentration of 1 × 1017 cm−3.
Each SL period, which is Si doped at 3 × 1016 cm−3,
includes a 1-nm AlAs barrier, a 7-nm GaAs quantum well,
and a 0.8 InAs monolayer at the center of each quantum
well. The latter enhances electron injection from a doped
contact layer into the first miniband and inhibits intermini-
band tunneling [16]. The SLs are processed into circular
mesa structures with Ohmic contacts to the substrate
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FIG. 1. The design of the experimental setup. Generators SL1;2
and the detector SLD (gold) are involved in our experiments. SL3;4

(blue) are additional devices used in our numerical simulations.
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and top cap layer. A sketch of the sample is shown in Fig. 1.
In our study, we measure the microwave generation from
the SLs labeled SL1 and SL2 in Fig. 1, which are separated
by 100 μm. Each device has the same mesa diameter of
20 μm and an independent power supply, as shown in
Fig. 1. A LeCroy SDA 18000 serial data analyzer is used to
measure the spectra of oscillations generated by the SLs.
All measurements are performed at room temperature.
First, we consider how the EM output of each SL depends

on the bias voltage when the second SL is not powered. Our
measurements show that each SL is able to generate
microwave current oscillations for an applied voltage V in
the range 0.26–0.35 V. Figures 2(a) and 2(b) illustrate the
fundamental frequency f [Fig. 2(a)] and the power P
[Fig. 2(b)] of the microwave signal generated by SL1 (purple
curve) and SL2 (green curve) as a function of V1;2. Although
the SLs demonstrate very similar PðV1;2Þ dependences
[Fig. 2(b)] and I-V curves [inset in Fig. 2(b)], the frequencies
f of the signals measured from different devices are
significantly different at all values of the voltage applied.
As Fig. 2(a) reveals, SL1 generates signals in the frequency
range 562–621MHz, while SL2 has a generation range 690–
722 MHz. This difference in the generated frequencies can
originate from variation of the contacts and leads attached to
a particular SL and corresponding differences in the parasitic
capacitance and inductances of the SL circuits [17,18].
Next, we investigate how the microwave output of each

SL is affected by simultaneous generation from another SL.
To do this, we fix the voltage V2 applied to SL2 at 295 mV
and measure the spectra of the voltage oscillations on the
contacts of both SLs for different voltages V1 applied to
SL1. Figure 3(a) illustrates the effect of changing V1 on the
fundamental frequencies f corresponding to the dominant
spectral peaks of the two SLs. For small V1 ¼ 260 mV
(dashed line 1 in Fig. 3), the power of the harmonic at the
fundamental frequency of SL2 significantly exceeds that of
SL1. Therefore, the frequency of the dominant peak in the
spectrum of SL1 coincides with the fundamental frequency
of SL2. This is also confirmed by Fig. 4(a), which shows
that the spectral peak induced by the contribution from SL2

(around 700 MHz) is much higher than that corresponding
to the generation from SL1 (around 600 MHz). With
increasing V1 (dashed line 2 in Fig. 3), the dominant peaks
first diverge [Fig. 4(b)], but for V1 > 275 mV (dashed
line 3 in Fig. 3), they start to converge [Fig. 4(c)], and at
V1 ≈ 305 mV (dashed line 4 in Fig. 3), they coincide
[Fig. 4(d)]. For higher V1, the peak frequencies are locked,
manifesting the onset of synchronization [14].
In order to study the collective high-frequency output

from SL1 and SL2, we use an unpowered element SLD
as a detector (Fig. 1), which is placed 400 μm away from
SL1. The detector has a mesa diameter of 5 μm and
an almost linear I-V curve for bias voltages in the range
−300 to þ300 mV. The relative power of the voltage
oscillations measured from SLD for different V1 is dis-
played in Fig. 3(b). This characteristic is the ratio between
the total ac power P1þ2 measured from SLD, when both
SL1 and SL2 are generating microwaves (V2 ¼ 295 mV)
and the power P1 measured when only SL1 is active

(a) (b)

FIG. 2. (a) Fundamental frequencies measured for the single
SLs and (b) power of the generated signals measured for different
bias voltages. The purple squares correspond to the data mea-
sured from SL1 and green circles refer to SL2. The inset in
(b) shows the I-V characteristic of SL1 (purple) and SL2 (green).
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FIG. 3. Experimental dependence of (a) the SL fundamental
frequencies on V1 and (b) the relative power of the signal
measured from SLD versus V1 for V2 ¼ 295 mV. In (a) the
purple squares correspond to the data measured from SL1 and
green circles refer to SL2. The synchronization region is high-
lighted in gray. The vertical dashed lines with numbers corre-
spond to the values of V1 discussed in the text.
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FIG. 4. Power spectra of the voltage oscillations in SL1 (purple)
and SL2 (green)measured for thevarious values ofV1: 260 (a), 275
(b), 295 (c), and 310mV (d) indicated in Fig. 3 by the dashed lines
1,2,3,4, respectively. Positions of the fundamental frequencies are
marked in the spectra by dotted (SL1) and dashed (SL2) lines.
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(V2 ¼ 0). A comparison of Figs. 3(a) and 3(b) reveals that in
the absence of synchronization, the microwave power
collected from SLD is less than that in the case of a single
generating element. However, under certain conditions, the
frequency locking can yield a significant boost (up to 3
times) of the detected microwave power. We find that the
synchronization phenomena associated with frequency lock-
ing can be achieved for a range of the voltages V1 and V2, as
shown by the shaded area in Fig. 5. Thus, the experiment
shows that a stable synchronization regime is possible even
for SLs with a large initial frequency mismatch.

III. THEORETICAL MODELING

To gain deeper insight into the results of the experiments,
we theoretically model the system under study. For this
aim, we describe the charge transport in each SL using a
self-consistent system of Poisson and continuity equations,
as discussed in Refs. [12,18]. Within this approach, the SL
is split into layers [see Fig. 6(a)], and the discretized forms
of the transport equations are solved numerically. Thus, the
time evolution of charge density nmðtÞ in the mth layer is
determined by the equation

eΔx
dnm
dt

¼ Jm−1 − Jm; m ¼ 1;…; N; ð1Þ
where e is the electron charge, and Jm−1, Jm are the volume
current densities on the left and right boundaries of the mth
layer. The latter can be calculated as

Jm ¼ enmvdðF̄mÞ; ð2Þ
where F̄m is the mean field in the mth layer [11,12]. It is
assumed that charge transport is realized within the lowest
miniband when interminiband tunneling can be neglected.
In this case, the miniband drift velocity vd for the finite
temperature T and given F̄m can be calculated using the
Esaki-Tsu-Romanov formalism [19]:

vdðF̄Þ ¼
Δd
2ℏ

I1ðΔ=2kBTÞ
I0ðΔ=2kBTÞ

eF̄dτ=ℏ
1þ ðeF̄dτ=ℏÞ2 ; ð3Þ

where d ¼ 8.3 nm is the period of the SL, Δ ¼ 19.1 meV
is the miniband width, and τ is an effective scattering time,
which takes into account both elastic and inelastic scatter-
ing events [11,20]. Parameter kB represents the Boltzmann
constant, and InðxÞ, where n ¼ 0, 1, is a modified Bessel
function of the first kind. In our calculations, we fix T ¼
4.2 K and τ ¼ 176 fs, whose value corresponds to recent
experiments [17,18,20]. The dependence of electron drift
velocity vd on electric field strength F is shown in Fig. 6(b).
The function vdðFÞ has a characteristic maximum, which is
associated with onset of Bloch oscillations. For large F, the
effect of Bloch oscillations on electron dynamics becomes
stronger. This leads to increased localization of the electron
orbits and decrease of vd. Although Eq. (3) is obtained for a
static electric field F, it can also be used for a slowly
oscillating electric field, when the miniband electrons can
follow the ac field adiabatically [21–23], i.e., for 2πfτ ≪ 1,
where f is the frequency of an applied electric field. We
note that for the value of τ used in our model, this adiabatic
limit spans up to several hundred gigahertz.
The electric field Fm at the left-hand edge of the mth

layer [Fig. 6(a)] is determined by the discretized Poisson
equation

Fmþ1 ¼
eΔx
ε0εr

ðnm − nDÞ þ Fm; m ¼ 1;…; N: ð4Þ

Here, ε0 and εr ¼ 12.5 are the absolute and relative
permittivities, respectively, and nD ¼ 3 × 1022 m−3 is the
n-type doping density in the SL layers [20]. To ensure
convergence of the numerical solutions, we set N ¼ 480
and Δx ¼ 0.24 nm [12,18].
Ohmic boundary conditions determine the current J0 ¼

σF0 in the heavily doped emitter of electrical conductivity
σ ¼ 3788 Sm−1 [20]. The voltage Vn

SL applied to the nth
SL is a global constraint given by
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(c) Equivalent circuit of SLn (n ¼ 1, 2, D), where Cn, Ln, and Rn

are the equivalent capacitance, inductance, and resistance, IðVn
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is the current through the SL, with voltage Vn
SL dropped across it,

andVn is the dc supply voltage. The load resistance isRn
l ¼ 0.1 Ω.
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Vn
SL ¼ U þ Δx

2

XN

m¼1

ðFm þ Fmþ1Þ; ð5Þ

where the voltage U dropped across the contacts includes
the effect of charge accumulation and depletion in the
emitter and collector regions and the contact resistance
R ¼ 17 Ω [24,25]. We calculate the current through the
SL as

InðtÞ ¼ A
N þ 1

XN

m¼0

Jm; ð6Þ

where A ¼ 5 × 10−10 m2 is the cross-sectional area of the
SL [11,12,20]. To take into account the impedance imposed
by the contacts and the leads, we model each SL connected
to an equivalent LRC (resonant) circuit [17,18,26]; see
Fig. 6(c).
The current IðtÞ generated by each SL depends on the

voltage Vn
SL applied to this device, where n ¼ 1, 2, andD is

the index of the given SL. This voltage includes a dc bias
Vn and the ac voltage Vn

c induced by the LRC circuit,
which, according to Fig. 6(c), can be described by the
following equations:

Cn dV
n
c

dt
¼ IðVn

SLÞ − Inc; ð7Þ

Ln dI
n
c

dt
¼ −RnInc þ Vn

c þ Rn
l IðVSLÞ: ð8Þ

Here, Cn, Ln, and Rn are the equivalent capacitance,
inductance, and resistance of the circuit, respectively; Rn

l
is the load resistance. The circuit parameters corresponding
to our present experiment are summarized in Table I.
The dynamics of the EM field in the common substrate,

which provides the coupling between SLs, is considered
within the theory of microwave resonator excitation
[27,28]. It is assumed that the substrate together with all
leads, waveguides, and the measurement system form a
single-mode resonator system, where the sth eigenmodeEs
is excited. In this case, the longitudinal component of the
electric field Eðr; tÞ can be represented in the form
E ¼ Re½CsðtÞEsðrÞejωst�, where Es and ωs are the spatial
field distribution and frequency of the sth eigenmode of the
resonator, and CsðtÞ ¼ AðtÞejψðtÞ is slowly varying com-
pared to ωs. The distance between the interacting SLs is
less than several hundred micrometers, and the wavelength

of the generated microwaves is around a few centimeters;
therefore, we assume that the field distribution EsðrÞ in the
region of the interacting SLs is homogeneous, and the
electric field E in this region depends only on time t.
According to the resonator excitation theory, the nonsta-
tionary equations for the slowly varying amplitude A and
phase ψ are given by

dA
dt

þ ωsA
2Q

¼ −
ωsK
2πL2

XM

n¼1

Vn
SL

Z
2π

0

InðtÞ cosðωstþ ψÞdωst;

ð9Þ

dψ
dt

¼ −
ωsK
2πL2

XM

n¼1

Vn
SL

Z
2π

0

InðtÞ sinðωstþ ψÞdωst; ð10Þ

where L is the length of each SL, including the contact
regions, K is the impedance of the resonator, Q is the
quality factor for the sth resonator eigenmode, M is the
number of SLs (M ¼ 3 in our experiments), and InðtÞ is
the current through the nth SL [see Eq. (6)]. The parameters
of the resonator system are estimated from the analysis of
the experimental data: fs¼ωs=2π¼0.6GHz, Q ¼ 2, and
K ¼ 400 Ω. The voltage applied to the nth SL [see Eq. (5)]
is defined through the equation Vn

SL ¼ Vn − Vn
c þ EL,

where Vn (n ¼ 1, 2) is the bias voltage applied to the
SL, and Vn

c is the voltage across the corresponding parasitic
circuit [defined by Eqs. (7) and (8)]. Thus, the coupling
between SLs is realized through the field E, while the
electromagnetic properties of the substrate are taken into
account via the parameters of the resonator.
We use the above model for numerical calculations of the

device characteristics that are measured in experiment.
Figure 7 shows the f values (a) and the relative power (b) of
the voltage oscillations between the contacts of SLD
calculated as functions of V1 for fixed V2 ¼ 295 mV.
One can see that the plots in Fig. 7 are in good agreement
with the measured data presented in Fig. 3. In both cases,
the fundamental frequencies exhibit a similar dependence
on V1. Also, synchronization associated with the frequency

TABLE I. Circuit parameters for different SLs involved in
calculations.

Superlattice Rn
l Rn Cn Ln

SL1 (n ¼ 1) 0.1 Ω 0.5 Ω 1.0 pF 0.05 nH
SL2 (n ¼ 2) 0.1 Ω 1.5 Ω 1.23 pF 0.07 nH
SLD (detector SL) 0.1 Ω 0.5 Ω 1.0 pF 0.05 nH
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FIG. 7. Numerically calculated dependence of (a) the SL
fundamental frequencies on the bias voltage V5M and (b) the
relative power of the signal at SLD calculated versus V1 when
V2 ¼ 295 mV. The synchronization region is shaded. Corre-
sponding experimental data are shown in Fig. 3.
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locking leads to a dramatic increase in the power of the
signal measured from SLD. The difference between theory
and experiment [cf. Figs. 3(b) and 7(b)], especially near
the boundary of synchronization, can be explained by the
simplifications made in our theoretical model. In particular,
the assumption that the contact parameters are independent
of the frequency and amplitude of VSL

n can lead to
inaccurate treatment of the reactance in the coupling of
the SLs, which affects their collective dynamics. However,
despite these simplifications, the numerically calculated
region of synchronization shown in Figs. 7 and 8(a)
resembles closely the experimental results in Figs. 3
and 5, respectively.
In Fig. 8, the color map represents the ac power P1þ2 of

the voltage oscillations in SLD normalized to the maximal
power P1 ¼ 1.5 μV2 of these oscillations in the case when
only SL1 generates microwaves (V2 ¼ 0). Figure 8(a)
reveals that synchronization generally provides a signifi-
cant increase in power [bright area in Fig. 8(a)]. However,
in certain areas (marked orange or red) of the synchroniza-
tion region (bounded by white dashed line), the power
collected from SLD is unaffected, or even weakened, by the
frequency-locking phenomenon. We find that this depends
on the phase difference Δϕ between the locked signals. A
color map representing the ΔϕðV2; V1Þ variation is shown
in Fig. 8(b). If the voltage oscillations on the contacts of
SL1 and SL2 are in phase, Δφ ≈ 0, they may constructively
interfere, thereby increasing the power measured at SLD
[compare Figs. 8(a) and 8(b)]. By contrast, antiphase
synchronization Δφ ≈�π will produce destructive inter-
ference of the generated signals and, thus, suppress the
output from the detector. In the absence of synchronization,
the phase difference changes with time, preventing the
coherent summation of the output from the generating SLs.
We note that the relative power in Figs. 3(b) and 7(b) does
not achieve the theoretical maximum value M2 ¼ 4 (here,
M is a number of the generating SLs), which is expected
when two identical signals being in phase are summed up
in the same detector. This discrepancy occurs because the
SLs involved in the interaction are not identical and, as
we mention above, initially have a significant frequency

mismatch. The latter prevents the generation of the identical
current oscillations, even in the case of synchronization.
Finally, we check whether synchronization can be

achieved for a larger number of interacting SLs located on
the same substrate. In our numerical calculations, we assume
that all additional SLs have parameters identical to SL2 (see
Table I). If the in-phase synchronization is achieved, we
expect that the superposition ofM-synchronized signals will
produce an M2 up scaling of the relative power. Our
simulations predict that (i) synchronization of SLs coupled
through the substrate is possible even for a larger number of
elements, and (ii) synchronization can dramatically increase
the ac power collected from the detector. The result of our
calculations is presented in Fig. 9, where the dependences of
the relative powerP detected bySLD are shownversusV1 for
two (dotted curve), three (dashed curve), and four (solid
curve) SLs (V2;3;4 ¼ 295 mV). As expected, the figure
reveals that the increase of output power is associated with
the onset of synchronization, and the maximal power is
realized when the phase difference between signals gener-
ated from different SLs is close to zero. For M ¼ 3, the
relative powerP1þ2þ3=P1 achieves a value of approximately
8, which is close to, but still less than, M2. As before, such
disagreement is caused by differences between SL1 and the
other SLs that are coupled to it. It is surprising, therefore, that
when M ¼ 4, we observe a 20-fold increase of the output
power, which considerably exceeds M2 ¼ 16. We find that
this is because the voltage induced at the contacts of SLD
exceeds the threshold value, and so SLD starts to generate
high-frequency power on its own. In addition, the total power
pumped into the resonator becomes large enough for it to
demonstrate a visible resonant response.

IV. CONCLUSION

In conclusion, we show both theoretically and in experi-
ment that EM generation from SLs fabricated on the same
substrate can be synchronized due to EM interaction
through the substrate. Remarkably, the synchronization
is possible even if the individual SLs have a large
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fundamental frequency mismatch and can lead to dramatic
increase of output power, e.g., up to 3 times for two SLs,
and up to 20 times for four SLs. Thus, our results provide
an efficient way to create powerful solid-state generators
able to work at room temperature and at very high
frequency (potentially up to the terahertz range). Our
calculations also show that the electrodynamics of the
substrate play an important role in coupling the SLs and in
realizing synchronization with a particular phase differ-
ence. These findings opens a path to developing a type of
active device comprising an array of generating nano-
structures, which are fabricated on an appropriately shaped
coupling substrate [29,30]. Moreover, synchronization
mediated by the substrate has the potential to boost the
power generated from other superlattice-based devices,
e.g., quantum cascade lasers [31], arrays of Josephson
junctions [32–34], or van der Waals heterostructures
[35,36].
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