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The theories of electron emission from planar surfaces are well understood, but they are not suitable for
describing emission from spherical surfaces; their incorrect application to highly curved, nanometer-scale
surfaces can overestimate the emitted current by several orders of magnitude. This inaccuracy is of
particular concern for describing modern nanoscale electron sources, which continue to be modeled using
the planar equations. In this paper, the field-induced and thermal currents are treated in a unified way to
produce Fowler-Nordheim-type and Richardson-Schottky-type equations for the emitted current density
from earthed nanoscale spherical surfaces. The limits of applicability of these derived expressions are
considered along with the energy spectra of the emitted electrons. Within the relevant limits of validity,
these equations are shown to reproduce the results of precise numerical calculations of the emitted current
densities. The methods used here are adaptable to other one-dimensional emission problems.
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I. INTRODUCTION

The emission of electrons from the surface of a material
is a well-known quantum phenomenon which has found a
vast number of technological uses; applications such as
field-emission displays, thermoelectric generators, photo-
multipliers, electron microscopes, and electron guns are
just a few examples of technologies which are reliant upon
electron emission. It is, therefore, unsurprising that electron
emission has attracted considerable research interest over
the past century.
The emitted current is dependent upon the temperature of

the material and the electric-field strength at its surface. At
high temperatures, the hot electrons can escape from the
material; this process is called thermal emission and, for a
flat surface, the theoretical emitted current density is

JRS ¼ λTART2 exp

�
−1
kBT

�
ϕ −

�
e3F
4πϵ0

�
1=2

��
; ð1Þ

where T is the temperature of the emitter, F is the electric-
field strength at the emitting surface, ϕ is the average
amount of energy needed to remove an electron from the
material when no field is applied, known as the work
function, and AR is Richardson’s constant. Boltzmann’s
constant, the electron charge, and the permittivity of free
space are represented by kB, e, and ϵ0 respectively. The
material-specific factor λT accounts for effects such as
electron reflection and scattering; a good discussion of the
difficulties involved in calculating its precise value is
provided by Modinos [1]. Equation (1) is generally known
as the classical Richardson-Schottky (RS) equation when
λT ¼ 1. If, additionally, F ¼ 0, then the classical RS

equation reduces to the classical Richardson equation
[2,3]. The extension to relatively weak electric fields
was originally due to Schottky [4].
In the opposite limit of high electric fields and low

temperatures, electrons are extracted from the surface in a
process known as field-induced, or simply field, emission.
The emitted current density in this case is given by

JFN ¼ λFaFNF2

ϕ
exp

�
−νFbFNϕ3=2

F

�
; ð2Þ

where aFN and bFN are the universal Fowler-Nordheim
constants [5] and the factors λF and νF depend on the
specific emitting surface and material. Equation (2) is
known as the classical Fowler-Nordheim (FN) equation
when λF and νF take the values given by a perfectly
conducting planar emitter [6–9].
These two emission processes are special cases of the

same emission phenomenon; the first theory of unified
thermal and field-induced electron emission from planar
surfaces was provided by Murphy and Good [9]. That work
identified two main emission regimes, where either the
classical RS or FN equation applies, separated by a
transition region. Compound expressions for the emitted
current density from planar surfaces in the transition region
were found by Christov [10] and, more recently, by Jensen
[11], who also included photoinduced emission in his
general field-thermal (GFT) theory.
These investigations have been relatively successful at

describing electron emission from flat surfaces, but studies
from the 1990s demonstrated that the classical FN equation
is inaccurate for emitters smaller than 10–20 nm [12–14].
The tips of emitting surfaces have now reached radii of
curvature smaller than 5 nm [15,16], but the planar FN
equation continues to used for the analysis of experimental*j.holgate14@imperial.ac.uk
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data [17,18]. The inaccuracy of the classical FN equation
for these nanoscale emitters has prompted the development
of spherical FN-type equations [19,20] and a spherical
generalization of Jensen’s GFT theory [21], although the
series expansions used in the latter work become unsatis-
factory for very small (≲5 nm) spheres.
In this paper, the methodology of Murphy and Good is

applied in order to produce RS-type and FN-type equations
for the emitted current density from small earthed spherical
emitters and to define, in T-F parameter space, the regimes
where these equations are valid. The energy distributions of
the emitted electrons in each emission regime are also
considered. The results derived here are of general appli-
cability. However, where required, the properties of tungsten
are used to produce specific plots and examples. Tungsten is
an example of a near-ideal emitter, with a work function of
4.5 eVand a Fermi energy of 6 eV [1], and it is often used in
commercial applications of electron emission. Temperatures
above the melting point of tungsten are used in some
examples and are relevant to liquid-metal emitters [22].

II. BASIC EQUATIONS

The simplest description of electrons in ametallic material
is the free-electron theory. This theory assumes that electrons
in the material behave as free particles with their total
energies E, as measured from the base of the conduction
band, given by the Fermi-Dirac distribution function,

fFDðE; TÞ ¼
1

1þ exp½ðE − EFÞ=kBT�
; ð3Þ

where T is the thermodynamic temperature of the metal. The
Fermi energy,EF, is defined as the total electron energyof the
state for which the occupation probability is 0.5. The free-
electron theory fails to account for the internal atomic
structure—and hence the existence of a band gap—in solids,
but it remains an excellent first approximation for the electron
energy distribution; for liquids, there is much less internal
atomic structure and the free-electron theory should be an
even better approximation [23]. The following analysis
assumes the electron gas to be in thermodynamic equilibrium
and hence to obey Fermi-Dirac statistics.
The total energy of an electron in the free-electron gas,

defined above as E, can be split into the kinetic energy
associated with the components of velocity parallel to and
normal to the emitter surface, which are denoted as Ep and
W, respectively. The contribution to the electron current
density incident on the inside of the emitting surface due
to electrons with energy components between W and
W þ dW and Ep and Ep þ dEp is given by

d2Z ¼ zsfFDðW;Ep; TÞdEpdW

¼ zsdEpdW

1þ exp½ðW þ Ep − EFÞ=kBT�
; ð4Þ

as deduced from the formulas in Ref. [24]. The Sommerfeld
supply density zs is a universal constant with the value
zs ≈ 1.618311 × 1014 Am−2 eV−2 [5].
When an electron is incident on the material surface, it

may either be reflected, so that it remains within the
material, or transmitted, in which case it escapes and
contributes to the emitted current density. The probability
that an electron crosses the surface barrier is given by the
transmission coefficient DðW;FÞ, which is a function of
the electric field at the surface, F, and the normal
component of energy only. F is defined to be positive
when the surface is negatively charged, as is the case for all
of the emitters considered here. It follows that the total
emission current density is given by

JðF; TÞ ¼
Z

∞

0

�
zs

Z
∞

0

fFDðW;Ep; TÞdEp

�
DðW;FÞdW

¼
Z

∞

0

NðW;TÞDðW;FÞdW; ð5Þ

where the current-density supply function NðW;TÞ, i.e.,
the incident electron current density per unit normal energy
range, is

NðW;TÞ ¼ zs

Z
∞

0

1

1þ exp½ðE − EFÞ=kBT�
dEp

¼ −zskBT
�
ln (1þ exp

�
−
W þ Ep − EF

kBT

�
)

�
∞

0

¼ zskBT ln (1þ exp

�
−
W − EF

kBT

�
): ð6Þ

Two shortcomings of the free-electron theory, and hence
this form of NðW;TÞ, should be noted. First, it is valid only
for metallic emitters, as the band structure in narrow-gap
semiconductors and few-layer graphene leads to aniso-
tropic distributions of electrons [25] and the electrons in
single-layer graphene are described by the 2D, rather than
the 3D, Fermi-Dirac distribution [26]. Second, the physical
shape and size of the emitter can lead to quantum confine-
ment effects, such as those studied by Qin et al. for
nanowall emitters [27] and by Patterson and Akinwande
for nanoscale wire emitters [28], which indicate that Eq. (6)
is unsuitable for emitters smaller than 2 nm. Nevertheless, it
is assumed here that Eq. (6) provides an adequate descrip-
tion of the supply function and that differences between
the planar and spherical theories are due solely to the
differences in the external electric potential.
The material surface is described by a one-dimensional

potential-energy barrier denoted by UðzÞ, where z is in the
direction normal to the surface. The probability that an
electron can traverse this barrier is given by DðW;TÞ.
A generalized semiclassical quantum-mechanical approxi-
mation forDðW;TÞ was proposed by Miller and Good [29]
and leads to the same formula as a slightly different, and
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much earlier, approach by Kemble [30]. This formula may
be written as

DðW;FÞ ¼ f1þ exp½GðW;FÞ�g−1; ð7Þ

GðW;FÞ ¼ ge

Z
z2

z1

M1=2ðzÞdz; ð8Þ

MðzÞ ¼ UðzÞ −W; ð9Þ
where ge ≈ 10.24633 eV−1=2 nm−1 is the Jeffreys-Wentzel-
Kramers-Brillouin (JWKB) constant for an electron; in terms
of fundamental constants, ge ¼ ð8mÞ1=2=ℏ, where m is the
electron mass and ℏ the reduced Planck constant [5].
The electron motive energy MðzÞ defines the form of the
tunneling barrier, as given in the next section for the planar
and spherical cases, while the values of z1 and z2 are the roots
ofMðzÞ ¼ 0. These roots may be either purely real, in which
case the normal energyW is below the peak of the barrier and
the roots are chosen such that z1 < z2, or complex con-
jugates, in which case z1 is selected to have a positive
imaginary part and z2 to have a negative imaginary part.
As such, this formofDðW;FÞ can account for both tunneling
through a barrier and scattering above it. This approximation
fails for large values ofW, above a limiting valueWl, which
cause the real parts of z1 and z2 to approach the singularity
in M2ðzÞ ¼ 0 at z ¼ 0. Fortunately, DðW;FÞ is well
approximated as 1 when W > Wl.
The transmission coefficient clearly depends on the form

of the barrier potential function UðzÞ, which is different for
spherical and planar surfaces. For a planar conducting
surface with an applied electric field F, this function is
given by [1]

UpðzÞ ¼
(
0; for z < zc

EF þ ϕ − c2s
4ez − eFz; for z > zc

; ð10Þ

where ϕ is the work function of the material, which is the
amount of energy required by an electron to escape the
surface at zero temperature when no field is applied,
and cs ¼ ðe3=4πϵ0Þ1=2 ≈ 1.199985 eV ðV=nmÞ−1=2 is the
Schottky constant [5]. The term containing cs is attributable
to the image force on an electron near a conducting planar
surface, while the last term is attributable to the applied
field. The point zc is given by the position larger than z ¼ 0
where the potential barrier drops to zero, so that the
singularity at z ¼ 0 is avoided. This potential barrier is
plotted as the thick blue line in Fig. 1 for F ¼ 3 Vnm−1.
The potential barrier of an earthed spherical surface is

given by [19]

UsðrÞ¼

8>><
>>:
0; for r<rc

EFþϕ− c2sa
2eðr2−a2Þ

−eFað1−a
rÞ; for r>rc

; ð11Þ

where r is the radial distance from the center of the sphere,
a is the radius of the sphere, and rc is the radius, slightly
larger than a, at which the potential barrier drops to zero.
The field F at the emitter surface is repulsive to electrons in
all of the cases considered here, as positively charged
spheres may accumulate a negative charge cloud which
complicates the problem. The spherical barrier tends to the
planar barrier for large spheres; this may be seen by
substituting r ¼ zþ a and allowing a → ∞ in order to
obtain Eq. (10). This potential barrier is illustrated, as a
function of z ¼ r − a, by the thick red curve in Fig. 1. The
spherical barrier is always higher and wider than the planar
barrier for a given value of F, so it will produce a smaller
emitted current. The quantification of this difference
between the spherical and the planar barrier is the principal
focus of this paper.
It is worth mentioning briefly that Jensen et al.

have recently given an expression for the electrostatic
potential due to the image charge of a sphere equivalent to
−c2sa=eðr2 − a2Þ [31]. However, in the limit a → ∞, this is a
factor of 2 away from the correct expression for the planar
case. This discrepancy seems to arise from the use of the
formula for theCoulomb potential. TheCoulomb potential is
not applicable to image charges because work must be done
on the real charge only—not the image charge—as opposed
to a systemof twopoint charges,whereworkmust bedoneon
both (see Sec. 3.2.3 of Ref. [32]). This effect accounts for the
erroneous factor of 2.
Having obtained convenient expressions for the supply

function and transmission coefficient for both the spherical
and planar cases, the emitted current density follows simply
from Eq. (5). This integral can be evaluated approximately
in the field-related and thermally related limits to give the
FN-type and RS-type equations for emission from planar or
spherical surfaces. Before doing so, the problem is refor-
mulated in terms of dimensionless parameters and func-
tions which are consistent with existing emission theories.
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FIG. 1. The planar and spherical potential-energy barriers for
EF ¼ 6 eV, ϕ ¼ 4.5 eV, F ¼ 3 Vnm−1, and a ¼ 2 nm. The
individual contributions from the image charge and the applied
field terms are shown by the dashed lines.
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III. FORMALISM IN TERMS OF y AND A

The basic equations of the previous section can be
expressed in terms of dimensionless parameters in order
to reduce the number of dependent variables and to simplify
the derivations of the FN-type and RS-type equations. These
new parameters are the Nordheim parameter

y ¼ csF1=2

H
; ð12Þ

whereH ¼ EF þ ϕ −W is the zero-field barrier height, and
the size parameter is

A ¼ eaF1=2

cs
; ð13Þ

where e=cs ≈ 0.8333436 nm−1 ðV=nmÞ−1=2. The variable
A, although mathematically convenient, is an obscure mea-
sure of the physical size of the spherical emitter, so, while the
theory is developed in terms ofA, specific examples are given
in terms of a. This choice of A is designed to make it
independent of H, which simplifies the series expansions
made in the following sections, but it is noted that the
alternative size parameter ϕ=eFa was employed by
Kyritsakis and Xanthakis in their work on field-induced
emission from earthed spheres [20].
Equations (8) and (9) can be rewritten in terms of y

and A as

GðW;FÞ ¼ bFN
H3=2

F
v�ðy; AÞ; ð14Þ

where

bFN ¼ 2ge
3e

≈ 6.830890 ðeVÞ−3=2 Vnm−1 ð15Þ

is the second FN constant [5] and v�ðy; AÞ is called the
barrier-form correction factor. This function is denoted v�,
rather than simply v, in order to distinguish it from the
principal Schottky-Nordheim barrier function, which
describes emission through the planar barrier given by
Eq. (10). The function v�ðy; AÞ becomes vðyÞ in the planar
limit. Utilizing the integration variable ρ ¼ r=a gives, for
the spherical potential in Eq. (11),

v�ðy; AÞ ¼ 3

2
Ay

Z
ρ2

ρ1

�
1 −

y
2Aðρ2 − 1Þ − Ay

�
1 −

1

ρ

��
1=2

dρ:

ð16Þ
The integration limits ρ1 and ρ2 are given by the roots of
MðρÞ ¼ 0, which, in this case, are the two solutions of the
cubic equation

ðAy − 1Þρ3 − Ayρ2 þ
�
1þ y

2A
− Ay

�
ρþ Ay ¼ 0 ð17Þ

that are greater than 1. When finding the emitted current, it
is much easier to refer to approximate formulas or tabulated
values of v�ðy; AÞ, as provided in the Appendix along with
a least-squares functional fit, than to numerically evaluate
this integral on a case-by-case basis.
The parameter y and the concept of a barrier-form

correction factor were introduced by Nordheim [6], but
the mathematical function and values he derived for the
planar case were subsequently found to be incorrect.
Correct values for the correction function vðyÞ for the
planar case were tabulated by Burgess et al. [8]. This
notation was subsequently used by Murphy and Good in
their unified approach to thermal and field-induced emis-
sion [9], which forms the basis of the spherical theory
developed here. The planar equivalent of Eq. (16) corre-
sponds to the large-A limit of the spherical case and, as
shown in the Appendix, letting A → ∞ yields the values
calculated by Burgess et al.
Much more recently, Forbes and Deane discovered an

approximate formula for the planar barrier-form correction
factor

vðyÞ ≈ 1 − y2 þ y2 ln y
3

; ð18Þ

which gives an error not greater than 0.33% over the range
0 < y ≤ 1 [33,34]. This formula was extended to the
earthed spherical barrier-form correction factor by
Kyritsakis and Xanthakis, who gave a formula equivalent
to [20]

v�ðy; AÞ ≈ 1 − y2 þ y2 ln y
3

þ 1

yA

�
4

5
−
7y2

40
−
y2 ln y
100

�
;

ð19Þ

where terms on the order of ðyAÞ−2 and higher were
neglected. This formula is plotted in Fig. 2 as a function
of y for various values of A and compared to the numerical
solution of Eq. (16). Figure 2 shows Eq. (19) to be
an excellent approximation over the expected range of
validity yA ≫ 1.
The series expansions made in the following sections

require the introduction of the second barrier-form correc-
tion function,

t�ðy; AÞ ¼ v�ðy; AÞ − 2y
3

∂v�ðy; AÞ
∂y : ð20Þ

Following Forbes and Deane’s derivation of an accurate
formula for the planar case [33,34], Kyritsakis and
Xanthakis also produced the approximate formula [20]

t�ðy; AÞ ≈ 1þ y2

9
−
y2 ln y
11

þ 1

yA

�
4

3
−

y2

500
−
y2 ln y
15

�
;

ð21Þ
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where terms on the order of ðyAÞ−2 and above have again
been excluded. Figure 3 shows a comparison of this
approximate formula to the exact numerical solution; again,
Eq. (21) is shown to be accurate over the expected range
of validity yA ≫ 1.

IV. FIELD-INDUCED EMISSION

Emission in the low-temperature, high-field regime,
often referred to as the cold-field-emission regime in the
field-emission literature [5,35], is dominated by electrons
with energies close to the Fermi energy, W ≈ EF, which is
well below the barrier peak. Each electron, therefore, has a
very small probability of tunneling through the barrier, so
the approximation GðW;FÞ ≫ 1, and hence

DðW;FÞ ≈ exp½−GðW;FÞ�; ð22Þ

can be made. Equation 22 is the simple JWKB-type
formula [36]. The integral in Eq. (5) can be put into an
analytical form by retaining only the first two terms in a
power-series expansion of GðW;FÞ about the Fermi
energy. This expansion,

−GðW;FÞ ¼ −bþ cðW − EFÞ − fðW − EFÞ2 þ � � � ;
ð23Þ

has the coefficients

b ¼ GðW ¼ EF; FÞ ¼ bFN
ϕ3=2

F
v�ðy0; AÞ; ð24Þ

c ¼ dGðW;FÞ
dW

����
W¼EF

¼ 3bFN
2

ϕ1=2

F
t�ðy0; AÞ; ð25Þ

f ¼ 1

2

d2GðW;FÞ
dW2

����
W¼EF

¼ 3bFN
8

1

Fϕ1=2 u
�ðy0; AÞ; ð26Þ

where bFN is given by Eq. (15) and y0 is the value of y at
W ¼ EF,

y0 ¼
csF1=2

ϕ
: ð27Þ

The barrier-form correction functions v�ðy; AÞ and t�ðy; AÞ
are given by Eqs. (16) and (20), while the additional
function u�ðy; AÞ is defined as

u�ðy; AÞ ¼ t�ðy; AÞ − 2y
∂t�ðy; AÞ

∂y : ð28Þ

The straightforward generalization of Murphy and Good’s
series expansion to the spherical case is due to A’s being
independent of H, and hence W, so that ∂A=∂W need not
be considered. With these approximations made, Eq. (5)
becomes

JðF; TÞ ¼ zskBT expð−bÞ

×
Z

∞

0

exp½cðW − EFÞ�

× ln

�
1þ exp

�
−
W − EF

kBT

��
dW: ð29Þ

The value of the integrand drops off rapidly as W
departs from EF, so the lower integration limit can be
taken as −∞, and the use of an integration variable
ν ¼ exp½ðW − EFÞ=kBT� yields the standard form

JðF; TÞ ¼ zskBT
c

expð−bÞ
Z

∞

0

νðckBT−1Þ

1þ ν
dν: ð30Þ

This integral converges, provided that ckBT < 1, to give
the field-induced emitted current density JT at nonzero
temperatures as
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FIG. 2. Comparison of the exact evaluation of the barrier-
form correction factor [Eq. (16), solid lines] to the approximate
formula from Ref. [20] [Eq. (19), dotted-dashed lines].
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JTðF; TÞ ¼ λðTÞJ0ðFÞ; ð31Þ

where J0ðFÞ is the zero-temperature emitted current den-
sity and λðTÞ is a temperature correction factor given by

λðTÞ ¼ πckBT
sinðπckBTÞ

: ð32Þ

Clearly, λðTÞ tends to unity as T goes to zero.
The zero-temperature emitted current density J0ðFÞ is

given by

J0ðFÞ ¼
aFN

t�2ðy0; AÞ
F2

ϕ
exp

�
−bFN

ϕ3=2

F
v�ðy0; AÞ

�
; ð33Þ

where aFN and bFN are universal constants called the first
and second FN constants [5]; the value of bFN is provided
by Eq. (15), while

aFN ¼ zs

�
2

3bFN

�
2

≈ 1.541 434 μAeVV−2: ð34Þ

The only differences between the planar and spherical
situations lie in the mathematical form of the correction
factors v�ðy; AÞ and t�ðy; AÞ and in the different values of
v�ðy0; AÞ, t�ðy0; AÞ, and c. This functional dependence
indicates that Eqs. (31) and (33) are in the form of core
FN-type equations [36], which, in this instance, describe
cold-field emission from an earthed spherical emitter. In this
paper, Eqs. (31) and (33) are simply referred to as the finite-
and zero-temperature FN-type equations, respectively.

The zero-temperature FN-type equation, Eq. (33), is
compared to the exact current density, as calculated from
Eq. (5), in Fig. 4 for various planar and spherical emitters,
with ϕ ¼ 4.5 eV at T ¼ 300 K. At this temperature,
Eqs. (33) and (31) are indistinguishable. This plot utilizes
the approximate formulas for v�ðy; AÞ and t�ðy; AÞ, which
are provided by Eqs. (A2) and (A7) in the Appendix. For
very strong electric fields, the field-induced regime approx-
imations are invalid, as the lower limit of the integral in
Eq. (29) cannot be arbitrarily taken to be −∞, and doing so
produces an overestimation of the emitted current density.
The base-10 logarithm of the current density calculated

from the zero-temperature FN-type equation is plotted as a
function of 1=F in Fig. 5; such a plot is commonly referred
to as a Fowler-Nordheim plot and is useful for character-
izing cold-field electron emitters. Equation (33) is plotted
using the exact barrier-form correction factors, as given
by a direct numerical evaluation of Eqs. (16) and (20), the
approximate formulas provided by Kyritsakis and
Xanthakis [20], Eqs. (19) and (21), and the least-squares
fits provided in the Appendix, Eqs. (A2) and (A7), for
spherical emitters with radii 10, 5, and 2 nm. This plot
exhibits a changing slope which is typical of nontriangular
surface potential barriers [37]. The results support
Kyritsakis and Xanthakis’s conclusion that their formulas
are satisfactory for emitters of radius 5 nm < a < 10 nm.
The formulas provided in the Appendix provide improved
approximations for the barrier-form correction functions
for emitters smaller than 5 nm.
The FN-type equations can fail at any given value ofF for

sufficiently high temperatures, as the JWKB approximation,
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FIG. 4. Field-induced current densities from surfaces with ϕ ¼
4.5 eV at T ¼ 300 K, as calculated using the zero-temperature
FN-type equation for a spherical emitter, i.e., Eq. (33) with
correction factors given by Eqs. (A2) and (A7) (dotted-dashed
lines) and the precise numerical evaluation of Eq. (5) (solid lines).
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dashed lines] and a least-squares fit to the numerical data
[Eqs. (A2) and (A7), dotted-dashed lines]. The precise numerical
calculation of Eq. (5) at 300 K is given by the solid lines.

J. T. HOLGATE and M. COPPINS PHYS. REV. APPLIED 7, 044019 (2017)

044019-6



Eq. (22), and the linear expansion ofGðW;FÞ, Eq. (23), may
no longer be applied. The details of these issues are discussed
in Sec. VI, below which defines, in F-T parameter space, an
upper boundary for the cold-field-emission region, andhence
the limits of validity for the FN-type equations. Within this
boundary, the FN-type equations provide a good concise
working formula for estimating emission current density.

V. THERMAL EMISSION

Equation (5) may also be evaluated analytically in the
high-temperature, low-field regime, which is often referred
to as the barrier-top-emission regime. In this case, the
emitted current is dominated by electrons with energies
around the barrier peak, where ðW − EFÞ ≫ kBT even at
high temperatures, allowing the approximation

ln

�
1þ exp

�
−
W − EF

kBT

��
≃ exp

�
−
W − EF

kBT

�
ð35Þ

to be made. The expansion of GðW;FÞ is now performed
around the peak of the barrier. If the peak height of the
spherical barrier in Fig. 1, as measured from the base of the
conduction band, is denoted as Hm and the corresponding
value of y as ym ¼ csF1=2=Hm, then an appropriate small
parameter is

ϵ ¼ 1 −
H
Hm

¼ ym
csF1=2

�
csF1=2

ym
þW − EF − ϕ

�
: ð36Þ

This parameter is useful as it is both linear inW and zero at
the barrier peak. It is also used in Sec. VI A to evaluate the
limits of the field-emission regime. GðW;FÞ vanishes at
the barrier peak since Eq. (17) has a repeated root, ρ1 ¼ ρ2,
and hence v�ðym; AÞ ¼ 0. The expansion follows from
Eq. (14) as

GðW;FÞ ¼ bFN
c3=2s

F1=4 y
−3=2v�ðy; AÞ

≈ bFN
c3=2s

F1=4

�
−
3

2

t�ðym; AÞ
y3=2m

ϵþ 3

8

u�ðym; AÞ
y3=2m

ϵ2
�

≈
−1
kBTq

�
csF1=2

ym
þW − EF − ϕ

�
; ð37Þ

where only the first term is retained in the last line and

q−1 ¼ −
3kBTbFNc

1=2
s

2F3=4

t�ðym; AÞ
y1=2m

: ð38Þ

This expansion reproduces those given by Murphy and
Good [9] and Modinos [1] in the planar limit for which
ym ¼ 1 and t�ðym; A → ∞Þ ¼ π=

ffiffiffi
8

p
. Note, again, that the

series expansion is simplified by the independence of A
from W.

With the approximations of Eqs. (35) and (37) made,
Eq. (5) becomes

JðF; TÞ
¼ zskBT

×
Z

∞

0

exp½−ðW − EFÞ=kBT�dW
1þ exp½−ðcsF1=2=ym þW − EF − ϕÞ=kBTq�

:

ð39Þ

The integrand drops off quickly as W moves downwards
from the level of the top of the barrier, so the lower limit can
be replaced by −∞, and making the substitution

μ ¼ exp

�
−1

kBTq

�
csF1=2

ym
þW − EF − ϕ

��
ð40Þ

yields

JðF; TÞ ¼ zsqðkBTÞ2
Z

∞

0

μq−1

1þ μ
dμ

× exp

�
−1
kBT

�
ϕ −

csF1=2

ym

��
: ð41Þ

This is the same standard form as in Eq. (30) and, provided
that q < 1, the integral converges to give the extended
RS-type equation [35]

JðF; TÞ ¼ zsðkBTÞ2
πq

sinðπqÞ exp
�
−1
kBT

�
ϕ −

csF1=2

ym

��
:

ð42Þ

In the limit of weak applied fields, when πq ≪ 1, this
reduces to the RS-type equation

JðF; TÞ ¼ ART2 exp

�
−1
kBT

�
ϕ −

csF1=2

ym

��
; ð43Þ

where Richardson’s constant is

AR ¼ zsk2B ¼ 1.201735 × 106 Am−2K−2: ð44Þ

As with the field-emission regime, the only difference
between the spherical and planar cases is from the differing
values of ym and t�ðym; AÞ, for which approximate formulas
are provided in the Appendix. A plot of the logarithm of the
emitted current density, according to Eq. (43), against F1=2

gives a straight line of slope cs=ym; such a plot is known as a
Schottky plot [1], and the slope is reduced for small spheres.
The current densities given by Eq. (43)—calculated

using Eq. (A9) for ym, as provided in the Appendix—are
displayed in Fig. 6 and are compared with the precise
numerical evaluation of Eq. (5).Within the thermal-emission
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region, the boundaries ofwhich are considered in Sec.VI, the
RS-type equation reproduces the numerical solutions.
The spherical current densities tend to the planar values
for large spheres, and the spherical and planar current
densities are identical for F ¼ 0, as the potential barrier is
essentially removed in this case. The effect of sphericity is,
in general, to significantly reduce the emitted current at any
given value of F. This reduction is due to the spherical
potential barrier increasing in height for decreasing values of
A, as demonstrated in Fig. 1, so that ym increases and the
emitted current falls.

VI. VALIDITY OF APPROXIMATIONS

A number of approximations have been made in the
preceding subsections and, while the resulting FN-type and
extended RS-type equations [Eqs. (31) and (42), respec-
tively] are of great utility, the validity of these approx-
imations must be carefully considered. This consideration
is made here following the methodology of Murphy and
Good [9]. An alternative test was performed by Bahm et al.
[38], who calculated the transmission coefficient using an
exact solution of the Schrödinger equation, rather than the
JWKB-type approximation, and found the results deviate
from the planar FN-type equation for ckBT > 0.7 and from
the extended RS-type equation for q > 0.25. Such a test of
the spherical equations is, however, a significant work in
itself and is beyond the immediate scope of this paper.

A. Field-induced emission

The derivation of the field-induced emitted current
requires that the conditions

GðW;FÞ > 1 ð45Þ

and

jfjðW − EFÞ2 <
1

2
ð46Þ

are satisfied in order to neglect higher-order terms in the
expansions of Eqs. (22) and (23). Equation (45) is violated
for electron energies close to the barrier peak; the expan-
sion in terms ofGðW;FÞ in terms of ϵ, Eq. (37), is therefore
suitable and allows Eq. (45) to be rewritten as

W − EF < ϕ − kBTq −
csF1=2

ym
: ð47Þ

The conditions in Eqs. (46) and (47) must be valid for
electrons which make a significant contribution to the
emitted current. Murphy and Good identify these signifi-
cant contributions as those from electrons with energies for
which the integrand of Eq. (29) is greater than expð−1Þ of
its maximum value. This defines an upper limit for the
energy of such electrons as

W − EF <
kBT

1 − ckBT
: ð48Þ

Inequalities which define the field-induced emission region
are found through a comparison of Eqs. (46) and (47) to
Eq. (48). These inequalities are

ϕ −
kBT

1 − ckBT
>

csF1=2

ym
þ kBTq ð49Þ

and

1 − ckBT > ð2fÞ1=2kBT: ð50Þ
The field-emission region given by these inequalities is

shaded blue in Fig. 7 for various spherical and planar surfaces
with ϕ ¼ 4.5 eV. Field emission cannot occur when
ϕ < eFa, as this implies that the potential barrier never falls
below the Fermi energy even at large distances from the
sphere, which is particularly evident atF ¼ 2.25 Vnm−1 for
a ¼ 2 nm. Electrons are, generally, quite unlikely to tunnel
through the broad potential barriers of small spherical
surfaces; this effect causes a significant reduction in the size
of the field-emission region for very small spherical emitters.

B. Thermal emission

The thermal-emission region must also be defined.
The expansion in Eq. (35) may be truncated at first order
when

W − EF > kBT ð51Þ
is satisfied, while neglecting the quadratic term in ϵ in
Eq. (37) is justified when
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FIG. 6. Thermal current densities from surfaces with ϕ ¼
4.5 eV and T ¼ 3000 K, as calculated using the RS-type
equation, Eq. (43), with ym provided by Eq. (A9) (dotted-dashed
lines), and the precise numerical solution of Eq. (5) (solid lines).
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ϵ > −
F1=8

b1=2FN c
3=4
s

; ð52Þ

which, using the definition of ϵ in Eq. (36), is equivalent
to

W − EF > ϕ −
c1=4s F5=8

ymb
1=2
FN

−
ym

csF1=2 : ð53Þ

These conditions must again be satisfied for electron
energies which make a significant contribution to the
emitted current. The integrand I in Eq. (39) has a maximum
when ðW − EFÞ takes the value

η ¼ ϕ −
csF1=2

ym
− kBTq ln

�
q

1 − q

�
ð54Þ

and decreases roughly like

I ∝ exp

�
−
W − EF

kBT

�
ð55Þ

for values of ðW − EFÞ > η, and roughly like

I ∝ exp

�
−
W − EF

kBT

�
exp

�
W − EF

kBTq

�
ð56Þ

for values of ðW − EFÞ < η. The integrand is therefore
larger than expð−1Þ of its maximum value over the range

kBT > ðW − EFÞ − η > −
kBTq
1 − q

; ð57Þ

which corresponds to the range of significant contributions
to the current for which the conditions in Eqs. (51) and (53)
must hold. The thermal-emission region condition is,
therefore, defined by the inequalities

ln

�
1 − q
q

�
−

1

qð1 − qÞ >
1

kBTq

�
csF1=2

ym
− ϕ

�
; ð58Þ

as found by comparing Eq. (51) to the lower limit of
Eq. (57), and

ln
�
1 − q
q

�
−

1

1 − q
> −

1

kBTq
c1=4s F5=8

ymb
1=2
FN

; ð59Þ

as found by comparing Eq. (53) to the lower limit of
Eq. (57). The regions defined by these limits are illustrated
by the red shaded regions in Fig. 7. Unlike the field-
emission region, the thermal region increases in size for
spherical surfaces with smaller radii. This effect arises from
the broadening of the spherical potential barrier which
suppresses tunneling and gives currents which are domi-
nated by thermally excited electrons near the barrier peak.
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VII. SPECTRA OF EMITTED ELECTRONS

It can be useful to know the distribution of energies of
the emitted electrons, in addition to the total emitted
current. The number of emitted electrons with total energy
between E and Eþ dE, per energy increment dE, is given
by the free-electron theory as

jðE;F; TÞ ¼ zsfFDðE; TÞ
Z

E

0

DðW;FÞdW: ð60Þ

The expression for the total current density, Eq. (5), can be
retrieved by integrating jðE;F; TÞ over all electron energies,

JðF; TÞ ¼
Z

∞

0

jðE;F; TÞdE; ð61Þ

and making the substitution E ¼ W þ Ep. Equation (60)
may be evaluated exactly using the expressions for
fFDðE; TÞ andDðW;FÞ, from Eqs. (3) and (7), or evaluated
approximately in the thermal or field-induced regimes.
The energy spectra of thermally emitted electrons may

be crudely approximated by taking the transmission

coefficient, DðWÞ, as 1 when W is larger than the potential
energy of the barrier peak, denoted as Vm, and 0 when it is
below the peak. The Fermi-Dirac function becomes propor-
tional to expð−E=kBTÞ in the thermal regime, and the
integral in Eq. (60) can be immediately evaluated to give

jTðEÞ ∝ ðE − VmÞ exp
�
−ðE − EFÞ

kBT

�
: ð62Þ

This distribution is compared to the precise numerical
solution of Eq. (60) in Fig. 8 for spheres with ϕ ¼ 4.5 eV
and of radius 2 or 10 nm. Equation (62) is shown to be a
good approximation of the numerical results, although the
low-energy tail of electrons which tunnel through the
barrier is truncated. The values of EF þ ϕ − Vm, as found
from the values of ym given in the Appendix, are 1.147 and
2.347 eV for the 10-nm sphere with F ¼ 1 Vnm−1 and
F ¼ 4 Vnm−1, respectively, and 0.945 and 2.138 eV for
the 2-nm sphere with F ¼ 1 Vnm−1 and F ¼ 4 Vnm−1.
The field-induced energy distribution, first derived for

the planar case by Young [39], follows from the approx-
imations of Eqs. (22) and (23). Performing the integral in
Eq. (60) yields
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jFðEÞ ¼
zs
c

exp½−bþ cðE − EFÞ�
1þ exp½ðE − EFÞ=kBT�

; ð63Þ

where b and c are given by Eqs. (24) and (25). The finite-
temperature FN-type equation, as given by Eq. (31), may be
derived by integrating jFðEÞ over all values of E, as
suggested by Eq. (61). Equation (63) is compared to the
precise numerical solution of Eq. (60) in Fig. 9. The
approximate spectra give excellent estimates of the emitted
electron energy distributions in the cases shown.

VIII. SUMMARY

The standard formulas for the emission of electrons from
planar surfaces are unsuitable for highly curved surfaces
and can lead to significant order-of-magnitude errors when
incorrectly applied. In this paper, accurate equations for the
emission current densities from earthed nanoscale spherical
surfaces are derived. These expressions are applicable to
metallic electron emitters in many modern applications,
which can be only a few nanometers in size.
The theory of electron emission from earthed spherical

surfaces is developed using the framework of Murphy and
Good’s unified emission theory. This provides a route to the
spherical FN-type equation for field-induced emission,
Eq. (31), and the spherical RS-type equation for thermal
emission, Eq. (43). The tables and approximate fits for the
barrier-form correction functions v�ðy; AÞ and t�ðy; AÞ,
which are provided in the Appendix, allow straightforward
evaluation of these two equations for a wide range of values
of radius, field strength, temperature, and material work
function. These functions also provide an extension to the
series solutions found by Kyritsakis and Xanthakis [20],
which produce the same results in the expected limit
yA ≫ 1. The spherical FN- and RS-type equations are
shown to match the precise numerically evaluated currents,
calculated directly from Eq. (5), for tungsten-relevant
parameters over certain ranges of validity; Sec. VI carefully
considers these ranges of validity and shows that emission
from small earthed spheres is more often dominated by
thermal effects than field effects. Finally, the energy spectra
of thermally emitted and field-emitted electrons from earthed
spherical surfaces are calculated in Sec. VII and the approxi-
mate spectra are compared with the precise numerically
evaluated values for some tungsten-relevant examples.
The differences between the planar and spherical emission

theories arise primarily because the potential barrier at the
surface of a spherical emitter is taller and wider than that of a
planar emitter for the same strength of applied electric field,
which leads to much smaller emitted currents when compar-
ing emitters with the same surface field strengths. However,
when comparing electrodes with the same surface voltage,
spherical anodes will produce a larger surface electric field
and hence can produce much larger emitted currents than
planar surfaces.This behavior corroborates previous findings
that the enhanced field-induced emission from needlelike

anodes is principally due to the enhancement of electric field
at highly curved, nanometer-scale surfaces [19,40].
The approach taken here could be extended to other

situations where the electric potential at the emitter surface
is described by an arbitrary 1D function. Any parameters
which are introduced to describe the shapes of different
potential barriers, such as A in this paper, must be kept
independent of the normal electron energy, W, so that the
series expansions required by the Murphy and Good
methodology remain independent of these new parameters.
Possible examples include isolated spheres, which are of
interest in areas such as volcanic-ash plumes [41] and small
objects in plasmas [42], space-charge-regime emission,
where the emitted electrons contribute significantly to
the electric potential [43,44], and emission from planar
electrodes in contact with plasmas where the Bohm sheath
provides a simple model for the potential barrier [45].
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APPENDIX: REFERENCE TABLES AND
APPROXIMATE FORMULAS FOR THE

BARRIER-FORM CORRECTION
FUNCTIONS

The calculations of the field-induced and thermal cur-
rents and their ranges of validity require the barrier-form
correction functions v�ðy; AÞ, t�ðy; AÞ, and u�ðy; AÞ to be
evaluated. These fits are used to produce the figures and
examples given in the main part of this paper.
The values of A to be considered are determined by the

parameter ranges of F<15Vnm−1 and 2nm<a<100nm,
which, using the definition of A in Eq. (13), corresponds
to A ≥ 1.
In Sec. VI A, it is found that field emission cannot occur

when ϕ > eFa, which is equivalent to requiring yA > 1 for
emission to occur. When this condition is not satisfied, there
is only one root of Eq. (17) and the barrier-form correction
functions cannot be evaluated. Furthermore, the values of y
which are greater than ym, corresponding to normal electron
energies higher than the barrier peak, are not relevant for
calculating field-induced or thermal currents and are also
omitted from the tabulated values provided here.
The exact values of ym, v�ðy; AÞ, t�ðy; AÞ, t�ðym; AÞ, and

u�ðy; AÞ are given in Tables I, II, and III. The values of
v�ðy; AÞ and t�ðy; AÞ corresponding to emission from a
planar surface are given by A ¼ ∞ and are provided by the
tables of Burgess et al. [8]. As expected, the spherical
functions tend to the planar values in the large-A limit.
The best fit for the planar function is taken as a starting

point for finding a suitable approximation for v�ðy; AÞ.
Forbes [33] provides the formula
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vðyÞ ¼ 1 − y2 þ y2 lnðyÞ
3

; ðA1Þ
which gives vðyÞ within 0.33% of its exact value for
0 ≤ y ≤ 1. From Fig. 2 and the values in Table I, it is noted
that v�ðy; AÞ tends to infinity as y → 1=A; this suggests that
a suitable functional form could be

v�ðy; AÞ ¼ αðAÞ − βðAÞy2 þ δðAÞ y
2 lnðyÞ
3

þ εðAÞ
y − 1=A

;

ðA2Þ

where α, β, δ, and ε are determined by a least-squares fitting
of v�ðy; AÞ to its exact values as

αðAÞ ¼ 1þ 4.9
A2

; ðA3Þ

βðAÞ ¼ 1þ 3.5
A2

; ðA4Þ

δðAÞ ¼ 0.334þ 0.6
A

þ 2.9
A2

; ðA5Þ

TABLE I. Exact and approximate values of v�ðy; AÞ, from Eqs. (16) and (A2), respectively, with the latter shown in parentheses next to
the corresponding exact values. The values of ym and the approximate fit of Eq. (A9), again given in parentheses, are provided in the
bottom row.

A

1 2 5 10 20 50 100 ∞

y

0 � � � � � � � � � � � � � � � � � � � � � 1.0000
0.1 � � � � � � � � � � � � 1.693 (1.895) 1.175 (1.288) 1.069 (1.152) 0.9817
0.2 � � � � � � � � � 1.645 (1.696) 1.190 (1.247) 1.024 (1.073) 0.979 (1.017) 0.9370
0.3 � � � � � � 2.167 (2.169) 1.241 (1.266) 1.025 (1.059) 0.927 (0.959) 0.899 (0.924) 0.8718
0.4 � � � � � � 1.483 (1.497) 1.036 (1.058) 0.897 (0.923) 0.829 (0.853) 0.809 (0.828) 0.7888
0.5 � � � � � � 1.160 (1.190) 0.874 (0.894) 0.773 (0.794) 0.721 (0.740) 0.705 (0.721) 0.6900
0.6 � � � 3.255 (3.398) 0.928 (0.963) 0.721 (0.740) 0.643 (0.661) 0.602 (0.618) 0.589 (0.602) 0.5768
0.7 � � � 1.946 (2.117) 0.726 (0.764) 0.568 (0.586) 0.505 (0.521) 0.471 (0.485) 0.461 (0.471) 0.4504
0.8 � � � 1.339 (1.529) 0.536 (0.573) 0.409 (0.427) 0.357 (0.372) 0.329 (0.341) 0.320 (0.330) 0.3117
0.9 � � � 0.931 (1.114) 0.347 (0.385) 0.243 (0.263) 0.200 (0.215) 0.176 (0.188) 0.169 (0.177) 0.1613
1.0 � � � 0.604 (0.769) 0.155 (0.197) 0.069 (0.093) 0.033 (0.050) 0.013 (0.025) 0.006 (0.015) 0.0000
1.1 4.156 (4.230) 0.316 (0.462) � � � � � � � � � � � � � � � � � �
1.2 2.107 (2.093) 0.046 (0.182) � � � � � � � � � � � � � � � � � �
1.3 1.146 (1.107) � � � � � � � � � � � � � � � � � � � � �
1.4 0.510 (0.443) � � � � � � � � � � � � � � � � � � � � �
1.5 0.014 (−0.059) � � � � � � � � � � � � � � � � � � � � �

ym 1.503 (1.503) 1.218 (1.218) 1.080 (1.079) 1.039 (1.038) 1.019 (1.019) 1.0075 (1.0074) 1.0038 (1.0037) 1.0000

TABLE II. Exact values of the functions t�ðy; AÞ and t�ðym; AÞ, calculated directly from Eq. (20), compared to the approximate fits of
Eqs. (A7) and (A10), respectively; the values from the approximate fits are given in parentheses.

A

1 2 5 10 20 50 100 ∞

y

0 � � � � � � � � � � � � � � � � � � � � � 1.0000
0.1 � � � � � � � � � � � � 2.572 (3.124) 1.353 (1.565) 1.155 (1.300) 1.0036
0.2 � � � � � � � � � 2.579 (2.733) 1.483 (1.590) 1.162 (1.248) 1.082 (1.148) 1.0111
0.3 � � � � � � 4.551 (4.634) 1.747 (1.785) 1.297 (1.356) 1.117 (1.171) 1.067 (1.109) 1.0207
0.4 � � � � � � 2.594 (2.551) 1.501 (1.529) 1.226 (1.269) 1.102 (1.142) 1.066 (1.098) 1.0319
0.5 � � � � � � 2.032 (2.028) 1.389 (1.415) 1.194 (1.228) 1.099 (1.131) 1.071 (1.097) 1.0439
0.6 � � � 12.259 (12.703) 1.775 (1.798) 1.329 (1.353) 1.178 (1.206) 1.102 (1.128) 1.079 (1.100) 1.0565
0.7 � � � 5.669 (5.663) 1.631 (1.667) 1.294 (1.314) 1.171 (1.194) 1.108 (1.130) 1.089 (1.107) 1.0697
0.8 � � � 3.876 (4.051) 1.543 (1.579) 1.273 (1.287) 1.171 (1.187) 1.117 (1.134) 1.010 (1.114) 1.0832
0.9 � � � 3.073 (3.345) 1.484 (1.511) 1.261 (1.266) 1.173 (1.182) 1.126 (1.138) 1.111 (1.122) 1.0969
1.0 � � � 2.627 (2.920) 1.444 (1.454) 1.255 (1.247) 1.178 (1.178) 1.137 (1.143) 1.124 (1.130) 1.1107
1.1 29.623 (32.249) 2.346 (2.607) � � � � � � � � � � � � � � � � � �
1.2 12.219 (12.373) 2.156 (2.340) � � � � � � � � � � � � � � � � � �
1.3 7.642 (7.866) � � � � � � � � � � � � � � � � � � � � �
1.4 5.637 (5.761) � � � � � � � � � � � � � � � � � � � � �
1.5 4.537 (4.354) � � � � � � � � � � � � � � � � � � � � �

t�ðym; AÞ 4.510 (4.510) 2.129 (2.129) 1.421 (1.420) 1.254 (1.255) 1.179 (1.180) 1.138 (1.138) 1.124 (1.124) 1.1107
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εðAÞ ¼ 1

3A2=3 : ðA6Þ

The approximate values of v�ðy; AÞ provided by this fit are
given in Table I in parentheses alongside the corresponding
exact values. These values show that the fit is reasonably
good except for values of y approaching ym; these are not
relevant for field-induced emission, where W ≃ EF, but a
better fit in the vicinity of ym is required for an accurate
calculation of the thermal currents.
The function t�ðy; AÞ, defined by Eq. (20), follows as

t�ðy; AÞ ¼ αþ
�
β

3
−
2δ

3

�
y2 −

δ

3
y2 lnðyÞ

þ ε

y − 1=A
þ 2εy
3ðy − 1=AÞ2 ; ðA7Þ

and its approximate values, as provided by the least-squares
fit, are given in parentheses alongside the exact values in
Table II. The field-emission results shown as dashed curves
in Figs. 4 and 5 are calculated from the FN-type equation,
Eq. (31), with barrier-form correction functions given by
these fits for v�ðy; AÞ and t�ðy; AÞ.
The function u�ðy; AÞ, which is given by Eq. (28) and is

required for evaluating the limit of validity of the field-
induced approximation in Eq. (50), is also determined from

u�ðy; AÞ ¼ αþ
�
8δ

3
− β

�
y2 − δy2 lnðyÞ þ ε

y − 1=A

þ 4εy
3ðy − 1=AÞ2 þ

8εy2

3ðy − 1=AÞ3 : ðA8Þ

Again, the values given by the least-squares fit are given in
parentheses next to the corresponding exact values in
Table III. These values are a relatively poor fit to the exact
values and an exact calculation of u�ðy; AÞ is recommended
for determining the field-induced emission limits. The field-
emission regions inFig. 7 are produced using the exact values
for u�ðy; AÞ rather than the fitted values.
The approximate formulas provided so far become

inaccurate for electron energies close to the potential barrier
peak. It is more convenient to consider separate least-
squares fits for ym and t�ðym; AÞ, such as

ym ¼ 1þ 0.369
A

þ 0.134
A2

; ðA9Þ

t�ðym; AÞ ¼ 1.1107þ 1.357
A

þ 0.676
A2

þ 1.366
A3

: ðA10Þ

These formulas are used along with the Schottky equation,
Eq. (43), to produce the dashed curves for thermal emission
in Fig. 6 and provide excellent fits to the exact values, as
shown by the parenthetical values in the last rows of
Tables I and II.
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