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Micro- and nanomechanical resonators with ultralow dissipation have great potential as useful quantum
resources. The superfluid micromechanical resonators presented here possess several advantageous
characteristics: straightforward thermalization, dissipationless flow, and in situ tunability. We identify
and quantitatively model the various dissipation mechanisms in two resonators, one fabricated from
borosilicate glass and one from single-crystal quartz. As the resonators are cryogenically cooled into the
superfluid state, the damping from thermal effects and from the normal-fluid component are strongly
suppressed. At our lowest temperatures, damping is limited solely by internal dissipation in the substrate
materials, and the resonators reach quality factors of up to 913 000 at 13 mK. By lifting this limitation
through substrate-material choice and resonator design, modeling suggests that the resonators could reach
quality factors as high as 108 at 100 mK, putting this architecture in an ideal position to harness mechanical
quantum effects and to facilitate the study of superfluids in confined geometries.
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I. INTRODUCTION

Recently, there has been heightened interest in micro-
and nanomechanical systems as quantum resources,
as opposed to traditional—classical—applications such
as force [1], mass [2], or torque [3] sensing. For example,
mechanics in the quantum regime have demonstrated
coupling to microwave qubits [4], entanglement between
phonons and photons [5], and quantum-state transduction
[6]. Long phonon lifetimes facilitate such quantum oper-
ations; hence, resonators for quantum applications are
generally made of low-dissipation materials such as
single-crystal Si [7] or stressed superconducting aluminum
[8]. Yet, these materials are by no means ideal. For
example, two-photon adsorption in silicon is a significant
limitation for optomechanics at low temperatures [7,9].
The search for improved materials with ultralow mechani-
cal dissipation is actively under way, with studies of high-
tension silicon nitride [10] and diamond [11,12], for
example. Such materials should also have ultralow dielectric
loss in the telecom ormicrowave bands to be compatiblewith
cavity optomechanics [13]. Development of alternative
materials that meet these stringent requirements is, therefore,
a key avenue to enabling further progress in quantum nano-
mechanics. Recently, it has been realized that a long-studied
material, superfluid 4He, is actually oneof themost promising
candidates for mechanics in the quantum regime [14–18].
Below a critical temperature (Tλ ≃ 2.17 K), liquid

4He undergoes a transition into a superfluid state, with

macroscopic quantum coherence. This state of matter
exhibits exotic properties such as frictionless flow below
the so-called critical velocity, as well as extremely low
mechanical dissipation at millikelvin temperatures. These
properties can be described using the two-fluid model,
where the fluid is imagined to be composed of a conven-
tional viscous fluid, the normal component ρn, and an
inviscid fluid, the superfluid component ρs. At temper-
atures that are low compared to Tλ, where the normal-fluid
density vanishes (ρn → 0), the mechanical properties of the
superfluid are expected to be extraordinary. In recent
groundbreaking work, mechanical quality factors reaching
up toQ ¼ 1.4 × 108 were demonstrated by De Lorenzo and
Schwab [14,18] in a superfluid acoustic resonator coupled
to a superconducting microwave cavity, demonstrating the
great potential of superfluid cavity optomechanics.
While the work of De Lorenzo and Schwab [14,18] is

performed on gram-scale quantities of superfluid, appli-
cable to the detection of high-frequency gravitational
waves [19], quantum optomechanics experiments require
larger zero-point fluctuations for the measurement and
control of quantum phenomenon: decreasing the mass of
the mechanical system increases its usefulness as a quan-
tum resource. Furthermore, confinement to the nanoscale
is enticing for the study of superfluids themselves:
enabling tests of finite-size scaling theory [20] and prox-
imity effects [21] in superfluid 4He, tests for undiscovered
superfluid phases [22,23] and surface Majorana fermions in
3He [24–27], and tests of the dynamical response of
Tommonoga-Luttinger liquids [28,29].
Recent superfluid-cavity-optomechanics experiments

have found that even the small dielectric constant of liquid
helium is sufficient to study acoustic modes in fiber cavities
[17] and third sound in superfluid films [16]—with
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significantly reduced effective masses compared to
Ref. [14]. Yet neither these two experiments nor our previous
work [15] achieved the ultralow mechanical dissipation of
De Lorenzo and Schwab [14]. Therefore, in reduced geom-
etries, dissipation must be systematically revisited to deter-
mine the role of confinement. Here, we show that a
microgram effective-mass superfluid Helmholtz resonator,
in a slab geometry defined by microfabrication [30,31], can
achieve ultralow mechanical dissipation, leading to quality
factors of up to Q ¼ 9 × 105 at 13 mK. For a 3-kHz
Helmholtz mode, this quality factor results in a mechanical
dissipation rate of Γm=2π ¼ 3 mHz—with 106 times less
effective mass than De Lorenzo and Schwab [14,18]; see
Table I—a phonon lifetime of τ ¼ Q=Ωm ≈ 50 s, and a
thermal coherence time of τth ¼ ℏQ=kBTbath ≈ 530 μs [13].
Furthermore, we are able to quantitatively model the

sources of dissipation in this system and find that, at
millikelvin temperatures, dissipation is dominated by
two-level systems in the microfabricated substrate material.
With this knowledge, itwill be possible to engineer improve-
ments that would allow thismechanical resonator—which is
straightforward to thermalize to millikelvin temperatures
and which conceptually could be coupled to a microwave
resonator—to achieve quality factors well above 107, and
thermal coherence times of tens of milliseconds, putting this
architecture in an ideal position to harness mechanical
quantum effects.

II. FOURTH-SOUND
HELMHOLTZ RESONATOR

The premise of a Helmholtz resonator is that a confined
fluid can act as a mass-spring system, with the spring
constant given by a combination of the compressibility of
the fluid and the containment vessel, and the mass given by
the moving fluid in the channel. Helmholtz resonances are
commonly experienced as the whistle produced when air is
blown across the top of a bottle. Confining superfluid 4He
likewise leads to a Helmholtz mode and allows us the
flexibility to engineer the mode by altering the geometry
[15]. Here, the confinement is dictated by microfabricated
borosilicate glass [30,31] or single-crystal quartz, with
integrated drive electrodes [15]—see Fig. 1. As we discuss
in greater detail below, comparing devices fabricated from
two different substrate materials allows us to discern the
role of the substrate on the dissipation of the Helmholtz
resonator.
In this experiment, a microfabricated basin of area A is

etched into the substrate material and subsequently patterned
with drive electrodes, which are spaced by a distance h ≈
900 nm apart after bonding; see Fig. 1 and Appendix A. The
basin is connected to the surrounding helium reservoir
by four channels, each having cross-section area a and
length l. These dimensions, together with the stiffness of
the substrate, kp, and the relative substrate stiffness, Σ ¼
ðkp=2Þ=kh, fully define the superfluid Helmholtz resonance
frequency. When a voltage is applied to the electrodes, the
substrate bends inward due to the large electrostatic force. In
the presence of superfluid helium, this deformation can be
used to drive the fourth-sound Helmholtz mode, with an
angular resonance frequency

Ωm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4a
lρ

�
ρs
ρ

kp=2

A2ð1þ ΣÞ

s
ð1Þ

TABLE I. Comparison of superfluid mechanical resonators.

Reference
Ωm=2π
(kHz)

Mass
(kg)

Volume
(m3)

Γm=2π
(Hz)

De Lorenzo and
Schwab [14,18]

8.1 5.7 × 10−3 4.0 × 10−5 0.0006

Harris et al. [16] 482 2 × 10−15 1.4 × 10−17 106
Kashkanova
et al. [17]

317 × 103 3.8 × 10−13 2.7 × 10−15 4500

This work 2.9 1.1 × 10−9 7.3 × 10−12 0.003

FIG. 1. Helmholtz-resonator characteristics. (a) Illustration of the resonator microfabrication scheme. The basin and the channels are
etched into the substrate (borosilicate glass or single-crystal quartz), chromium and gold electrodes are deposited, and the two substrates
are bonded together to create the basin for confining liquid helium. (b) Simulation showing the substrate deflection when a voltage is
applied across the two electrodes. The electrostatic force bends the substrate inward, driving the Helmholtz resonance. (c) Simulation of
the local superfluid velocity for the Helmholtz resonance. (d) Temperature dependence of the resonance frequencyΩm measured for the
quartz device (the yellow circles), along with the theoretical resonance frequency (the blue curve). The black curve is the corresponding
effective mass of the Helmholtz mode, which grows with increasing superfluid density, ρs=ρ.
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that is proportional to the superfluid density, ρs=ρ [15]. That
is, the normal-fluid component, ρn, is viscously clamped due
to the submicron confinement of the channels [see Fig. 1(c)
and Appendix D], and the resonance frequency therefore
increases as the temperature decreases and the superfluid
fraction, ρs=ρ, grows [15]. As T → 0, the effective mass of
the Helmholtz mode also increases, reaching 1.1 μg, as
shown in Fig. 1(d).

III. HIGH-TEMPERATURE DISSIPATION

Unlike the resonance frequency, the temperature depend-
ence of the quality factor, Q, demonstrates complex
behavior, as seen in Figs. 2 and 3. For the first device
studied here—fabricated from borosilicate glass—the qual-
ity factor increases monotonically until approximately
1.2 K and then plateaus. The initial rise in the Q can be
understood using the theory derived in Refs. [32,33], which
describes the dissipation introduced by the residual motion
of the normal fluid in a superfluid Helmholtz resonance.
Specifically, when the superfluid oscillates at Ωm through
the channel, the normal fluid is locked to the substrate if
the viscous penetration depth, λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η=ðρnΩmÞ
p

, is larger
than the channel height, h=2, with η and ρn being
the viscosity and the density of the normal fluid, respec-
tively. As discussed in further detail in Appendix D, the
normal fluid is not fully clamped to the substrate and its
residual motion limits the mechanical quality factor to
Qn ¼ ½ð8ηÞ=ðh=2Þ2�½ρs=ðρ2nÞ�½1=ðΩmÞ�, shown in Fig. 2 as
an orange dashed line alongside the experimental data. The
model for Qn results in good agreement with the high-
temperature data, considering that no fit parameters are

used. As predicted by the theory, this dissipation mecha-
nism vanishes at low temperature as ρn=ρ → 0.
The second device—fabricated from crystalline quartz—

also has a high-temperature (700 mK to Tλ) quality factor
that monotonically increases as the temperature is reduced;
however, its dissipation is dictated by a different physical
phenomenon, i.e., thermal losses. As the superfluid moves
within the channel, with the normal fluid considered
clamped, the amount of superfluid in the basin depletes
and replenishes, producing temperature variations, ΔT, due
to the mechanocaloric effect [34]. If the basin is perfectly
thermally isolated from its environment, we would have
ΔT ¼ ρsTΔV=cp, with s being the specific entropy, cp the
specific heat at constant pressure of the helium in the basin,
and ΔV the amount of superfluid displaced. However,
the basin walls are not ideal thermal insulators and part of
the heat produced leaks out into the superfluid reservoir,
providing a thermal bath at the mixing-chamber temper-
ature, Tmc, and resulting in mechanical dissipation. This
damping mechanism is maximized at high temperature,
where ΔT is larger due the large specific entropy, s.
Because the crystalline quartz substrate has a significantly
larger thermal conductivity [35] and is thinner than the
borosilicate-glass substrate, the heat propagates more easily
between the basin and the superfluid reservoir, increasing
this thermal-loss channel. The model describing the quality
factorQth associated with thermal losses (see Appendix D),
shown in Fig. 3 as a dashed black curve, agrees nicely with
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FIG. 2. The quality factor of the borosilicate resonator (the red
circles) is measured from 475 mK to 2.09 K using a 3He fridge.
The dashed orange curve shows the damping associated with the
normal-fluid residual motion and the dashed black curve is a
model of thermal losses through the substrate; both are described
in Appendix D. Because of the small thermal conductivity of
borosilicate, normal-fluid damping is the dominant loss mecha-
nism. The dashed green curve is a prediction of the quality factor
expected from internal dissipation in the borosilicate substrate.
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FIG. 3. An experiment similar to Fig. 2 is reproduced, using a
single-crystal quartz substrate instead of borosilicate glass. The
quality factor of the quartz resonator (the yellow circles) is
measured using a dilution refrigerator from 13 mK to 1.62 K. In
contrast to the borosilicate resonator, the damping associated with
the normal-fluid residual motion (the dashed orange curve) is
now smaller than the one associated with the thermal losses (the
dashed black curve). In fact, while keeping the geometry—and
hence the normal-fluid damping—nearly constant, the thermal
losses are increased because of the high thermal conductivity of
crystalline quartz. The green dashed curve is the model of
thermally excited two-level systems described in Appendix F.
The behavior of the resonator is well reproduced over the entire
experimental temperature range.
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the quartz resonator data in the high-temperature region. In
this dissipation model, the only parameter adjusted is the
area of the basin, A, scaled from the as-fabricated dimen-
sions by a factor of 2. This difference can reasonably be
explained by the fact that, as the heat propagates through
the substrate of thickness t, the effective area contributing
to thermal losses is increased.

IV. LOW-TEMPERATURE DISSIPATION

Remarkably, both thermal losses and the normal-fluid
damping model predict exponential growth of the quality
factor with lowering temperature that results in the pre-
dicted Q’s at temperatures below 300 mK exceeding 106.
On the other hand, our device Q’s do not follow this
exponential growth at low temperatures, and, moreover, the
resonator fabricated from borosilicate glass saturates to
about 1800 at 1K. It is well known that amorphousmaterials
can have a strong acoustic attenuation at audio frequencies
and low temperatures due to the presence of two-level
systems interacting with the phonons [36,37], which is
applicable to borosilicate glass. By measuring a drumlike
mechanical resonance mode of an evacuated device (at a
significantly higher frequency of Ωdrum ≃ 220 kHz), we
measure the internal dissipation Q−1

drum of the borosilicate
material over a broad temperature range of 450mK to 100K
(see Appendix E).We find that the internal dissipation of the
substrate is indeed dominated by the presence of two-level
systems, in accordance with other studies [36,37], resulting
inQ−1

drum ¼ 7 × 10−4. This internal dissipation is found to be
frequency independent in the temperature range studied, in
agreement with the standard tunneling model [38], and it
therefore should be similar for the lower frequency
Helmholtz resonance. As discussed in Appendix C, since
1=ð1þ ΣÞ ¼ 77% of the potential energy is contained
in the substrate stiffness for the borosilicate Helmholtz
resonance, two-level system damping accounts for
Q ¼ Qdrum=0.77 ¼ 1850, explaining the saturation of the
Q for the glass Helmholtz resonator. A more detailed model
for the dissipation arising from two-level systems (see
Appendix E) fits well with the low-temperature data of
the borosilicate device, as indicated in Fig. 2 by the green
dashed curve.
Conveniently, the limitation to the quality factor of an

amorphous material can be lifted by employing a substrate
material that is ideally exempt of any two-level systems.
This possibility motivates us to fabricate the resonator
using single-crystal quartz as a substrate since it has been
demonstrated to have low acoustic losses at cryogenic
temperatures [39,40]. Figure 3 shows that the use of a
crystalline substrate substantially reduces the internal dis-
sipation, as the quality factor is now solely limited by the
thermal-loss mechanism down to ≃700 mK, as shown by
the good agreement with the theoretical model. If the
resonator is cooled down further, however, the quality

factor saturates to a value of Q ¼ 4 × 104. To account for
this saturation, two extrinsic loss mechanisms are consid-
ered first, namely, clamping losses and radiation damping.
Clamping loss is a common source of dissipation for
mechanical resonators [41], they can become predominant
when significant stresses are located near the clamped area
of the sample and dissipated into the support structure. This
process is unlikely to be responsible for the saturation of the
quality factor observed here, as our resonator is loosely
attached to the experimental cell through its thin electrical
leads. Also, clamping losses are expected to be temperature
independent, inconsistent with the subsequent rise of the Q
at lower temperature. The second extrinsic loss mechanism
considered, radiation damping, happens when a mechanical
element dissipates energy by emitting acoustic waves into a
surrounding fluid. Applied to our resonator, acoustic
emission occurs at the deflected substrate and at the exit
of the channels. An analytical and a numerical model, both
of which are detailed in Appendix D, show that the energy
loss is mitigated by the presence of the copper cell walls,
reflecting part of the acoustic energy, as observed in
Ref. [42]. As a consequence, we find that radiation damping
should limit the quality factor only to a value of approx-
imately 108, much higher than the saturation observed.
Instead, we find that this plateau region, and the

subsequent rise in the Q at temperatures below 50 mK,
can be well described using a model of a two-level system’s
induced dissipation in the substrate material, unanticipated
for single-crystal quartz. The dissipation in the crystalline
quartz is modeled as a thermally activated ensemble of
two-level systems [43], with an energy splitting of
ΔE ¼ 1.3 GHz, described in Appendix F. In this model,
the dissipation occurs through an energy transfer between
the two-level systems, through the modulation ofΔE by the
oscillating elastic strain. As shown in Fig. 3, this simple
model describes the changes to the quality factor below
700 mK for the quartz, and, combined with the thermal-
dissipation model, the behavior of the resonator can be
accurately accounted for over the entire experimental
temperature range.
It is interesting to note that, for both the quartz and

borosilicate resonators, the quality factor is ultimately
limited by internal dissipation in the host material.
Hence, reducing the amount of energy stored in the
substrate could result in a drastic increase of the Q, up
to 108 at 100 mK in the case where the dissipation is limited
only by thermal losses. Lowering the amount of energy
stored in the substrate could be achieved by increasing the
substrate stiffness through making the substrate thicker,
reducing the diameter of the basin, or patterning pillars that
bridge between the two substrates in the area of maximal
deflection. Reducing the substrate’s internal losses could
also lead to an increase of the quality factor, for example,
by using diamond substrates that have been shown to have
a ΔE of 13 GHz [43]. Likewise, in a subsequent
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experimental run, after warming up and cooling down the
dilution refrigerator with the resonator left untouched in the
sample cell, the quality factor of the same quartz Helmholtz
is measured to be 913 000 at 13 mK, measured by a 60Co
nuclear-orientation thermometer, as shown in Fig. 4. This
effect may be attributable to thermal cycling affecting
the two-level systems in the substrate and, therefore, the
quality factor.

V. SUMMARY

In this work, we fabricate and study the behavior of two
superfluid Helmholtz resonators with a submicron confine-
ment. We show that their mechanical dissipation can be
accurately modeled from Tλ, where the superfluid reso-
nance takes place, down to T ¼ 13 mK, while the mechani-
cal dissipation spans over 4 orders of magnitude. At low
temperature, the damping is dominated by the internal
dissipation of the substrate materials, and several solutions
are offered to mitigate those effects in future experiments.
Implementing those solutions could result in quality factors
as large as 108 at 100 mK, as compared to the 913 000
measured at 13 mK in the present experiment.
Such ultralow-dissipation fluid resonators, with the

possibility of engineering confinement, could have numer-
ous applications. For example, they could allow the
creation of sensitive detectors to probe small volumes of
superfluid 3He, predicted to undergo undiscovered phase
transitions in confined geometries [22,23]. Furthermore,

the integration of this mechanical resonator into a micro-
wave cavity, as in Ref. [44], would result in a superfluid
optomechanical system with the zero-point fluctuations of
the acoustic field, ΔPzpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏΩm=2Vχ

p
, being enhanced

by the small volume of the resonator. Because of the
ultralow dielectric loss in the telecom or microwave
bands, such a superfluid optomechanical system could
potentially be driven to extraordinary cavity-enhanced
cooperativities—key to all quantum measurement and
control operations [13]. Ultimately, ultralow-dissipation
Helmholtz resonances could even be a potential astronomi-
cal tool for the detection of a continuous source of gravity
waves, as reported by Singh et al. [19].
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APPENDIX A: RESONATOR FABRICATION
AND GEOMETRY

1. Definition of the geometry

The resonators are built using standard nanofabrication
techniques. The geometry is defined by optical lithography,
etched into the wafer, and subsequently diced into chips
that are bonded together to create the basin and channels of
the Helmholtz resonator. The first resonator is fabricated
from a 1.1-mm-thick borosilicate wafer, and the second
resonator from a 0.5-mm-thick single-crystal Z-cut quartz
wafer. In Fig. 5, we define the relevant dimensions of the
geometry and show a picture of each resonator. To facilitate
comparison, the two resonators are designed to have nearly
identical geometries. The two devices differ only by the
wafer thickness, t, and the electrode radius, Rele, given in
Table II, together with other relevant dimensions and
properties.
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FIG. 4. Superfluid Helmholtz resonance detected at
T ¼ 13 mK, demonstrating a quality factor of Q ¼ 91 3000.
For a resonance frequency Ωm ¼ 2840 Hz, this quality factor
results in a phonon lifetime longer than 50 s.
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FIG. 5. The Helmholtz resonators are constructed by bonding two microfabricated substrates, forming a central basin and four
channels. (a) defines the essential dimensions: the channels are depicted in green, the basin in purple, and the electrodes in yellow. These
features are visible in the finished devices, shown in (b) and (c), for the borosilicate and the quartz resonator, respectively.
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2. Nanofabrication process

The nanofabrication steps used to build the borosili-
cate and quartz resonators are summarized in Fig. 6.
The process starts with a cleaning of the bare quartz
(borosilicate) wafer (step A) in a hot piranha solution
(H2SO4 þ H2O2). After cleaning, a chromium and gold
masking layer is sputtered on the wafer (step B). Once
developed, the positive photoresist HPR 504, shown in
purple in Fig. 6, defines the geometry to be etched onto
the wafer (step C). The exposed portion of the masking
layer is then removed using chromium and gold
etchants (step D), the resist is removed in acetone plus
isopropyl alcohol, and the wafer is cleaned in a cold
piranha solution. The basin and channels are then
etched (step E) with a Borofloat etchant (Silox
Vapox III) having an etch rate of 133 nm=min. The
masking layer is then removed as in step D and the
wafer cleaned again in a hot piranha solution prior to
the electrodes’ deposition. A chromium and gold layer
is deposited that will later create the electrodes. To
shape the electrodes, a negative SU-8 photoresist is
deposited, exposed, and developed after careful align-
ment of the mask. The revealed part of the chromium
and gold layer is etched away and the photoresist
removed with a Remover PG solution. After a dip in
a cold piranha bath, the final design is obtained (step F)
and the wafer is ready for dicing and bonding. The
bonding process is performed under a microscope by
manually aligning and pressing two chips together (step
G) to obtain the final resonator (step H).

APPENDIX B: DETERMINATION OF
THE SUBSTRATE STIFFNESS

When a constant voltage bias, Vdc, is applied across the
resonator electrodes, the substrate bends under the electro-
static load qele ¼ ϵ0=2 × ½Vdc=ðh − heleÞ�2, where ϵ0 is the
vacuum permittivity. Its mean deflection x̄, as measured
through the capacitance change between the two electrodes,
can be used to deduce the substrate spring constant kp.
The mean deflection of the substrate x̄ ¼ πR2qele=kp is

obtained by integrating the deflection of a clamped-edge
loaded circular plate [45], for which we consider a uniform
load distributed over the entire basin area—not applied
only to the electrode area—leading to a negligible error in
the calculated deflection profile. Since x̄ ≪ ðh − heleÞ,
the capacitance C with bent substrates is approximated
by C≃ C0 þ γV2

dc. Here, C0 ¼ ϵ0πR2
ele=ðh − heleÞ is the

capacitance of the resonator at rest, and

γ ¼
�

C0

h − hele

�
2
�

R
Rele

�
2 1

kp
ðB1Þ

is the capacitance change as a function of V2
dc. The factor

ðR=ReleÞ2 arises from the fact that the electrode does not
cover the entire basin area.
The measurements ofC as a function of Vdc, presented in

Fig. 7, are performed at 4 K and can be safely extrapolated
down to millikelvin temperature within 0.1% uncertainty.
This extrapolation is safe since the elastic properties
of borosilicate and quartz depend very weakly on T in
this temperature range [46]. The capacitance shows a
linear behavior as a function of V2

dc, as expected for
x̄ ≪ ðh − heleÞ. The slope γ, extracted from a linear fit,
is used to deduce the substrate spring constant kp through
Eq. (B1). From these measurements, we obtain kp ¼ 1.2 ×
107 N=m for the quartz substrate and 4.2 × 107 N=m for
the borosilicate, as summarized in Table II.

APPENDIX C: DYNAMICS OF THE
SUPERFLUID RESONATOR

1. Mass, stiffness, and resonance frequency
of the resonator

A theoretical model describing in detail the reactive and
dissipative behavior of a superfluid Helmholtz resonator
is derived in Refs. [32,47], including the effects of the
normal fluid, thermal expansion, and compressibility. As

TABLE II. Summary of the dimensions and physical properties
of the two resonators used. The measurement of the substrate
spring constant, kp, is explained in Appendix B.

Parameter Quartz Borosilicate

Basin depth h (nm) 1014 1100
Electrodes thickness hele (nm) 50 100
Basin radius R (mm) 2.5 2.5
Electrode radius Rele (mm) 2.3 2.4
Channel width w (mm) 1.6 1.6
Channel length l (mm) 2.5 2.5
Channel area a (mm2) 7.3 × 10−4 7.2 × 10−4

Basin area A (mm2) 19.6 19.6
Substrate thickness t (mm) 0.5 1.1
Substrate spring constant kp (N/m) 1.2 × 107 4.2 × 107

(a) (c) (d) (e) (f) (g) (h)(b)
bonding

FIG. 6. Various steps of the nanofabrication process, as described in the text. White represents the wafer, yellow the metal masking
layer and electrodes, and purple the photoresist.

SOURIS, ROJAS, KIM, and DAVIS PHYS. REV. APPLIED 7, 044008 (2017)

044008-6



mentioned by the authors, the final result of those calcu-
lations is quite cumbersome. We simplify their result by
making few assumptions in application of this model to our
resonators. For the current geometry, the main assumptions
are that the volume of the superfluid reservoir, Vres,
surrounding the resonator is large compared to the volume
of the basin, i.e., V ≪ Vres, and that we can—at first—
neglect dissipative effects to describe the dynamics of the
system.
From a simplified point of view, the resonator can be

regarded as a mass on a spring system, with the mass
being the superfluid moving in the channels (considered
as incompressible within the channels) such that
m ¼ 4laρs. The spring constant, K, with respect to the
superfluid displacement, y, arises from a combination in
series of the substrate stiffness, Kp, plus the effect of the
compressibility of the fluid inside the basin given by Kh.
The contribution of the two substrates to the stiffness is
given by

Kp ¼
�
ρs
ρ

�
2 ð4aÞ2

A2

kp
2
; ðC1Þ

where kp is the substrate stiffness with respect to the
mean deflection x̄ as defined earlier in Appendix B. In a
similar way, we define the contribution of the fluid
compressibility

Kh ¼
�
ρs
ρ

�
2 ð4aÞ2

A2
kh; ðC2Þ

with kh ¼ ½A2=ðVχÞ� being the stiffness with respect to x̄.
The resulting stiffness is

K ¼ ð4aÞ2
A2

�
ρs
ρ

�
2 kp=2

1þ Σ
; ðC3Þ

where Σ ¼ ðkp=2Þ=kh represents the repartitioning of the
potential energy between the substrate and the compressed
fluid. Therefore, the Helmholtz angular resonance fre-
quency is given by

Ωm ¼
ffiffiffiffi
K
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4a
lρ

�
ρs
ρ

kp=2

A2ð1þ ΣÞ

s
: ðC4Þ

2. Adjustment of the theoretical model to the
measured resonance frequency

One particularity of the superfluid Helmholtz resonator,
compared to other low-temperature mechanical resonators,
is that its resonance frequencyΩm can be adjusted in situ by
changing the pressure or the temperature of the superfluid.
Indeed, temperature and pressure can strongly affect
several thermodynamic functions defining the Helmholtz
resonance frequency, such as the superfluid fraction ρs=ρ,
the density ρ, and the compressibility χ. In the following
description, and if not mentioned explicitly in the text, all of
the thermodynamic properties for liquid helium are adapted
from Ref. [48] and interpolated at the corresponding values
of T and P.
To verify how Eq. (C4) applies to a Helmholtz resonator

with a slab geometry, with a basin volume much smaller
than the one used in previous work [33,49,50], we measure
Ωm for different P, T parameters and adjust Eq. (C4) to
this entire data set. More precisely, for each resonator, we
perform a temperature scan at a constant P and a pressure
scan at a constant T, as shown in Fig. 8. Equation (C4) is fit
to our measurements by introducing two parameters, α and
β, corresponding to a scaling of Ωm and a correction to the
parameter Σ, respectively, such that

Ωm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

�
4a
lρ

�
ρs
ρ

kp=2

A2ð1þ βΣÞ

s
: ðC5Þ

The fits shown in Fig. 8 have good agreement with the
data and Eq. (C5) seems to adequately describe the
behavior of Ωm. For the borosilicate resonator, we obtain
β ¼ 2.98, α ¼ 2.78 and, for the quartz, β ¼ 3.4, α ¼ 3.1. It
is worth noting that, in both cases, the correction param-
eters α and β are larger than 1 but are similar between
devices. In our geometry, the basin volume is relatively
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FIG. 7. To determine the substrate stiffness, we measure the
device capacitance C as a function of the square of the bias
voltage: V2

dc. The blue line is a linear fit to the data, from which
the slope, γ, is extracted and used to calculate the substrate
stiffness, kp. We find kp ¼ 4.2 × 107 N=m for the borosilicate
device and 1.2 × 107 N=m for the quartz.
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close to the channel volume, and the channel length is of
the order of the basin diameter. In this situation, end
corrections may be necessary to properly describe the
flow. Therefore, these parameters, α and β, account for
the discrepancy between our simplistic analytical model
and the real system.
The corrected parameter βΣ ¼ βðkp=2Þ=kh gives the

ratio of the substrate spring constant to the helium spring
constant, which determines the percentage, 1=ð1þ βΣÞ, of
potential energy stored in the bending of the substrate. In
the case of the quartz resonator, at 2.3 bar, about 91% of the
total potential energy is stored in the substrate, compared to
77% for the borosilicate.

APPENDIX D: DISSIPATIVE EFFECTS
IN THE SUPERFLUID RESONATOR

1. Normal-fluid dissipation

In Appendix C, the Helmholtz resonance frequency, Ωm,
was derived assuming that the normal component of the
fluid is clamped to the substrate and does not contribute to
the motion. This condition is fulfilled when the channel
height, hc, is small compared to the viscous penetration
depth, λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η=ðρnΩmÞ
p

, where η is the viscosity of the

normal fluid. ρn and Ωm depend strongly on temperature,
especially near Tλ, and it is not straightforward to a priori
predict the behavior of the viscous penetration depth in this
temperature domain. Therefore, in Fig. 9, we calculate the
ratio of the channel height, hc, to the viscous penetration
depth, λ, as a function of T. Below 0.5 K, λ diverges since
the normal-fluid fraction vanishes, and it is reasonable to
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FIG. 8. For the (a),(b) borosilicate and (c),(d) quartz resonators, the resonance frequency was measured as a function of pressure and
temperature. (a) Borosilicate resonator frequency versus temperature with the pressure fixed at P ¼ 2.3 bar. (b) Borosilicate resonator
frequency versus pressure with the temperature at T ¼ 475 mK. (c) Quartz resonator frequency versus temperature with the pressure set
at P ¼ 2.3 bar. (d) Quartz resonator versus pressure with the temperature set at T ¼ 13 mK. The blue curves are fits to Eq. (C5) with
two adjustable parameters for each device. Excellent agreement is found for both resonators for a wide pressure and temperature range.
For the borosilicate resonator, we find β ¼ 2.98 and α ¼ 2.78 and, for the quartz resonator, β ¼ 3.4 and α ¼ 3.1.
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FIG. 9. When the channel height hc is small compared to the
viscous penetration depth λ, the normal fluid is clamped by its
own viscosity. This figure shows the ratio hc=λ as a function of
temperature. Below 0.5 K, hc=λ ≪ 1, so we can consider that the
normal fluid is completely locked.
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assume that the normal fluid is fully clamped. However,
above 0.5 K, the viscous penetration depth is reduced and,
at Tλ, it is only twice that of hc. Experimentally, as shown
above, the behavior of the resonator frequency is well
modeled when considering that only the superfluid is
moving through the channels, and no corrections from
the normal fluid are required. However, the normal fluid not
only affects the resonator frequency, it also damps the
resonator motion.
When the residual normal-fluid motion and the normal-

fluid fraction (ρn=ρ) are sufficiently large, viscous damping
can become a non-negligible source of dissipation. As
mentioned in Ref. [48], in the low-damping limit, the
quality factor can be estimated by comparing the average
rate of energy dissipation, hDni, due to normal-fluid
damping to the total amount of energy stored in the
resonator, E, such that Qn ¼ EΩm=hDni. By applying
the theory of Ref. [48] to our resonator geometry, Qn
can be written as

Qn ¼
8η

ðh=2Þ2
ρs
ρ2n

1

Ωm

�
1þ ρs

ρn

αPsT
cP

−
ρs
ρn

ρ
A2ð1þΣÞ
Vkp=2

s2T
cP

�−1
;

ðD1Þ

with αP being the isobaric thermal expansion coefficient of
liquid helium, cP the specific heat per unit mass at constant
pressure, and s the specific entropy. For our experimental
conditions, the last two terms in Eq. (D1) can be neglected
and Qn can be reduced to

Qn ¼
8η

ðh=2Þ2
ρs
ρ2n

1

Ωm
: ðD2Þ

Values for η are extracted from Ref. [51], and values for
Ωm are obtained from the fitting described in Appendix C.
Note that the viscous damping is directly proportional to
the normal-fluid density and consequently vanishes at low
temperatures.

2. Thermal effects in a Helmholtz resonator

When the superfluid oscillates within the channel, the
kinetic energy of the superfluid in the channel is converted
into potential energy that is stored in the substrate and the
superfluid. Ideally, all of the potential energy is released
and does not lead to any dissipative effects. However, when
the superfluid moves within the channel—with the normal
fluid locked to the substrate—it drives a temperature
difference, ΔT, between the basin and the helium reservoir
due to the resulting imbalance in superfluid ratios: an effect
known as the mechanocaloric effect. Because of this
temperature difference, heat flows from the basin to the
reservoir and is a source of loss. We label Qth the quality
factor related to this phenomenon. Calculation of Qth is
based on Ref. [32], in which a thorough theoretical analysis

of the response of superfluid Helmholtz resonator is
carried out.
The temperature difference, ΔT, has a reactive compo-

nent in the form of a fountain pressure that acts as an
additional spring constant, altering the resonator stiffness
and resonance frequency. The importance of this fountain
effect compared with the substrate spring constant is
evaluated through the parameter

Γ2
th ¼

ρ2s2TA2ð1þ ΣÞ
Cthkp=2

; ðD3Þ

which is small for our resonator parameters, in that it
does not significantly alter Ωm. The time constant over
which this temperature difference returns to equilibrium
is given by τth ¼ RthCth, where Rth is the total thermal
resistance between the basin and the reservoir and Cth
is the total heat capacity of the basin. If the driving
frequency Ωm is small compared to 1=τth, the heat loss
over a cycle becomes important, leading to energy dis-
sipation. The energy dissipation therefore depends on the
parameter Φth ¼ 1=ðΩmτthÞ.
A simplified expression for Qth based on Φth and Γth can

be obtained in two different limits: in the low-temperature
limit, the specific entropy is small, leading to Γ2

th ≪ 1; in
the high-temperature limit, entropic effects dominate and
we instead use 1þ Γ2

th ≫ Φ2
th. In those two different limits,

Qth is equal to

1þΦ2
th

ΦthΓ2
th

�
1þ Γ2

th

2ð1þΦ2
thÞ
�
; if Γ2

th ≪ 1; ðD4Þ

ð1þΓ2
thÞ3=2

ΦthΓ2
th

�
1−

ðΓ2
th− 2Þ

4ð1þΓ2
thÞ

�
Φ2

th

1þΓ2
th

��
; if 1þΓ2

th ≫Φ2
th:

ðD5Þ
As an example, for the quartz resonator, Γ2

th is, at most, 6%
close to Tλ and is less than 1% below 1.5 K. Therefore, the
low-temperature approximation holds over the entire range
of temperature and is used to describe the thermal losses in
our resonator.
The calculation ofQth also requires knowledge of the total

thermal resistance Rth between the basin of the resonator
and the reservoir surrounding it. Rth depends on the
geometry of the resonator, and the thermal conductivities
of the substrate and the liquid helium. Considering the
geometry of the resonator, we can identify two paths through
which the heat can flow from the basin to the reservoir, as
illustrated in Fig. 10.
The first path propagates through the superfluid-

substrate interface, with the Kapitza resistance Rk, the
bulk substrate, with the thermal resistivity Rb, and the
substrate-superfluid interface, again with the Kapitza
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resistance Rk. Since those resistances are in series, the total
resistance of the first path is given by Rth1 ¼ 2Rk þ Rb.
The second path, illustrated in Fig. 10, propagates

through the superfluid in the channel, with the thermal
resistivity RHe. The total thermal resistance of the second
path is, therefore, simply Rth2 ¼ RHe. Since each resonator
has, in total, two substrates and four channels, the total
thermal resistance is

Rth ¼
�

2

Rth1

þ 4

Rth2

�
−1

¼
�

2

ð2Rk þ RbÞ
þ 4

RHe

�
−1
: ðD6Þ

The bulk thermal properties and boundary (Kapitza)
resistance for quartz, borosilicate, and helium are summa-
rized in Table III. We took the boundary resistance for
borosilicate and helium to be the same as for quartz and
helium since it depends primarily on the acoustic imped-
ance mismatch.
For the superfluid in the channel, the thermal conduc-

tivity depends on the mean free path Λ of thermal phonons
compared to the thickness of the channel hc. If Λ < hc and
the heat flow is small enough to avoid the turbulence of

the superfluid component, the heat flow is laminar and
depends on the viscosity η of the normal component. As the
temperature is lowered, the mean free path increases
and the ballistic regime is reached when Λ becomes
comparable to the channel size hc. In that regime, the
thermal conductivity is given by κ ¼ 1

3
cCvhc [52,55],

where Cv is the specific heat per unit volume and c the
phonon velocity. It can be reasonably approximated by
κ ≃ 20hcT3 W=ðKcmÞ. In our case, due to the narrow
geometry of the channel, the validity of the ballistic regime
extends to high temperatures and is used to calculate the
thermal conductivity of the superfluid channel across the
entire temperature range.
For both the quartz and borosilicate resonators, the

thermal resistance through the helium channel is much
larger than the resistance through the substrate, and
Eq. (D6) can be reduced to Rth ¼ Rk þ Rb=2. In the case
of the quartz substrate, since the Kapitza resistance Rk is
almost 2 orders of magnitude larger than the thermal
resistance of the bulk Rb, Eq. (D6) can be further reduced
to Rth ¼ Rk. By contrast, the Kapitza resistance of boro-
silicate glass is much smaller than its bulk thermal
resistance, and the total thermal resistance can be reduced
to Rth ¼ Rb=2.

3. Radiation damping

a. Analytical model

Because of the finite stiffness kp of the substrate,
pressure oscillations in the basin are associated with a
deformation of the walls of the resonator, which in turn can
radiate acoustic waves into the surrounding fluid. This
energy-loss mechanism, known as radiation damping,
depends mostly on the geometry of the resonator and
the acoustic impedance of the surrounding fluid, and it is
consequently expected to be nearly temperature indepen-
dent in our case. In order to simplify the model, we first
make the assumptions that the surrounding helium is an
infinite medium where the sound can propagate freely and
that the deformation of the substrate corresponds to the
profile of a clamped-edge plate under a uniform load.

Helium reservoir Rk

Rk

Rb

RHe
914 nm1 mm

substrate

FIG. 10. The oscillation of the superfluid in the channel
produces temperature changes inside the basin. The heat can
flow in or out the basin by following two main paths, as shown in
this sketch of the device. Heat propagation through the substrate
requires overcoming two boundary resistances, Rk, and the bulk
resistance, Rb. Heat flow through the channels is dictated by the
thermal resistance of helium, RHe.

TABLE III. Summary of the thermal resistances encountered by the heat flowing from the basin to the surrounding
helium reservoir. The thermal conductivity of helium in small channels depends linearly on the channel diameter
[52] since it is limited by the mean free path of phonons. Here, we use hc as the channel diameter.

Quantity Units Quartza Borosilicateb Heliumc

Kapitza resistivity with 4He rk ðcm2 KÞ=W−1 17.5T−3.6 17.5T−3.6 � � �
Kapitza resistance with 4He Rk KW−1 89.1T−3.6 89.1T−3.6 � � �
Bulk thermal conductivity κ W=ðcm−1 K−1Þ 0.12T2.7 0.25 × 10−3T1.91 20hcT3

Bulk thermal resistance Rb KW−1 2.39T−2.7 2.05 × 103T−1.91 3.12 × 107T−3

aThe Kapitza resistivity is extracted from Ref. [53] and the bulk thermal conductivity from Ref. [35].
bThe Kapitza resistivity for borosilicate is taken to be the same as quartz and the bulk thermal conductivity is

obtained from Ref. [54].
cThe thermal conductivity of helium in small channels is extracted from Ref. [52].
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The acoustic properties of a nonuniform acoustic radiator
are detailed in Ref. [56] for different plate profiles, but we
will focus here on the particular case of a clamped-edge
plate profile. We consider a velocity profile of the form

vðrÞ ¼ 3v̄n

�
1 −

r2

R2

�
n

HðR − rÞ; ðD7Þ

where R is the radius of the plate, H is a step function such
thatHðxÞ ¼ f0; 1=2; 1g for fxh0; x ¼ 0; xi0g, and v̄n is the
average velocity defined as

v̄ ¼ 1

πR2

Z
∞

0

vðrÞ2πrdr: ðD8Þ

Those two definitions correspond to the velocity profile
and the average velocity used to calculate the effective
spring constant in Appendix B. The time-averaged acoustic
intensity radiated by an element of the piston is the product
of the pressure, p, acting on each element by its velocity v,
such that I ¼ 1=2Refpv�g, where the asterisk denotes the
complex conjugate. Then the power emitted is the surface
integral Π ¼ R

S IdS.
The velocity profile vðrÞ is known, and the pressure pðrÞ

acting on an element of the piston can be obtained by
integrating the contribution of all infinitesimal emitting
sources constituting the piston. The calculation of the
emitted power Π leads to a reasonable solution when the
velocity profile is a simple piston motion [57], but, as
shown in Ref. [56], the calculation can still be carried out
for the case of a clamped-edge radiator with a nonuniform
velocity profile. In this case, one would obtain, for the
power radiated,

Π ¼ 1

2
Re

�
9

5
ρcðπR2Þv̄2

×

�
1 −

5 × 211

ð2kRÞ9 ½F1ð2kRÞ þ iF2ð2kRÞ�
��

; ðD9Þ

where k is the wave number of the emitted acoustic wave.
The two functions F1 and F2 are defined by

F1ðyÞ ¼ ðy4 − 91y2 þ 504ÞJ1ðyÞ þ 14yðy2 − 18ÞJ0ðyÞ
− y5=16 − y7=768; ðD10Þ

F2ðyÞ ¼ −ðy4 − 91y2 þ 504ÞH1ðyÞ − 14yðy2 − 18ÞH0ðyÞ
þ y4ð14=15πÞ − y2ð168=πÞ; ðD11Þ

in which Ji is the Bessel function of the first kind of order i
and Hj is the Struve function of order j. Equation (D9) can
be simplified in the long-wavelength limit, 2kR ≪ 1, where
it can be reduced to lowest order in kR to

Π ¼ 1

2
Re

�
ρcðπR2Þv̄2

×

�ðkRÞ2
2

þ i
216

32 × 52 × 7 × 11π
ðkRÞ

��
: ðD12Þ

By applying the real operator and rewriting v̄ in terms of
the mean displacement x̄ and resonance frequency Ωm,
we obtain

Π ¼ π

4

ρ

c
R4Ω4

mx̄2: ðD13Þ

It should be noted that, in the low-frequency limit, this
result is strictly identical to the result found in the case of a
piston with a uniform velocity profile. Although this
similarity might seem surprising at first, it can be under-
stood by the fact that, when the radiator’s dimensions are
small compared to the acoustic wavelength (2kR ≪ 1), the
features of the clamped-edge profile are averaged and only
the mean displacement x̄ matters.
Now that we can estimate the power radiated by a

clamped-edge plate, we can derive the quality factor Qr
associated with those radiation losses for our resonator. In
the low-damping limit, it can be estimated by comparing
the average power radiated (in our case, 2Π since we have
two bending substrates radiating) to the total amount of
energy stored in the resonator E. To simplify, we write the
total amount of energy E in terms of the mean plate
displacement x̄ as

E ¼ α
kp
4
ð1þ βΣÞx̄2: ðD14Þ

The quality factor associated with radiation losses is then

Qr ¼ Ωm
E
2Π

¼ 1

Ω3
m

ckpαð1þ βΣÞ
2πρR4

: ðD15Þ

If we use the parameters and properties defined above
for the quartz resonator, and the value of Ωm in the low-
temperature limit, we get Qr ≃ 42 000.
However, before using this result to our interpret our

data, it is important to keep in mind the assumptions made
to produce this model. The main assumption consists of
assuming that the sound is radiated into an infinite medium.
This assumption is, of course, necessary since without it,
one would have to deal with the much more complicated
problem of reflected sound waves on the different boun-
daries. Experimentally, however, the resonator is placed
inside a closed copper cylindrical cell with a radius Rcell ≃
10 mm and a height Hcell ≃ 40 mm. Therefore, when the
sound radiated into the surrounding fluid by the resonator
reaches a boundary, it is mainly reflected and partially
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transmitted according to the very large acoustic impedance
mismatch between liquid helium and copper. In Ref. [42],
the effect of reflective boundaries is estimated by multi-
plying the radiated power by a transmission coefficient
T ¼ ðπ=4ÞT0θc. T0 ¼ 4Z1Z2=ðZ1 þ Z2Þ2 is the transmis-
sion coefficient for an acoustic wave with normal inci-
dence, and θc ¼ arcsinðc1=c2Þ is the critical angle for
total internal reflection from material 1 to material 2.
Applied to our cell, this correction coefficient amounts
to T ¼ 1.6 × 10−4, limiting the radiation damping to
Qr ¼ 2.6 × 108. This analysis is valid only when Ωm does
not overlapwith any copper cell resonances. Such an overlap
would be confined to a very narrow temperature and
pressure range due to the narrow linewidth (on the order
ofmillihertz) of ourHelmholtz resonances. Furthermore, we
see no evidence experimentally of the mode crossing that
was observed in Ref. [42]. However, this method is not quite
satisfying analytically since it does not take into account
effects like multiple reflections of the acoustic wave on the
cell walls, nor does it treat the acoustic emission by the
resonator channels.

b. Numerical model

Another method for estimating the quality factor Qr
associated with radiation damping is to apply the finite-
element-analysis method used in Ref. [14]. In order to
understand how the coupling to the container affects their
superfluid resonance, De Lorenzo and Schwab use a
numerical model to compute the fraction of energy stored
in their container and deduce the associated losses. In a
similar fashion, we can numerically compute the fraction of
energy radiated and stored in the superfluid surrounding
our Helmholtz resonator. Figure 11 shows the result of such
a numerical simulation with a quartz resonator surrounded
by fluid, oscillating at the Helmholtz resonance frequency
Ωm. The deflection of the substrate and the superfluid flow
in the channels both lead to an acoustic emission in the

surrounding fluid, visible as blue and red pressure lobes
in Fig. 11.
In order to obtain the potential energy stored in the

Helmholtz resonator, we need to add both the elastic
potential energy of the bent substrate Esub

p and the potential
energy stored in the compressed fluid Ehe

p , obtained through
the quantities

Esub
p ¼

Z
1

2
σijϵijdV; ðD16Þ

Ehe
p ¼

Z
1

2
χp2dV; ðD17Þ

respectively, where σ and ϵ are the stress and strain tensors,
respectively, and χ is the compressibility of the superfluid.
Using Eq. (D17), the energy stored in the helium inside and
surrounding are integrated separately.
First, we can verify that the percentage of energy stored

in the substrate agrees with the value of 1=ð1þ βΣÞ ¼ 91%
measured in Appendix C. The value obtained through the
numerical simulation is 86%, showing reasonable quanti-
tative agreement. If we now calculate the percentage of
energy stored in the surrounding helium, we find it to be
0.00014%. Since quality factors for helium-filled cavities
in copper cells typically lie at around 1000 [58,59], we can
estimate Qr ¼ 1000=1.4 × 10−6 ¼ 7 × 108.
In conclusion, we find through two different analyses

that radiation damping should only limit the quality factor
of the quartz resonator to about 108. Additionally, although
it is not presented in this article, we detect Helmholtz
resonances when only the channels and the basin are filled
with superfluid helium, surrounded only by a vacuum. This
detection is possible because capillary forces raise the
pressure of the fluid in the micron-scale gap and prevent its
evaporation. In this situation, the effects of radiation
damping are further suppressed.

APPENDIX E: DISSIPATION IN THE
BOROSILICATE SUBSTRATE

The quality factor of the Helmholtz resonance for the
borosilicate device plateaus at a value of Q ¼ 1850 below
1 K. To understand this limitation, we study the behavior
of the fundamental drumlike mode of an empty device
(Fig. 12). In this situation, the damping arises from internal
dissipation in the substrate. The resonance frequency,
Ωdrum, of this mechanical mode is approximately
220 kHz at the base temperature of our 3He fridge
(T ¼ 475 mK). Up to ≃5 K, Ωdrum shows a weak temper-
ature dependence, as it changes by less than 0.2%. Above
5 K and up to 100 K, Ωdrum decreases by only 2%.
The dissipation of the drumlike resonance, Q−1

drum, dis-
plays a more complex temperature dependence, yet the
behavior of both the Q−1

drum and Ωdrum can be understood

FIG. 11. Numerical simulation of a quartz Helmholtz resonator
surrounded by superfluid helium. The color map of the vertical
slice represents the acoustic pressure p with arbitrary units. As
the substrate bends in and out, it radiates sound into the
surrounding fluid, as shown in blue. Associated with the substrate
radiation, the moving fluid in the channels also radiates sound out
of phase with the substrate, as seen in red.

SOURIS, ROJAS, KIM, and DAVIS PHYS. REV. APPLIED 7, 044008 (2017)

044008-12



through the standard tunneling model of two-level systems
for amorphous materials [36]. Here, the analogy with the
measurements of Ref. [36] is striking, as Q−1

drum reproduces
all of the standard features of such systems. From T ¼
475 mK to 1 K, the dissipation increases with an increasing
temperature. Above 1 K and up to 5 K, Q−1

drum plateaus at a
value of 7 × 10−4. Finally, a large peak is observed with a
maximum value of 18 × 10−4 at 55 K. It is important to
note that the drumlike mode has a resonance frequency
approximately 50 times higher than the Helmholtz reso-
nance frequency, and the frequency dependence of the
dissipation must be considered. The dissipation of two-
level systems as a function of frequency has been measured
by several groups [38,41] in amorphous SiO2. The groups’
measurements show that, as the frequency is lowered, the
temperature of the transition into the plateau region is
lowered, down to 100 mK at 5 kHz. The value of the
dissipation in the plateau region, however, remains
unchanged. Therefore, we expect that, in the temperature
range (from 475 mK to Tλ) where the Helmholtz resonance
is observed, the internal dissipation of the borosilicate is
equal to that in the plateau region, i.e., 7 × 10−4. In
Appendix C, we show that 1=ð1þ ΣÞ ¼ 77% of the
potential energy is stored in the substrate; therefore, we

predict that the quality factor of the borosilicate Helmholtz
resonator should be Qint ¼ ð1þ ΣÞ ×Qdrum ¼ ð0.77 × 7×
10−4Þ−1 ¼ 1850. This result is in good agreement with the
value of 1800� 300 measured, confirming that the limi-
tation in the quality factor of the resonator is indeed coming
from the internal dissipation of the borosilicate.

APPENDIX F: DISSIPATION IN THE
QUARTZ SUBSTRATE

1. Two-level systems

The Helmholtz resonance in the borosilicate device is
found to be limited by internal dissipation in the substrate
material due to two-level systems. Fabricating a Helmholtz
resonator from single-crystal Z-cut quartz substantially
reduces the losses of the resonator; however, we find
that the low-temperature behavior is still dominated by
internal dissipation in the substrate. Modeling of the low-
temperature dissipation is based on a two-level-system
ensemble model, similar to the one used in Ref. [43] to
describe dissipation in single-crystal diamond nanoresona-
tors. When the energy splitting of the two-level systems,
ΔE, is modulated by the mechanical oscillations, energy is
transferred to the two-level systems, with an efficiency
depending on the occupation probability of the two-level
systems. The quality factor associated with this process,
Qint, is given by

Q−1
int ¼

Q−1
A

ð1þ ΣÞ
e−T0=T

eT0=T þ e−T0=T
: ðF1Þ

Here, T0 ¼ ΔE=kB, with kB being the Boltzmann constant.
The maximum dissipation in the substrate material Q−1

A
is such that Q−1

int ðT → ∞Þ ¼ Q−1
A =2, and 1=ð1þ ΣÞ is the

percentage of potential energy stored in the bending of the
substrate, as explained in Appendix C. Applying this model
to the low-temperature portion (<500 mK) of the dissipa-
tion yields QA ¼ 1.5 × 104 and ΔE ¼ 1.3 GHz.

2. Drumlike-mode dissipation

A measurement of the drumlike mode, similar to the one
performed for the borosilicate device, is made using the
quartz resonator, with the results shown in Fig. 13. Owing
to the thinner quartz substrate, the resonance frequency is
lowered to Ωdrum ¼ 155 kHz. It should be noted that the
temperature range covered by this measurement (15 mK to
1 K) is different than the temperature range used in the case
of the borosilicate resonator (450 mK to 100 K) due to the
cryogenic apparatus used to perform the experiment.
The internal dissipation of the quartz substrate for the

drumlike mode measured in Fig. 13(b) plateaus at a value
of Q−1

drum ¼ 7 × 10−7, markedly lower than the dissipation
measured for the Helmholtz resonance mode in the quartz
device at 3 kHz. This result can be explained by the fact
that the dissipation associated with two-level systems in
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FIG. 12. When the borosilicate device is empty and surrounded
by a vacuum, the mechanical resonance of the fundamental
drumlike mode is measured as a function of temperature. (a) The
dissipation Q−1

drum of the drumlike mode as a function of temper-
ature. (b) Resonance frequency Ωdrum of the drumlike mode as a
function of temperature. As explained in the text, the features of
these two curves can be explained by the standard tunneling
model of two-level systems [36].
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crystalline materials depends on the measurement fre-
quency, as has been observed in single-crystal silicon
samples [60]. Those measurements showed that, as the
frequency is increased, the total dissipation is reduced.
Hence, fabricating a resonator with a scaled-down geom-
etry would present a twofold advantage. By increasing the
Helmholtz resonance frequency, the internal dissipation of
the material would be reduced. Also, the contribution of the
substrate to the motion would also be reduced, thereby
decreasing the effective damping coming from the material.
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