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The efficiency of spin-transfer-torque (STT) switching and the thermal-stability factor are important
figures of merit in STT-based magnetoresistive random-access memory. We derive analytical expressions
of the STT-switching efficiency and the thermal-stability factor for a perpendicularly magnetized spin-
valve nanopillar with the first- and the second-order uniaxial magnetic anisotropy. It is shown that the
STT-switching efficiency is maximized when the effective first-order anisotropy constant (Ku1;eff ) is equal
to the second-order anisotropy constant (Ku2). It is also shown that the thermal-stability factor is most
(least) sensitive to a variation of the applied current when Ku2 ¼ −0.41 (0.70) Ku1;eff .
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I. INTRODUCTION

Spin-transfer-torque (STT) switching has been attracting
a great deal of attention due to its potential application
to STT-based magnetoresistive random-access memory
(STT MRAM) [1–11]. The basic structure of memory
cells in STT MRAM is a spin-valve nanopillar (SVNP),
where a nonmagnetic spacer layer is sandwiched between
two ferromagnetic layers, called a free layer (FL) and a
reference layer (RL), as shown in Fig. 1(a). Usually, the
magnetization of the FL is perpendicularly or conically
magnetized, and the magnetization of the RL is perpen-
dicularly magnetized.
In STT MRAM, the magnetization of the FL is switched

by STT once the applied current (I) exceeds the threshold
level, called the switching current (Isw) [13,14]. The data
retention time of the FL in a SVNP is characterized by the
thermal-stability factor in the absence of current, Δ0, which
is defined by the energy barrier height normalized by the
thermal energy at room temperature. The STT-switching
efficiency given by κ ¼ Δ0=Isw is an important figure of
merit in STT MRAM [15], and a considerable amount of
effort has been devoted to enhance κ.
Even when I is lower than Isw, thermal agitation induces

magnetization switching with a certain probability. Such
thermally activated switching is the origin of read disturb-
ance; i.e., the accidental switching of the magnetization
during the readout operation. The read disturbance is one of
the most serious issues for high-density STT MRAM
because the difference between the read and write currents
should be decreased for a smaller lateral size of a SVNP
[16,17]. Starting from the Fokker-Planck equation, the
probability of thermally activated switching (Psw) is

derived as Psw ¼ 1 − exp ½−fτ expð−ΔÞ�, where f is the
attempt frequency, τ is the current pulse width, and Δ is the
thermal-stability factor [18]. Since Psw depends strongly on
Δ, it is important to study the current dependence of Δ to
control Psw.
Most studies of STT switching in perpendicularly

magnetized STT MRAM are based on the assumption
that the magnetic anisotropy of the FL is expressed by the
effective first-order anisotropy constant (Ku1;eff ) by neglect-
ing the higher-order magnetic anisotropies. However,
recent experimental studies observed the large second-
order uniaxial magnetic anisotropy constant (Ku2) in a
Co-Fe-B thin film, which is commonly used as a FL in STT
MRAMs [19–21]. A subsequent theoretical study pointed
out thatKu2 can enhance κ for the case of jKu2=Ku1;eff j ≪ 1

[22]. The experimental results also showed that the FL can
be conically magnetized within a certain range of film
thickness [19–21]. The switching properties of the STT
MRAM with conically magnetized FL (CFL) [23] was
theoretically studied by the present authors [14,24].
However, κ and Δ of the perpendicularly magnetized FL
(PFL) with Ku2 are not fully understood. In this paper, the
analytical expressions of κ and Δ for PFL with Ku2 are
derived. It is shown that κ is a function of rK ¼ Ku2=Ku1;eff .
κ is larger than that for PFL without Ku2 for a positive rK
and takes a maximum value at rK ¼ 1. It is also shown that
Δ is well approximated as Δ0ð1 − I=IswÞη, and η is also a
function of rK . The value of η for the whole range of rK
is obtained.

II. MODEL

The system we consider is schematically illustrated in
Fig. 1(a). The lateral size of a SVNP is assumed to be so
small that the magnetization switching can be described*h‑imamura@aist.go.jp
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by the macrospin model. The single-domain-type magneti-
zation switching takes place up to D ∼ δw, where D is the
diameter of a FL and δw is the domain-wall width [25]. For
example, in a Co-Fe-B-based FL, δw ∼ 30 nm. Directions
of the magnetization in the FL and the RL are represented
by the unit vectors m and p, respectively. The vector p is
fixed to the positive z direction. The positive current, I > 0,
is defined as electrons flowing from the FL to the RL. We
assume I > 0 and analyze the switching ofm frommz > 0.
Since the system has uniaxial symmetry around the

z axis, the equations of motion of m are given by the
following Landau-Lifshitz-Gilbert (LLG) equation [26]:

dθ
dt

¼ −α
γ

Ms

∂Φ
∂θ ; ð1Þ

sin θ
dϕ
dt

¼ γ

Ms

∂gL
∂θ : ð2Þ

Here, θ and ϕ are the polar and azimuthal angles of m.
The second-order terms pertaining to α and aI are
neglected. t is the time and γ is the gyromagnetic ratio.

α and Ms are the Gilbert damping constant and the
saturation magnetization in the FL. The magnetic energy,
gL, and the effective potential, Φ, are defined as

gL ¼ Ku1;eff sin2 θ þ Ku2 sin4 θ; ð3Þ

Φ ¼ gL þMs
aI
α

lnð1þ P2 cos θÞ
P2

; ð4Þ

where Ku1;eff is defined as Ku1;eff ¼ Ku1 − 2πM2
s , where

Ku1 is the first-order anisotropy constant. aI is the
coefficient of the STT, with aI ¼ ℏIP=ð2jejMsVÞ, where
P is the spin polarization, e is the electron charge, V is the
volume of the FL, and ℏ is the Dirac constant.
Equation (1) shows that the polar angle θ yields a

dynamics in the effective potential Φ and can be obtained
separately from the azimuthal angle ϕ. The fixed points are
expressed by the minima of Φ, and the switching current is
determined by the condition for disappearance of the
minimum point. Therefore, we analyze the effective poten-
tial Φ instead of the LLG equation. In order to obtain the
analytical expression, the STT term inΦ is approximated as

Ms
aI
α

lnð1þ P2 cos θÞ
P2

≃Ms
aI
α
cos θ; ð5Þ

where the spin polarizationP is assumed to satisfyP2=2 ≪ 1
because the typical value ofP is about 0.5. Thus, the effective
potential is expressed as

Φ ¼ Ku1;eff sin2 θ þ Ku2 sin4 θ þMs
aI
α
cos θ: ð6Þ

In Eq. (6), the fieldlike torque is neglected because its effect
on the switching current and the switching probability is
much smaller than that of the STT. The detailed discussion
on the effect of the fieldlike torque will be given in the
Appendix.

III. RESULTS AND DISCUSSIONS

A. Phase diagram

The equilibrium direction of m is determined by min-
imizing gLðθÞ. The phase diagram of the equilibrium
direction is shown in Fig. 1(b). The cone state is stable
in the region satisfying Ku1;eff < 0 and 2Ku2 > −Ku1;eff ,
shown as a shaded area. The in-plane state is stabilized if
Ku1;eff < 0 and 2Ku2 ≤ −Ku1;eff . The perpendicular state is
stable (metastable) in the region where Ku1;eff ≥ 0 and
Ku2 ≥ −Ku1;eff , excluding Ku1;eff ¼ Ku2 ¼ 0 (Ku1;eff > 0

and Ku2 < −Ku1;eff ). Since the switching properties of the
PFL with Ku2 ¼ 0 (the thick solid line) and the CFL (the
shaded region) are already known, the present analysis
concentrates on the PFL with Ku2.
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FIG. 1. (a) Schematic cross section of a spin-valve nanopillar
and definitions of current polarity and Cartesian coordinates
ðx; y; zÞ. (b) Phase diagram of magnetic film with the uniaxial
anisotropy constants Ku1;eff and Ku2 (redrawn from Ref. [12]).
The cone-state region is represented by shade, and the
perpendicular state with Ku2 ¼ 0 is indicated by the thick solid
line. Metastable regions are hatched. (c) Schematic illustration of
θ dependence of ΦðθÞV of the CFL. It has a minimum at θ ¼ θ1
in 0° ≤ θ < 90°, and a maximum at θ ¼ θm in θ1 ≤ θ ≤ 90°. Δ is
defined by the energy barrier height normalized by the thermal
energy, kBT. (d) I=Isw dependence of θm (the solid lines) and θ1
(the dotted lines). For all panels, Ku1;eff ¼ 1.00 Merg=cm3. From
top to bottom, Ku2 ¼ Ku1;eff , 0, and −Ku1;eff , respectively.
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B. Conically magnetized free layer

Before showing the detailed analysis, let us briefly
review the κ and the Δ of the CFL [24] and the PFL with
Ku2 ¼ 0 [13,15,27]. The θ dependence of the effective
potential, ΦðθÞV, of the CFL is schematically shown in
Fig. 1(c). Δ is defined as the energy barrier height,
½ΦðθmÞ −Φðθ1Þ�V, normalized by the thermal energy,
kBT. kB is the Boltzmann constant and T is the temperature.
θ1 is the polar angle where Φ is minimized in the range
0° ≤ θ < 90°, and θm is the polar angle where Φ is
maximized in the range θ1 ≤ θ ≤ 90°. The thermal-stability
factor at I ¼ 0 is given by

ΔðcÞ
0 ¼

ðKu1;eff þ Ku2 þ K2
u1;eff

4Ku2
ÞV

kBT
: ð7Þ

The switching current is obtained by requiring that
θ1 ¼ θm, as

IðcÞsw ¼ 8

3
ffiffiffi
6

p αVjej
ℏP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKu1;eff þ 2Ku2Þ3

Ku2

s
; ð8Þ

which is the same as that obtained from the LLG equation
in Ref. [14].
From Eqs. (7) and (8), the switching efficiency is

obtained as

κðcÞ ¼ 3
ffiffiffi
6

p

32

ℏP
αjej

1

kBT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ Ku1;eff

Ku2

s
; ð9Þ

which is a monotonic increasing function of Ku2 since
Ku1;eff < 0 for the CFL. The thermal-stability factor at
finite I is given by

ΔðcÞ ¼ iΔðcÞ
0ffiffiffi
3

p ½A2=3
− − A2=3

þ − 2ξðcÞðA1=3
− − A1=3

þ Þ�; ð10Þ

where A� ¼ ξðcÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ξðcÞ�2 − 1

q
, ξðcÞ ¼ I=IðcÞsw . In Ref. [24],

it is shown that Eq. (10) is well approximated as

ΔðcÞ
0 ð1 − I=IðcÞsw Þη. The exponent η is obtained as

η ¼ −lim
ξ→0

�
d
dξ

ΔðcÞ

ΔðcÞ
0

�
¼ 8

ffiffiffi
3

p

9
≃ 1.53; ð11Þ

which is also obtained from the numerical fit of Eq. (10).

C. Perpendicularly magnetized free layer without
second-order uniaxial magnetic anisotropy

For the PFL, the thermal-stability factor at I ¼ 0 is
given by

Δðp0Þ
0 ¼ Ku1;effV

kBT
; ð12Þ

and the switching current [13] is

Iðp0Þsw ¼ 4αVjej
ℏP

Ku1;eff : ð13Þ

From Eqs. (12) and (13), the switching efficiency is
obtained as

κðp0Þ ¼ 1

4

ℏP
αjej

1

kBT
; ð14Þ

which is independent of Ku1;eff . Comparing Eq. (9) to
Eq. (14), one can see that κðcÞ ≥ κðp0Þ if Ku2=Ku1;eff ≥
−27=22ð≃ − 1.23Þ. The thermal-stability factor at finite
I is given by [27]

Δðp0Þ ¼ Δðp0Þ
0 ð1 − I=Iðp0Þsw Þ2: ð15Þ

It should be noted that the exponent of the current
dependence of Δ=Δ0 for the PFL with Ku2 ¼ 0 (η ¼ 2)
and CFL (η ¼ 1.53) is independent of the values of Ku1;eff

and Ku2. It is interesting to analyze how these different
values of the exponent—i.e., 1.53 and 2—are related to
each other.

D. Perpendicularly magnetized free layer with
second-order uniaxial magnetic anisotropy

Let us analyze the switching efficiency and the thermal-
stability factor of a PFL with a finite Ku2. Since we do not
analyze either the cone state or the in-plane magnetized
state, the effective first-order anisotropy constant is
assumed to be positive; i.e., Ku1;eff ≥ 0 and Ku2 > 0 or
Ku1;eff > 0 and Ku2 < 0. Since the calculation procedure is
similar to that presented in Ref. [24], we simply list the
results without derivation.
The polar angle of the equilibrium direction is

obtained as

θ1 ¼
(
cos−1

�
X1=3

3
−pX−1=3

�
for rK > 1

4
and I ≥ Iðp0Þsw

0 otherwise
;

ð16Þ

where X¼ð3=2Þð−9qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12p3þ81q2

p
Þ, p ¼ −ðKu1;effþ

2Ku2Þ=ð2Ku2Þ, and q ¼ aIMs=ð4αKu2Þ. For rK > 1=4, θ1
increases with an increase of I once I exceeds Iðp0Þsw , as
shown in the top panel of Fig. 1(d). Otherwise, θ1 is zero, as
shown in the middle and bottom panels of Fig. 1(d).
The polar angle where Φ is maximized in the range θ1 ≤

θ ≤ 90° is given by
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θm ¼

8>><
>>:

cos−1
�
ω2X1=3

3
− ωpX−1=3

�
for rK > 0

cos−1
�
X1=3

3
− pX−1=3

�
for rK < 0

; ð17Þ

where ω ¼ ð−1þ i
ffiffiffi
3

p Þ=2. θm is a monotonically decreas-
ing function of I, as shown in Fig. 1(d). Especially at I ¼ 0,
θm is expressed as

θm ¼
8<
:

π
2

for rK ≥ −1=2

sin−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

2

Ku1;eff

Ku2

q
for rK < −1=2

; ð18Þ

where rK ¼ −1=2 is the boundary of the metastable state
shown in Fig. 1(b). The thermal-stability factor at I ¼ 0 is
given by ½gLðθmÞ − gLð0Þ�=ðkBTÞ as

Δ0 ¼
8<
:

ðKu1;effþKu2ÞV
kBT

for rK ≥ −1=2

− K2
u1;effV

4Ku2kBT
for rK < −1=2

: ð19Þ

The switching current is obtained by requiring ΦðθmÞ−
Φðθ1Þ ¼ 0, as

Isw ¼
(
IðcÞsw for rK > 1=4

Iðp0Þsw for rK ≤ 1=4
; ð20Þ

where IðcÞsw and Iðp0Þsw are defined in Eqs. (8) and (13),
respectively.
The boundary of rK ¼ 1=4 in Eq. (20) can be intuitively

understood from the viewpoint of the competition
between the STT and the damping torque. Equation (1)
is expressed as

dθ
dt

¼ γ sin θðaI þ αHθ= sin θÞ; ð21Þ

where Hθ ¼ −ð1=MsÞð∂gL=∂θÞ and Hθ= sin θ ¼ −2 cos θ
ðKu1;eff þ 2Ku2 sin2 θÞ=Ms. Once aI exceeds the coeffi-
cient of the damping torque—that is, αHθ= sin θ—the
magnetization switches. The function Hθ= sin θ takes its
minimum value at

θ ¼
8<
: sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ku1;effþ4Ku2

6Ku2

q
for rK > 1=4

0 for rK ≤ 1=4
: ð22Þ

This boundary of rK ¼ 1=4 in Eq. (22) is the origin of the
boundary in Eq. (20). It should be noted that, for
rK > 1=4, the oscillating state with a finite cone angle

of θ1 is stabilized by the STT if Iðp0Þsw < I < IðcÞsw .
From Eqs. (19) and (20), the switching efficiency

normalized by κðp0Þ is obtained as

κ

κðp0Þ
¼

8>><
>>:

3
ffiffi
6

p
2

ffiffiffiffi
rK

p ð1þrKÞ
ð1þ2rKÞ3=2 for rK > 1=4

1þ rK for − 1=2 ≤ rK ≤ 1=4

− 1
4rK

for rK < −1=2

: ð23Þ

In Fig. 2(a), the normalized switching efficiency, κ=κðp0Þ,
of the PFL given in Eq. (23) is plotted as a function of rK .
It should be noted that κ=κðp0Þ is larger than unity for a
positive rK and takes a maximum value of

ffiffiffi
2

p
at rK ¼ 1.

The limiting values are as follows: limrK→−∞κ=κðp0Þ ¼ 0,
and limrK→∞κ=κðp0Þ ¼ 3

ffiffiffi
3

p
=4≃ 1.30.

Figure 2(b) shows a color map of κ=κðp0Þ on the Ku1;eff −
Ku2 plane. The results of the CFL are also plotted in
Fig. 2(b) for convenience. The value of κ=κðp0Þ that is less
(more) than unity is represented by the blue (red) tones.
Starting from a certain point with Ku1;eff ¼ 0 and Ku2 < 0,
which corresponds to rK ¼ −∞, and moving along the
semicircle, the normalized switching efficiency increases
from 0 with an increase of rK and takes a maximum value
of

ffiffiffi
2

p
at rK ¼ 1. Then it deceases with an increase of rK to

the limiting value of 3
ffiffiffi
3

p
=4≃ 1.30, as shown in Fig. 2(a).
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FIG. 2. (a) rK dependence of the normalized switching effi-
ciency, κ=κðp0Þ. (b) Color map of the normalized switching
efficiency, κ=κðp0Þ, on the Ku1;eff − Ku2 plane. The value of
κ=κðp0Þ that is less (more) than unity is represented by the blue
(red) tones. The semicircle with an arrow head represents the
trajectory corresponding to rK ¼ −∞ → ∞. The dotted line
represents the condition for maximizing κ=κðp0Þ, i.e., rK ¼ 1.
(c) Classification of the I − rK space for the calculation of Δ. In
the shaded region, the magnetization is switched. In the regions
A, B, C, D, and E, Δ takes different analytical expressions.
(d) The rK dependence of exponent η of the current dependence
of Δ=Δ0 obtained by a numerical fit.
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In order to calculate the thermal-stability factor, the
I − rK plane is divided into six regions, as shown in
Fig. 2(c). The switched region is shaded. The normalized
thermal-stability factor, Δ=Δ0, in the regions A, B, C, D,
and E is obtained as follows. In region A, rK > 1=4 and

I ≥ Iðp0Þsw ,

Δ
Δ0

¼ ð1þ 2rKÞ2
rKð1þ rKÞ

�
1ffiffiffi
6

p ξ

�
ω − 1

2Λ
þ ðω2 − 1ÞΛ

3

	

−
1

2

�
ω2 − 1

4Λ2
þ ðω − 1ÞΛ2

9

	

; ð24Þ

where ξ ¼ I=Isw and

Λ ¼
ffiffiffi
3

2

r � ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
− ξ

�
1=3

: ð25Þ

In region B, rK > 1=4 and I < Iðp0Þsw ,

Δ
Δ0

¼ 1 −
1þ 2rK
1þ rK

(
4ξ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rK
6rK

s
−
1þ 2rK

rK

×

�
ω

2Λ
þ ω2Λ

3

��
ξffiffiffi
6

p −
ω

4Λ
−
ω2Λ
6

	)
: ð26Þ

In region C, 0 < rK ≤ 1=4,

Δ
Δ0

¼ 1 −
1

1þ rK

�
2ξ −

3ξ

2

�
ω2X1=3

3
− ωpX−1=3

�

þ 1

2
ð1þ 2rKÞ

�
ω2X1=3

3
− ωpX−1=3

�
2
	
: ð27Þ

In region D, −1=2 ≤ rK < 0,

Δ
Δ0

¼ 1 −
1

1þ rK

�
2ξ −

3ξ

2

�
X1=3

3
− pX−1=3

�

þ ð1þ 2rKÞ
2

�
X1=3

3
− pX−1=3

�
2
	
: ð28Þ

In region E, rK < −1=2,

Δ
Δ0

¼ −4rK
�
1þ rK − 2ξþ 3ξ

2

�
X1=3

3
− pX−1=3

�

−
ð1þ 2rKÞ

2

�
X1=3

3
− pX−1=3

�
2
	
: ð29Þ

The curves representing Δ=Δ0 are well fitted to the
function of ð1 − I=IswÞη. The obtained exponent η is plotted
in Fig. 2(d) as a function of rK . η takes the minimum value
of 1.40 at rK ¼ 0.70 and the maximum value of 2.57 at
rK ¼ −0.41. As a result, the thermal-stability factor, Δ, and
therefore the switching probability, Psw, are most (least)

sensitive to the variation of applied current at rK ¼ −0.41
(0.70). From Eqs. (24) and (29), the limiting values of η are
obtained as limrK→∞η ¼ 1.53 and limrK→−∞η ¼ 2.

IV. CONCLUSION

In summary, the analytical expression of the STT-switch-
ing efficiency and the thermal-stability factor are derived for
a perpendicularly magnetized SVNP with a second-order
uniaxial magnetic anisotropy. The switching efficiency is
maximized at Ku1;eff ¼ Ku2. The maximum value is

ffiffiffi
2

p
times larger than that without Ku2. Fitting the obtained
thermal-stability factor to the function ofΔ0ð1 − I=IswÞη, the
exponent η is calculated for the whole range of rK ’s. The
exponent η takes itsminimumvalue of 1.40 at rK ¼ 0.70 and
its maximum value of 2.57 at rK ¼ −0.41; i.e., the switching
probability is most (least) sensitive to a variation of the
applied current at rK ¼ −0.41 (0.70).
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APPENDIX: EFFECT OF FIELDLIKE TORQUE

In this appendix, the effect of fieldlike torque (FLT) on
the switching current is considered. In the presence of FLT,
the LLG equation is given by the same Eqs. (1) and (2)
except that gL is given by [26]

gL ¼ Ku1;eff sin2 θ þ Ku2 sin4 θ −MsbI cos θ; ðA1Þ

where bI is the coefficient of the FLT, which is conven-
tionally expressed as bI ¼ βaI . β is typically approximately
0.1 in current-perpendicular-to-plane giant-magnetoresist-
ance SVNPs [28,29], and, typically, 0.2–0.3 in MgO-based
magnetic tunnel junctions [30,31]. The LLG equation
including FLT is expressed as

dθ
dt

¼ γðaI − αbIÞ sin θ þ γαHθ; ðA2Þ

sin θ
dϕ
dt

¼ −γHθ þ γbI sin θ; ðA3Þ

where Hθ= sin θ ¼ −2 cos θðKu1;eff þ 2Ku2 sin2 θÞ=Ms. In
Eq. (A2), which determines the switching current and the
switching probability, the magnitude of the FLT is much
smaller than that of the STT because αbI ≪ aI . From
Eq. (A2), the switching current is obtained as

Isw ¼
8<
:

1
1−αβ I

ðcÞ
sw for rK > 1=4

1
1−αβ I

ðp0Þ
sw for rK ≤ 1=4

: ðA4Þ

The effect of FLT on the switching current is negligible
because αβ is much smaller than unity.
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