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In the last decade, there has been remarkable progress on the practical integration of on-chip quantum
photonic devices, yet quantum-state generators remain an outstanding challenge. Simultaneously, the
quantum-dot photonic-crystal-resonator platform has demonstrated a versatility for creating nonclassical
light with tunable quantum statistics thanks to a newly discovered self-homodyning interferometric effect
that preferentially selects the quantum light over the classical light when using an optimally tuned Fano
resonance. In this work, we propose a general structure for the cavity quantum electrodynamical generation
of quantum states from a waveguide-integrated version of the quantum-dot photonic-crystal-resonator
platform, which is specifically tailored for preferential quantum-state transmission. We support our results
with rigorous finite-difference time-domain and quantum-optical simulations and show how our proposed
device can serve as a robust generator of highly pure single- and even multiphoton states.
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I. INTRODUCTION

The photonic integrated platform has been explored
extensively for the implementation of quantum technolo-
gies [1]. Most of the components in the all-optical quantum
circuits are relatively efficient classical devices that can
already be ordered from a foundry [2], with the exception
of one critical technology that can still benefit from
improvement: the integrated quantum-state generator.
While some on-chip approaches look to multiplex many
low-efficiency sources together [3–5], in our work, we look
to design a single highly efficient integrated source [6].
A promising route towards generating quantum states of

light on a chip exists in the quantum-dot (QD) photonic-
crystal-cavity (PCC) architecture [7–10]. Here, the quan-
tum dot is a solid-state artificial atom (e.g., an island of
InAs embedded within a GaAs host matrix) that yields the
strong quantum nonlinearity required for nonclassical or
quantum-state generation. The quantum dot interacts with a
photonic crystal cavity [11] that has been shown to couple
efficiently to an adjacent integrated waveguide [12]. As a
whole, the system enables extremely large enhancement of
the light-matter interaction rate and can lead to a hybridi-
zation of light and matter quantum states in the strong-
coupling regime [13–15] known as the Jaynes-Cummings
ladder [16]. Because of the formation of these new quantum
states known as polaritons [17], QD PCC systems can
generate not just single photons [18–20] but potentially
multiphoton wave packets that may be more efficient light
sources in integrated quantum circuits [21,22]. However,

large dissipation rates in such platforms have previously
impeded the generation of pure quantum states of light.
Recently, a self-homodyning interferometric technique

was suggested as a promising route to overcoming these
intrinsic dissipations [23]. In this scheme, light is scattered
both through the cavity-dot system and a secondary channel
in a way that effectively isolates the interesting quantum
emission from the system. For the original experiments, the
secondary channel was formed by the continuum modes of
the photonic-crystal-cavity structure that exist above the light
line, potentially arising from band-edge modes and higher-
order cavity resonances. When utilizing self-homodyne
interference in this off-chip configuration, single-photon
generation of high purity was demonstrated [20], and
exciting initial results suggest the observation of multiphoton
states [22]. Unfortunately, precise control of both the
amplitude and phase for this interference is experimentally
challenging and a more reproducible method is desired.
By instead utilizing the continuum modes of a photonic

crystal waveguide for the secondary channel, the self-
homodyne technique can be improved in experimental
precision; meanwhile, its integration on chip might enable
its use as a quantum light source in a photonic integrated
circuit. In this paper, we propose such a fully integrated and
fabricable structure. To analyze its behavior, we perform
rigorous finite-difference time-domain [12] (FDTD) and
quantum-optical simulations [24] (see the Supplemental
Material [25] for a JUPYTER notebook detailing the calcu-
lations). Furthermore, we delve more deeply into the
underlying mechanics of the self-homodyne interference
technique and justify how it allows for strongly enhanced
single- and multiphoton emission even in the presence of
highly dissipative cavities.*kevinf@stanford.edu
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II. PROPOSED DEVICE

We begin with a discussion of the classical transmission
behavior of a waveguide-coupled PCC platform, without
simulating the embedded quantum dot. A schematic
illustration of our proposed device is shown in Fig. 1(a).
In this configuration, light is injected through a waveguide,
which then scatters into the Jaynes-Cummings system and
out to the output section of the waveguide with rates κc=2—
this scattering path is known as the discrete channel, owing
to its single-mode character. Scattering through the discrete

channel alone results in a symmetric Lorentzian resonance
in transmission. Additionally, light may scatter directly
from the input channel to the output channel through a
PTE [26]; this scattering path is known as the continuum
channel owing to its flat frequency response. The interfer-
ence between these two scattering channels then results in
an asymmetric Fano-resonant line shape [27] in trans-
mission. This type of device has been explored classically
[26,28,29] and semiclassically [30–32] for switching and
lasing applications. However, in our paper, we explore
this device from a fully cavity quantum electrodynamical
(CQED) perspective [33] by studying the quantum statistics
of the transmitted light [34]. As we see, an optimally tuned
Fano interference allows the system to act as an excellent
nonclassical-state generator.
Next, we discuss our proposed dielectric structure for

optimal exploration of CQED effects [Fig. 1(b)]. This
structure is based on a triangular photonic crystal of radius
r0 ¼ 0.3d and thickness t ¼ 0.6d (where d is the lattice
constant) and has a number of significant features:

(i) An L3 defect is chosen for the photonic crystal such
that it is optimized for ease of coupling to quantum
emitters but may still readily reach the strong-
coupling regime [13,14]. The mode profile of the
target resonance is shown in Fig. 1(c), which is a
standard mode profile for an L3’s high-Qmode [11];
a quantum dot may strongly couple to the mode over
a relatively large locus of positions.

(ii) The photonic crystal waveguide [Fig. 1(b)] relies
primarily on a single TE mode [35] such that
stray quantum emitters within 40 nm of the holes
(if randomly positioned) are interrupted by the
waveguide’s line of defects, with small holes of
radius r ¼ 0.099d (orange). The presence of the
small holes increases the likelihood of measuring
transmission through the Fano-resonant Jaynes-
Cummings system only.

(iii) A large hole defect at the center of the waveguide
(blue) acts as the PTE [26], where tuning the radius
to rPTE ¼ 0.36d allows for an optimal destructive
interference in the Fano resonance.

(iv) Several lines of shifts around the waveguide (0.15d
nearest neighbor [purple] and 0.1d second-nearest
neighbor [green] away from the waveguide’s center)
tune its density of states to be centered around
the cavity resonance, and several hole shifts around
the cavity (yellow) [11] optimize its intrinsic Qi ≈
51000 (or rate κi ¼ ω=Qi).

(v) The total quality factor including the waveguide
coupling is Qt ≈ 20 000, such that the majority of
the power injected into the cavity is transmitted to
the output channel. Note, any quantum mechan-
ically scattered light from a Jaynes-Cummings
system emits equally into the input and output
waveguides because unlike the injected classical

(a)

(b)

(c) (d)

Input Output

FIG. 1. (a) Schematic representation of our proposed integrated
version of the QD PCC platform. The output light is scattered
through both the Jaynes-Cummings system and through a partially
transmitting element (PTE). (b) Proposed dielectric structure for
preferentially selecting for the quantum mechanically scattered
light in transmission through the photonic crystal waveguide.
(c) Field profile of the L3 photonic crystal cavity’s high-Q mode
calculated with FDTD simulations. (d) Fano-resonant line shape in
transmission arising from the scattering through two different
channels (with lattice constant a ¼ 241 nm). The dip in the line
shape is where the optimal self-homodyne interference occurs and
the quantum light is emphasized. Inset shows FDTD mode
distributions in steady state at the point of optimal self-homodyne
interference and at the point of maximum transmission (waveguide
fields amplified for clarity).
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light, it has no reflected partner with which to
interferometrically cancel.

With these features in total, the system produces a Fano-
resonant transmission plot [Fig. 1(d)] (with lattice constant
a ¼ 241 nm, as might be used in conjunction with tradi-
tional GaAs-based devices). A well-tuned Fano resonance
is critical for enabling a so-called self-homodyne interfer-
ence. Specifically, when the Fano line shape is tuned such
that the dip approaches zero (as verified in a classical
FDTD simulation), all the incident classical light is
interferometrically canceled. This then allows for the
preferential emission of nonclassical light into the output
channel (in a hypothetical experiment or quantum-optical
simulation) [23].

III. QUANTUM-OPTICAL MODELING

In this section, we additionally consider the effects
of an embedded quantum emitter and discuss the ability
of the Fano resonance to significantly modify the quantum
statistics of the output light from the QD PCC system. First,
we begin by discussing a quantum-optical model that
assumes the PTE acts to fully block the incident light
rather than transmitting some portion. This way, we make
comparisons to how many previous experiments operated
[36,37], and we can introduce several concepts without
the added complexity of the Fano interference. Then, we
discuss how the tuned Fano resonances for optimal self-
homodyne interference allow for preferential transmission
of just the light with interesting quantum states.

A. Pure Jaynes-Cummings emission

When a quantum two-level system such as a neutrally
charged quantum dot couples to a cavity mode via a dipole
coupling, the system is referred to as a Jaynes-Cummings
system [13,14,17,36,37]. Such a system is described by the
Hamiltonian

H ¼ ℏωaa†aþ ℏðωa þ ΔÞσ†σ þ ℏgða†σ þ aσ†Þ; ð1Þ

where ωa denotes the frequency of the cavity mode, a the
annihilation operator associated with the cavity mode,
σ the lowering operator of the quantum two-level system,
Δ the detuning between quantum emitter and cavity, and g
the emitter-cavity coupling strength. We choose to run our
simulations with an easily achievable value [13,14,36] for
the emitter-cavity coupling strength of g ¼ 10 × 2π GHz.
Any realistic Jaynes-Cummings system also interacts with
the outside world, both through the cavity energy decay
(rate κ) and the quantum emitter decay (rate γ). Because
our quantum emitter, an uncharged quantum dot, is
embedded within a photonic band gap, its coupling to free
space via modes other than the discrete cavity channel is
suppressed [18,38] (i.e., we take γ → 0; see Appendix A for
a numerical justification).

If the cavity loss terms are included as damping to an
effective Hamiltonian [17], we can gain significant insight
into how our system will behave simply by looking at its
complex eigenvalues or polaritons; we show these eigen-
values schematically in Fig. 2(a). Here, the orange and green
colors indicate the upper (UP) and lower (LP) branches of
the Jaynes-Cummings ladder, respectively, while the bound-
ing curves that surround the eigenvalues depict the full width
half maxima of their linewidths. Additionally, the ground
state (GND) is depicted at zero energy by the brown line.
The quantum emitter has a very strong effect on the loss rates
in the first manifold for large Δ (i.e., LP1 and UP1), which
can be seen in the rapid change of height in the orange and
green bounding regions around ωa. However, the emitter’s
effect is much smaller for the second manifold (i.e., LP2
and UP2), where the orange and green bounding regions
maintain relatively constant heights around 2ωa. This
behavior occurs because both detuned polaritons of the
second manifold each contain an additional cavity photon
that leaves the system at roughly a rate of κ.
Another way to visualize this information is shown

in Fig. 2(b), where the transient energies to climb
the Jaynes-Cummings ladder rung by rung [17,39] are

(a) (b)

(c)

FIG. 2. (a) Energies and linewidths of the polaritons (UPn and
LPn) of the first two rungs of the Jaynes-Cummings ladder (with
emitter decay γ → 0). Orange and green denote the upper and lower
branches, respectively. Bounding regions depict the full width half
maxima of the eigenstate linewidths. The ground state (GND) at
zero energy is depicted as the brown line. (b) Transient energies to
climb the ladder of Jaynes-Cummings eigenstates one by one,
relative to the cavity’s emission energy. Jumps up the upper and
lower branches of the ladder are shown as orange and green,
respectively. The first jumps are shown with the solid curves (from
GND → UP1 or GND → LP1), second jumps with the dashed
curves (fromUP1 → UP2 orLP1 → LP2), and third jumpswith the
dotted curves (from UP2 → UP3 or LP2 → LP3). (c) Coherent
(blue) and incoherent (red) portions of the emission from a quantum
two-level system as a function of driving strength (∝ Efield)
computed with the coherent drive on resonance with the transition.
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shown (either following GND → UP1 → UP2 → UP3 or
GND → LP1 → LP2 → LP3, which are the only transi-
tions allowed since γ → 0). Here, the differential energies
(relative to the cavity energy) that are required to add
subsequent excitations to the ladder are shown for both the
upper and lower branches. For nonzero detunings, the
branches are called emitter- or cavitylike if their linewidths
trend towards γ or κ, respectively. Note that especially for
large detunings, the energy levels in the cavitylike branch
(LPn for Δ > 0 and UPn for Δ < 0, with n > 0) and even
those in the emitterlike branch above the first rung (UPn
for Δ > 0 and LPn for Δ < 0, with n > 1) are all
approximately evenly spaced; we refer to these levels as
the harmonic portion of the Hamiltonian. From these
figures alone, we explain the primary mechanism through
which the Jaynes-Cummings ladder can act as a single-
photon source, a phenomenon known as photon blockade
[18,36,37].
In photon blockade, the Jaynes-Cummings system is

continuously driven by a coherent state flux jαi resonant
with the first polariton of the ladder, and its anharmonic
energy levels filter the photon number of the pulse, trans-
mitting light with a sub-Poisson photon-number distribu-
tion. In the ideal case, only a single photon is transmitted by
the system at a time—then the system effectively behaves
like a two-level system. From the eigenenergy plots in
Fig. 2, one can see that for larger detunings, the anharmo-
nicity of the Jaynes-Cummings ladder increases around
the first emitterlike polariton. After absorption of the first
photon by the system, a higher anharmonicity means that
the energy to the next-highest eigenstate able to absorb a
photon is farther away, and, hence, one expects the single-
photon purity to increase [18]. This increase in purity is
quantified by a decrease in the second-order coherence
statistic at zero delay, i.e.,

gð2Þð0Þ ¼ ha†a†aai
ha†ai2 < 1; ð2Þ

which is referred to as antibunching. Although the degree
of antibunching certainly suggests how well the Jaynes-
Cummings system filters the incident pulse to ideal sub-
Poissonian counting statistics, a strongly antibunched
second-order coherence is not unique to emission from a
two-level system [40] or sufficient to characterize single-
photon emission [41].
A more specific way to identify the behavior of a two-

level system lies within the ratio of its coherently (classi-
cally) to incoherently (nonclassically) emitted light as a
function of driving strength of the coherent excitation
[23,34]. The coherent label is assigned to the light emission
due to the square of a system operator’s average transition
dipole moment, e.g., Ic ∝ hai2, and the incoherent label is
assigned to the light emission due to the average of the
square of a system operator’s dipole moment (known as an

operator’s quantum fluctuations), e.g., Iinc ∝ ha2i − hai2.
For the sake of comparison, we plot the portions of
coherently and incoherently emitted light from a quantum
two-level system in Fig. 2(c). We replot this set of values
consistently in Fig. 3 for comparison to how the Jaynes-
Cummings system behaves. In doing so, we quantify how
closely the excitation of a polariton in a Jaynes-Cummings
system matches that of a two-level system, i.e., how closely
we truly excite only one polariton in the photon-blockade
regime.
We now discuss the transmission through the Jaynes-

Cummings system in the case where the PTE is fully
blocking; we note this subsection will only cover a subset
of the curves plotted in Fig. 3. In this case, all output
emission is governed solely by the system operator a (as is
known from input-output theory [42]). For the following
analysis, we choose to analyze the transmitted light at three
different emitter-cavity detunings: resonantΔ ¼ 0, moderate
Δ ¼ 3g, and relatively large Δ ¼ 6g. The transmission
curves for asymptotically low driving strengths are shown
as the dashed black curves in Figs. 3(a)–3(c), which are
the standard Jaynes-Cummings transmission plots. As the
detuning increases, the linewidth of the emitterlike polariton
decreases and trends toward the character of the quantum
emitter. Then, we choose to resonantly excite the emitterlike
polariton (UP1 since Δ > 0) in each case to study the
quantum aspects of its emission, with the resonance con-
ditions denoted by the vertical solid gray lines.
Thus, in Figs. 3(d)–3(f), we decompose the emission

depicted in Figs. 3(a)–3(c) into coherent and incoherent
components when the system is excited under the conditions
of the vertical gray lines in Figs. 3(a)–3(c), respectively, as a
function of the system driving strengths. Importantly, we
normalize both the driving strengths and emission fluxes to
the loss rates of the driven polaritons [17] where

Γeff ¼
κ

2
þ 2Im

8
<

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 −
�
κ

4
þ iΔ

2

�
2

s 9
=

;
; ð3Þ

so we can directly make comparisons to the decomposed
emission from a two-level system. The dashed black
and solid red curves indicate the coherent and incoherent
emission from the Jaynes-Cummings systems, respec-
tively. Meanwhile, the dashed blue and dashed red
curves indicate reference coherent and incoherent emission
from a two-level system, respectively. We can immediately
note several trends:

(i) At arbitrarily low driving strengths, the coherent and
incoherent emission proportions from the Jaynes-
Cummings systems trend towards those of the two-
level system for all detunings.

(ii) As the driving strengths increase, the emissions from
all the studied systems deviate from the coherent and
incoherent portions of emission from a two-level
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system. However, the larger the detuning, the
slower the deviation from the behavior of a two-
level system.

(iii) Nevertheless, even at the large detuning of Δ ¼ 6g,
for just moderate driving strengths of approximately
Γeff , the coherently scattered light (dashed black
line) begins to completely dominate. Thus, the
driving powers for which the emission of any
dissipative Jaynes-Cummings system matches that
of a two-level system is extremely limited, and
prototypical quantum features such as saturation
or Rabi oscillations should not be expected.

Additionally, we can look at the second-order coher-
ence statistics to determine how well the systems are
filtering the photon-number distribution. Emission from
an ideal two-level system perfectly filters the light such
that gð2Þð0Þ ¼ 0, but the Jaynes-Cummings systems by
themselves do a poor job at filtering the emission even

for large detunings. The results of this filtering are
shown in the dashed black curves of Figs. 3(g)–3(i),
where the minimal values are gð2Þð0Þ > 0.08. The imper-
fect performance in our simulation results may initially be
surprising, since previous works proposed the Jaynes-
Cummings polaritons as excellent two-level systems
[13,14,17,36,37]. Instead, many of these discussions have
not fully taken the dissipative nature of experimental
Jaynes-Cummings systems into account. Rather, the large
linewidths of each of the rungs in the ladder [Fig. 2(a)]
result in significant excitation to higher rungs of the ladder
(which are harmonic and, hence, scatter coherently) even
when the laser is only in direct resonance with the first
polaritonic rung [18,23]. Next, we fully justify how our
proposed integrated QD PCC structure inspired by pre-
vious works utilizing self-homodyne interference can
overcome these limitations in order to act as a nearly
ideal two-level system.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. (a)–(c) Transmission through Jaynes-Cummings systems with detunings of (a) Δ ¼ 0, (b) Δ ¼ 3g, and (c) Δ ¼ 6g. Dashed
black curves represent the case where the PTE is fully blocking, and only emission from the Jaynes-Cummings system is measured.
Solid purple curves indicate Fano-resonant line shapes with the interference optimally tuned for the emission of quantum light when the
driving laser is resonant with the higher-energy polariton UP1 (denoted by solid vertical gray lines). (d)–(f) Decomposition of light from
(a)–(c) into coherent and incoherent components when the system is excited under the conditions of the vertical gray lines (a)–(c),
respectively. Dashed black curves indicate the coherent emission from the Jaynes-Cummings system alone, solid red curves indicate
incoherent emission from the Jaynes-Cummings system, while solid blue curves indicate the coherent portion of the transmitted light
under optimal Fano-induced self-homodyne conditions in (a)–(c), respectively. Dashed blue and red curves indicate reference coherent
and incoherent emission from a two-level system, respectively. (g)–(i) Second-order coherence statistics of total transmitted light when
the system is excited under the conditions of the vertical gray curves (a)–(c), respectively. Dashed black and solid purple curves indicate
without and with the optimal homodyne interference, respectively. For (d)–(i), the driving strengths are normalized by the loss rates of
the driven polariton.
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B. Emission including the Fano resonance

Our previous modeling section considered the case
where the PTE is fully blocking, and only light scattered
through the Jaynes-Cummings system is collected in the
output waveguide. In this section, we relax this criterion
and actively tune the PTE until the classically scattered
light through the harmonic portion of the Jaynes-
Cummings system is interferometrically canceled. Thus,
we detail a fully quantum-mechanical model that combines
this Fano-resonant behavior with quantum-optical model-
ing to numerically characterize the nonclassically emit-
ted light.
Before, the flux operator representing the emitted

light into the waveguide was ∝ a; however, now it is
∝

ffiffiffi
κ

p
=2aþ tBα, where tB is the transmission coefficient of

the PTE, and α again represents the incident coherent flux.
Defining the new operator b ¼ ffiffiffi

κ
p

=2aþ tBα to represent
this interference, we again reevaluate our previous expres-
sions. While before, the steady-state transmitted flux was
given by T ¼ κ=2ha†ai, it is now given by T ¼ hb†bi. By a
similar operator replacement, the second-order coherence
statistic is now given by

gð2Þð0Þ ¼ hb†b†bbi
hb†bi2 : ð4Þ

The interference present in the operator b now allows for
the alteration of the measured portion of the coherently
scattered light, though it leaves the incoherent portion
unchanged since the incident flux has only a coherent
portion. Using these new waveguide operators, we calcu-
late the optimal values for the tB’s by passing the incident
flux jαi through a reference cavity with no light-matter
interaction; then tBα ¼ −

ffiffiffi
κ

p
=2harefi.

Therefore, our proposed device performs a homodyne
measurement [43] of the actual mode operator a. However,
unlike previously suggested [23], it does not perfectly
isolate the incoherently scattered portion of light from the
Jaynes-Cummings system. Were this the case, the emitted
light would not actually antibunch and certainly would
not behave like it were emitted from a two-level system.
Instead, the self-homodyne interference removes only the
coherent light scattered by the harmonic portion of the
Jaynes-Cummings system. This way, the light coherently
scattered by the first emitterlike polariton is left untouched,
which is crucial for antibunching. The reason it is left
untouched when this interference is optimized (as above) is
that the coherently scattered light from the emitterlike
polariton has a dramatically different phase than that of
the cavity-scattered coherent light. Here, the cavitylike
branches are far off resonance, so they scatter with little
phase shift, while the emitterlike polariton scatters with a
phase shift of π=2 since it is on resonance. Because at high
powers the cavity-scattered light completely dominates, it
is unsurprising that without fully understanding this subtle

point, previous experiments with self-homodyne interfer-
ence were still able to improve the quality of the single-
photon emission. Armed with this information, we can
now correctly analyze how self-homodyne interference can
change the emission character of a CQED system compared
to that from a two-level system.
We now revisit Fig. 3 and discuss the results of the

simulations that include the Fano and self-homodyne
interference. First consider the transmission plots through
the Jaynes-Cummings system with the optimally deter-
mined PTEs [Figs. 3(a)–3(c): strong asymmetries are now
present due to the direct transmission channels in each case
(purple curves)]. The Fano-resonant Jaynes-Cummings
transmission plots show decreased amplitudes directly on
the polaritons indicated by the vertical gray lines, with the
largest percentage change in the case of zero detuning
[Fig. 3(a)] since the portion of harmonic scattering is largest
here. However, the changes are even more interesting when
considering the coherently scattered portion as a function of
the driving strength [solid blue curves in Figs. 3(d)–3(f)].
Now, the coherently scattered portions better match those
from a two-level system of equivalent loss rate. For zero
detuning, there is still significant disparity at high drive
powers but low powers match fairly well [Fig. 3(a)].
Notably, for the large detuning case, the emission is now
nearly identical to that from a two-level system even for
extremely strong driving strengths (up to 10Γeff ).
Similarly dramatic are the changes in the second-order

coherence statistics for the transmission through the Fano-
resonant Jaynes-Cummings systems. Just as in their coher-
ently scattered ratios, the second-order coherence statistics
now markedly improve towards the ideal single-photon
emission regime of gð2Þð0Þ ¼ 0 [compare Figs. 3(g)–3(i)
where the dashed black and solid purple curves indicate
without and with the optimal Fano-induced self-homodyne
interference, respectively]. In all cases, this improvement
with interference in transmission is at least an order of
magnitude better. Even though the large detuning case
might have initially seemed like it would not improve
much in gð2Þð0Þ, we find it very notable that removing any
unwanted coherent scattering by the Jaynes-Cummings
system itself can improve the single-photon error rate by
almost 4 orders of magnitude. Clearly, the self-homodyne
interference can play a powerful role in ensuring that the
emission from the emitterlike polariton in a Jaynes-
Cummings system actually behaves like emission from
an ideal two-level system.
We also now consider an interesting feature in the

second-order coherence curves that we believe to be
elucidating. Again, consider Figs. 3(d)–3(f), but note that
the gð2Þð0Þ curves plateau at low driving strengths and begin
to rise at exactly the same normalized driving strengths.
Notably, this rise occurs precisely when the emitterlike
polariton begins to saturate, i.e., when Iinc > Ic. From this
observation, we can conclude that the minima of gð2Þð0Þ are
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not due to excitation of polaritons above the emitterlike
polaritons. Instead, the minima are determined by the slight
anharmonicity of the cavitylike polariton branches, whose
emission cannot be fully canceled by a coherent beam.
Finally, we briefly consider the dynamical issue of Rabi

oscillations. Although we consider only steady-state phe-
nomenon in this work, we can look at steady-state quantum
correlations that are closely tied to Rabi oscillations. This
signature is related to the Mollow triplet and appears in the
oscillations of the second-order coherence as a function of
time delay [43], i.e., in

gð2ÞðτÞ ¼ lim
t→∞

hb†ðtÞb†ðtþ τÞbðtþ τÞbðtÞi
hb†ðtÞbðtÞi2 ; ð5Þ

but with bðtÞ ¼ ffiffiffi
κ

p
=2½aðtÞ − harefi� for the self-homodyne

interference since the input coherent flux has uncorrelated
statistics. We now consider the delayed second-order
coherences of the emission from our Jaynes-Cummings
system at moderate detuning (dashed black and solid purple
curves in Fig. 4) and compare them to the second-order
coherences of emission from an ideal two-level system
(dotted purple curves in Fig. 4). For both moderate and high
powers at the moderate detuning of Δ ¼ 3g, the self-
homodyne interference very clearly allows the two-level
nature of the Jaynes-Cummings emission to be revealed
(solid purple curves) from what otherwise will be almost
trivial counting statistics, i.e., gð2ÞðτÞ ≈ 1 (dashed black
lines). In our previous work where we investigated dis-
sipative Jaynes-Cummings systems based on QDs strongly
coupled to PCCs [19,44], we observed Rabi oscillations
which require high driving strengths. As the current work

and results of Fig. 4(b) suggest, it is thanks to the self-
homodyne interference that these oscillations are
observable.

C. Multiphoton resonances

Up until this point, we consider the self-homodyne
interference as a method for optimizing the quantum
two-level-type behavior of the emitterlike polariton in a
Jaynes-Cummings system. In principle, the resulting sin-
gle-photon emission can be generated either with a weakly
coupled CQED system or simply a two-level system, after
properly rejecting the coherent driving light. For this
section, we explore phenomena unique to the complex
ladder of Jaynes-Cummings levels: its multiphoton reso-
nances. While these resonances have been explored in
superconducting systems [45], they have yet to be explored
in solid-state systems at optical frequencies. Here, we
show how self-homodyne interference can lead to the
direct observation of two-photon resonances in our pro-
posed integrated platform and comment on its potential for
observation of higher-order resonances as well.
Consider our on-chip Jaynes-Cummings system when

moderately detuned (Δ ¼ 4g) but with a state-of-the-art
g=κ ¼ 2.4 ratio [46]. Unlike for a moderate g=κ system, as
the driving field strength is increased beyond saturation of
the emitterlike polariton, a two-photon resonance begins to
appear at 2.29g. This resonance occurs between GND ↔
UP2 with UP1 as an off-resonant intermediate state and at
the frequency that splits the difference between the tran-
sition energies of GND ↔ UP1 and UP1 ↔ UP2.
However, its transmission spectrum [dashed black line

in Fig. 5(a)] only barely reveals the two-photon resonance

(a)

(b)

FIG. 4. Second-order coherence as a function of time delay at
moderate detuning (Δ ¼ 3g) with moderate (0.4Γeff ) (a) and
relatively large (5Γeff ) (b) driving strengths. Dashed black curves
represent cases for pure Jaynes-Cummings emission, solid purple
curves include self-homodyne interference, and dotted purpled
curves depict ideal two-level-system behavior.

(a)

(b)

FIG. 5. Detuned Jaynes-Cummings system under strong drive
(Δ ¼ 4g), with (a) transmission and the (b) two-photon bundling
statistic that highlights the presence of a two-photon resonance.
Colors indicate without (dashed black line) and with (purple line)
optimally tuned self-homodyne interference. Vertical gray line
indicates the frequency of two-photon resonance in transmission.
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(denoted by the gray line) due to an excess of coherent
scattering from the harmonic portion of the Hamiltonian.
Fortunately, the optimally tuned self-homodyne interfer-
ence mostly mitigates this unwanted emission making the
resonance easier to observe (solid purple line). Even more
stark is the contrast with and without the interference to
the second-order photon bundling statistics [Fig. 5(b)] of
the form [21]

gð2Þ2 ð0Þ ¼ hða†Þ4ðaÞ4i
hða†Þ2ðaÞ2i2 : ð6Þ

The second-order bundling statistic, unlike the standard
nth-order coherence statistics, is a valuable indicator
of the presence of two-photon resonances in the
Jaynes-Cummings ladder when it shows antibunching.

Specifically, gð2Þn ð0Þ looks at how bundles of n photons
antibunch rather than just antibunching of single photons.
Now the value of the self-homodyne interference becomes
exceedingly clear by allowing for strong antibunching in

gð2Þ2 ð0Þ (solid purple line), which will not even be observed
without the interference (dashed black line). Further
enhancements in the g=κ ratio, which may be enabled
by new developments in GaAs surface engineering [47],
will enable observation of multiphoton resonances involv-
ing more than two photons.
Finally, we briefly discuss the output states resulting from

the multiphoton resonances under self-homodyne measure-
ment. These resonances actually result in a somewhat
complicated emission, which we believe is an interesting
subject for future research. The main observation is that even
though the photons are absorbed at the same frequency, the
detuned Jaynes-Cummings ladder emits them at different
frequencies. Take the two-photon resonance: The energy
leaves UP2 via a cascade where the first photon is emitted
at the cavitylike polariton’s frequency (UP2 → UP1 tran-
sition), and the second photon is emitted at the emitterlike
polariton’s frequency (UP1 → GND transition). Higher
n-photon resonances emit roughly n − 1 photons at the
cavitylike frequency followed by a single photon at the
emitterlike frequency. This situation is reminiscent of
the photon bundling in the work of Sánchez Muñoz et al.
[21] but interestingly occurs under weak driving and at lower
detunings. Since the light is emitted at multiple frequencies
through the same output channel, a more complicated
analysis that includes frequency filtering is required to
quantitatively study the output emission.

IV. CONCLUSIONS

We show and illuminate how self-homodyne interference
can lead to a plethora of interesting CQED effects. We
show how the self-homodyne interference generated from
an optimally tuned Fano resonance can be utilized to
strongly enhance the single-photon emission purity of a

dissipative CQED system and allow for the observation
of Rabi oscillations between the ground state and the
emitterlike polariton. We have previously verified some
of these effects with off-chip configurations utilizing self-
homodyne interference [20,23,44], but here we thoroughly
explain the enhancement in counting statistics and in a fully
integrated on-chip geometry. Furthermore, we show how
these effects are completely compatible with an integrated
waveguide structure and should soon be within sight of an
experimental demonstration. Although QD-phonon inter-
action has recently been shown to be a limiting factor in the
indistinguishability of single-photon emission [48,49], for
strongly coupled systems, the dephasing results in energy
transfer to the cavitylike polariton, which can potentially be
completely removed by a photonic crystal drop filter to
circumvent this limit [20]. Based on our proposed device’s
ease of on-chip integratability and on the power of an
optimally tuned Fano interference to bring orders of
magnitude of improvement to already well-performing
CQED systems, we expect this type of quantum interfer-
ence to readily find its way into photonic integrated circuits
in the near future.
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APPENDIX A: COUPLING OF EMBEDDED
DIPOLE TO LEAKY MODES

In the main text, we argue that an uncharged quantum dot
is embedded within a photonic band gap, and, hence, its
coupling to free space via modes other than the discrete
cavity channel is suppressed (i.e., we take γ → 0). Here, we
show this approximation is valid by looking at the Purcell
factor of a dipole embedded at the field maximum of the
photonic crystal self-homodyne architecture [Fig. 6].
Because the Purcell factor (purple) is proportional to the
local density of states (LDOS) over the bulk LDOS, we
can use it to determine the relative contributions to decay
via the cavity compared to other leaky modes. From a
quantum-mechanical perspective, the cavity channel is
modeled by a Lorentzian LDOS, while the other leaky
modes are modeled by a flat LDOS. By fitting the Purcell
factor to a constant plus a Lorentzian, we can quantify the
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relative contributions of each. Specifically, far away from
the resonance, the Purcell factor approaches a constant
value of 0.043, which corresponds to Purcell suppression
of emission through leaky modes by a factor of 23. While
this factor is slightly lower than suppression by a bulk
photonic crystal, it is consistent with calculated and
measured suppression of a dipole embedded in an L3
photonic crystal cavity [38].

APPENDIX B: MINIMA OF SECOND-ORDER
COHERENCE

In the main text, we show that the single-photon purity
improves with increasing detuning (from left to right in

Fig. 3). We now show that this trend is maintained for even
larger detunings in Fig. 7(a), where the decreasing gð2Þð0Þ
and, hence, increasing purity with detuning is monotonic
both with and without self-homodyne interference (under
weak excitation). We also note that there is a trade-off
between transmission rate and single-photon purity at
large detunings. This can be seen in Fig. 7(b), where the
transmission rate monotonically decreases with increasing
detuning. For the parameters studied in the self-homodyne
architecture, at a detuning of around 6.2g the emission
becomes Purcell suppressed for a typical quantum dot with
bulk lifetime 1 ns.
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