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In this paper, we discuss the intriguing possibility of tailoring the scattering response of an electrically
small object for camouflage and illusion applications using metasurfaces. As a significant example, we
focus our attention on the cylindrical geometry and derive the analytical conditions needed to camouflage
the geometrical and electrical characteristics of dielectric and metallic cylinders coated with ideal
metasurfaces. A closed-form expression of the camouflaging metasurface depending on the cylinder’s
characteristics is derived. Furthermore, the frequency behavior and the limitations of this technique are
discussed with the aid of relevant examples. In order to overcome these limitations, a solution based on the
use of lossy metasurfaces is proposed.
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I. INTRODUCTION

One of the most exciting and promising applications
enabled by metamaterials is represented by the invisibility
cloaks [1–5], i.e., devices that are able to reduce the
electromagnetic visibility of an object by minimizing its
total scattering cross section (SCS) in a given frequency
range. The effectiveness of electromagnetic cloaks has been
experimentally proven in several scenarios [6–8] and for
different fascinating applications ranging from low observ-
ability in antennas and defense systems [9–14] to noninva-
sive sensing [15] at both radio and optical frequencies [16].
In all these cases, the cloaking effect is achieved through
the use of covers that exploit the anomalous interaction
between the electromagnetic wave and the metamaterial
cloak, leading to an overall minimization of the scattering
signature of the object.
The transformation-optics technique [1] is based on a

transformation of the space surrounding the object enabled
by inhomogeneous and anisotropic bulk metamaterials.
Such a transformation is able to bend the incident electro-
magnetic field around the object to hide, making the inner
region of the cloak effectively invisible to any external
excitations. Despite its theoretical impact, the stringent
requirements of the metamaterial cover make the effective
implementation of this technique very challenging for its
extreme sensitivity to both fabrication imperfections and
electromagnetic losses [3]. Furthermore, the need of a
superluminal propagation in the cloak limits the working
bandwidth of this solution [5,17]. Finally, we also empha-
size that this cloaking approach is impractical for sensing
and antenna applications [15] due to the fact that the inner

region of the cloak is electromagnetically isolated from the
external perturbation.
Conceptually not too dissimilar, the transmission-line

cloaking technique [2] uses transmission-line networks to
hide objects from electromagnetic waves. In this case, the
incident waves are convoyed into a transmission-line net-
work that is tailored to exhibit a very low scattering cross-
section, i.e., to be impedancematched to free space. Themain
advantage of this approach is that a superluminal propagation
is not required, and, thus, it is inherently broadband.
Moreover, the cloak design and manufacturing is quite
straightforward. However, some important limitations for
the shape of the cloaked object apply, and, moreover, the
corresponding cloak is a bulky and massive structure.
Conversely, the scattering-cancellation method [3,4] is

based on a radically different approach that aims to cancel the
dominant Mie scattering coefficients of the cloaked object.
The invisibility effect is achieved when the induced dipole
moments of the cloak and the object to hide are equal in
magnitude but out of phase. One important difference of this
technique compared to the transformation optics lies in the
fact that the cloaked object is not isolated from the external
field. This makes this technique suitable for antennas and
sensor applications. Moreover, the design and implementa-
tion of the cloaks are quite straightforward since they can be
realized using a single layer of homogenous and isotropic
materials [18]. As a disadvantage, the scattering-cancellation
method is not the best choice for objects that are large
compared to the operative wavelength due to the increasing
number of scattering terms that comes into play in the
description of the scattering response of the object [19].
The implementation of the scattering-cancellation

method can be achieved using cloaks made of either bulk
plasmonic metamaterials [3] or ultrathin-coating metasur-
faces [4]. This latter approach, also known in the literature
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as mantle cloaking, leads to lightweight, thin, and con-
formal designs that can be easily implemented at rf,
microwaves, and even for acoustic waves [20,21]. In these
ranges of frequencies, in fact, a metasurface is implemented
through a patterned metallic surface with a subwavelength
period that can be modeled using the homogenized physical
quantity known as the average surface impedance Zs
(Ω=sq), which is the ratio between the tangential compo-
nent of the electric field and the surface current density. The
surface impedance is a complex quantity described by a
real and an imaginary part. The first one is due to the losses
of the materials composing the metasurface, while the
second one describes the energy stored by the structure and,
therefore, can assume negative (capacitive) or positive
(inductive) values. For lossless structures, as we can safely
assume for microwave metasurfaces due to the very high
value of the metal conductivity at such frequencies, the
surface impedance is a purely imaginary quantity, and,
therefore, it is described by its surface reactance Xs (Ω=sq).
So far, mantle cloaking has been demonstrated to be

rather versatile, and it has found many applications in the
antenna field. However, the possibilities offered by the
mantle-cloaking approach, and, more in general, by meta-
surfaces, go well beyond the minimization of the overall
scattered field. The invisibility effect, in fact, can be
interpreted as a particular case of a more general manipu-
lation of the scattering properties of a metasurface-coated
object. The opportunity for comprehensive control over the
electromagnetic scattering properties of an object allows us
to transform the scattering properties of a given object into
the ones of another different object (e.g., making the object
appear as if it were larger or thinner or made by a different
material), leading to a camouflage or an illusion effect. This
effect is highly desirable in several applications, such as
defense security. In particular, it is possible to exploit this
effect for inducing confusion in an observing radar through
the camouflage of the observed target, even if with possible
bandwidth limitations depending on the type of radar
technique involved, as we discuss later on. The same
approach can be also useful in different applications where,
for geometrical or structural reasons, it is not possible to
reduce the dimensions of an object whose consequent level
of scattering becomes incompatible with the electromag-
netic functionalities owned by the object itself.
Recently, some studies based on the use of transformation

optics and mantle cloaking to achieve an illusion effect have
been developed [22–28]. In particular, in Ref. [26], it has
been experimentally demonstrated that an ultrathin aniso-
tropic metasurface can be used to transform the scattering
response of a coated dielectric cylinder into the one of an
uncoated conducting cylinder and vice versa. In Ref. [27], a
similar study is proposed exploiting an active illusion or
cloaking coat consisting of an array of magnetic monopoles.
Despite these efforts, no closed-form design formulas
are available, and, moreover, the camouflage analysis is

restricted to a single operative frequency with a consequent
limitation on the use of these approaches in real scenarios.
Inspired by these earlier works, in this paper,we propose a

systematic analytical methodology for achieving advanced
scattering manipulation. Starting from the well-known
scattering problem by an infinite cylinder, we show that it
is possible by properly tailoring the value assumed by the
surface impedance of the coating metasurface in order to
achieve a desired level of scattering. Some theoretical and
numerical examples are proposed to validate the proposed
idea, and, specifically, it is shown that the scattering
response of a coated cylinder can be transformed and made
equal to the one of a cylinder with different electrical and/or
geometrical characteristics. An analysis of the frequency
performance that can be theoretically achieved by the
camouflage effect is carried out, and some solutions to
overcome the intrinsic narrow-band behavior of the illusion
effect are also proposed. Compared to the works about this
topic [22–28], the results discussed here can be considered
as an important step further toward the use of higher-
performance camouflage devices in realistic applications.

II. ANALYTICAL FORMULATION OF THE
SCATTERING MANIPULATION PROBLEM

USING METASURFACES

The basic principle of the camouflage effect we desire to
achieve is depicted in Fig. 1 for the case of a cylindrical
geometry. In this case, the scattering signature of a
cylindrical object (the red cylinder) is transformed into
the one of another cylinder (the blue cylinder) with
different size and material properties through the use of
metasurfaces (the yellow cover around the red cylinder). In
order to derive the analytical expression of the required
camouflage surface impedance, we need to equate the
expressions of the scattering coefficients of the targeted
object with the scattering coefficients of the covered object.
To do so, we have to first solve the well-known scattering

problem by an infinite dielectric cylinder (hereinafter, the
targeted cylinder) with radius a1 and electromagnetic
parameter ðε1; μ0Þ as sketched in Fig. 2(a). Then, we have
to consider the scattering problem by another cylinder
(coated cylinder) with radius a2 and electromagnetic

FIG. 1. Sketch of the working principle of the camouflaging
metasurface.
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parameters ðε2; μ0Þ and surrounded by an ultrathin ideal
metasurface with radius ac [Fig. 2(b)].
We assume that the cylinders are illuminated by an

external normally incident plane wave with transverse-
magnetic (TM) polarization (i.e., with the electric field
parallel to the cylinder axis). Using a cylindrical reference
system ðr;ϕ; zÞ and adopting a standard Mie expansion
[29], we can write the incident electric field ðEiÞ, the
scattered electric field ðEsÞ, and the electric field inside the
dielectric cylinder ðE1Þ as

Ei ¼
X∞
n¼−∞

EnN
ð1Þ
n ðr;ϕ; zÞ;

E1 ¼
X∞
n¼−∞

En½cnMð1Þ
n þ dnN

ð1Þ
n �;

Es ¼ − X∞
n¼−∞

En½bnNð3Þ
n þ janM

ð3Þ
n �; ð1Þ

where the magnetic field components can be derived as
H ¼ −j=ωμ0∇ × E, and the expression of Nnðr;ϕ; zÞ,
Mnðr;ϕ; zÞ can be found in Ref. [29]. In Eq. (1), the
scattered field is conveniently expressed as the discrete sum
of cylindrical harmonics with complex amplitudes an and
bn (with n being an integer and a−n ¼ −an, b−n ¼ −bn).
Please note that since these coefficients are the amplitude of
the transverse-electric (TE) and transverse-magnetic (TM)
cylindrical waves, they are also known in the literature as
cTEn and cTMn [3].
The coefficients an and bn describing the electromag-

netic field scattered by the cylinder are related to the total
scattering efficiency of the object. In particular, the scatter-
ing cross section per unit length of an infinite cylinder can
be expressed as [29]

Qsca ¼
2

x

�
jb0j2 þ 2

X∞
n¼1

ðjbnj2 þ janj2Þ
�
; ð2Þ

where x ¼ ka1, and k is the wave number. The total
scattering efficiency Qsca is a sum of infinite terms.
However, in the case of electrically small objects, the
scattering coefficients above the fundamental order are
negligible [29]; i.e., the scattered field is dominated by the
first-order mode. The number n of the terms that effectively
contribute to the total efficiency usually increases with the
physical or electrical size of the scatterer, and this is one of
the reasons why larger objects generally scatter more.
To determine the analytical expressions of the scattering

coefficients in the scenario depicted in Fig. 2(a), it is
sufficient to enforce the boundary conditions for the tan-
gential components of the electric and magnetic fields at the
interface r ¼ a1 of the cylinder. In this way, it is possible to
derive a compatible equation system whose analytical
solution returns the unknown amplitude coefficients. In
particular, for the case of the normally incident TM-plane
wave, the scattering coefficients an are identically zero, and,
for electrically small cylinders, we can safely consider
only the first term of the scattering series (b0). Moreover,
the expression of the scattering coefficient available in the
literature [29] can be further simplified by applying the
asymptotic expansion of the Bessel functions for small
arguments [30], obtaining, thus, the following expression:

b0¼
J0ða1k0 ffiffiffiffiffi

ε1
p ÞJ1ða1k0Þ− ffiffiffiffiffi

ε1
p

J0ða1k0ÞJ1ða1k0 ffiffiffiffiffi
ε1

p Þ
J0ða1k0 ffiffiffiffiffi

ε1
p ÞHð1Þ

1 ða1k0Þ− ffiffiffiffiffi
ε1

p
J1ða1k0 ffiffiffiffiffi

ε1
p ÞHð1Þ

0 ða1k0Þ

≅− jπa21k
2
0ðε1−1Þ

2a21k
2
0ε1 lnða1k0Þþ4

; ð3Þ

where Jn ðn ¼ 0; 1Þ is the nth-order cylindrical Bessel

function of the first kind, Hð1Þ
n ðn ¼ 0; 1Þ is the nth-order

cylindrical Hankel function of the first kind, and k0 is the
free-space wave number.
In a similar way, it is possible to derive the expressions

for a coated dielectric cylinder [see Fig. 2(b)]. The
analytical expressions of the incident, scattered, and inner
electric fields are the same as in Eq. (1), but, in this case, a
field inside the shell is also present between the surfaces of
the inner cylinder and the outer metasurface ðEmÞ:

Ei ¼
X∞
n¼−∞

EnN
ð1Þ
n ðr;ϕ; zÞ;

E1 ¼
X∞
n¼−∞

En½c0nMð1Þ
n þ d0nN

ð1Þ
n �;

Em ¼
X∞
n¼−∞

En½je0nNð3Þ
n þ je00nN

ð1Þ
n − f0nM

ð3Þ
n − f00nM

ð1Þ
n �;

Es ¼ − X∞
n¼−∞

En½b0nNð3Þ
n þ ja0nM

ð3Þ
n �; ð4Þ

where a0n, b0n, c0n, d0n, e0n, f0n, e00n, f00n are the new unknown
amplitude coefficients. By enforcing the continuity of the

FIG. 2. Geometry of the scattering problem by (a) a dielectric
cylinder and (b) by a metasurface-coated dielectric cylinder.
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tangential components of the electric and magnetic fields at
r ¼ a2 and the boundary condition of an ideal electrically
polarizable metasurface at the boundary r ¼ ac [4], i.e.,
Etan
m ¼ Zsr̂½ðHtan

i þHtan
s Þ −Htan

m �, it is possible to derive
the exact analytical expressions of the scattering coeffi-
cients b0n. As for the previously discussed case of the
uncoated cylinder, we assume that the coated cylinder is

electrically small, i.e., k0ac ≪ 1 and kcac ≪ 1 (where k0
and kc are the wave numbers in free space and in the shell,
respectively). Therefore, we can safely consider only the
first term of the scattering series ðb00Þ [3], and by applying
the asymptotic expansion of the Bessel functions for small
arguments once again, b00 reduces to (see Appendix A for
details)

b00 ≅
πfa22ack20μ0ω½ε2 lnða2acÞþ lnðack0Þ�− ja22k

2
0Zsðε2− 1Þþ 2acμ0ωg

2a22k
2
0ε2 lnða2k0Þ½Zsþ jacμ0ω lnðack0Þ�þ 2ac lnðack0Þ½−ja22k20μ0ωðε2− 1Þ lnðack0Þþack20Zsþ 2jμ0ω� þ 4Zs

: ð5Þ

It is worth noticing that the scattering coefficient b00
depends on the geometrical and electromagnetic param-
eters of the overall structure and on the surface impedance
Zs. Once the analytical expression of the complex Mie
scattering coefficients of the coated cylinder b00 and the
one of the targeted cylinder b0 are found, it is possible to

derive the analytical expression of the surface impedance
needed to achieve the camouflage effect by equating the
two scattering coefficients. In particular, the expression of
Zs that allows us to make the two scattering coefficients
equal in both the imaginary and real parts is

Zs ≅ jXs ≅ j
2acμ0ωfa21k20½ε1 lnða1acÞþ lnðack0Þ�þ 2gfa22k20½ε2 lnða2acÞþ lnðack0Þ�þ 2g

k20½a22k20 lnðack0Þþ 2�fa21a22k20½ε1ðε2− 1Þ lnða1k0Þ− ε2ðε1− 1Þ lnða2k0Þ�þ 2½a22ðε2− 1Þ−a21ðε1− 1Þ�g ; ð6Þ

where a1 and ε1 are the geometrical and electrical param-
eters of the targeted cylinder, while a2, ε2, and ac are the
parameters of the coated cylinder. It is interesting to note
that the value of Zs is purely reactive and that if ε1 ¼ ε2 and
a1 ¼ a2 (i.e., the targeted cylinder and the coated cylinder
are the same object), the surface impedance approaches
−j∞, as expected, suggesting the absence of the metasur-
face. As can be easily inferred, the same result is obtained
also in the case ε1 ¼ ε2 ¼ 1 (i.e., in the absence of both
cylinders).
An analogous expression can be easily obtained also for

the case of conducting cylinders by calculating the limit of
Eq. (6) as the cylinder permittivity approaches −j∞.
Similar analytical results can also be obtained for other
canonical geometries, such as the spherical or the ellipsoi-
dal one. For noncanonical shapes for which the closed-form
solution of the scattering problem does not exist, numerical
approximations [31] can be used for achieving a semi-
analytical design.
Interestingly, the availability of an analytical expression

for the camouflage surface impedance allows the analysis of
its frequency behavior. From a physical point of view, the
mechanism behind the camouflage effect is similar to the
one of mantle cloaking: the surface currents supported by
themetasurface are engineered to interfere properly with the
fields naturally induced by the bare object, giving rise to the
altered scattered fields. The important difference is that, in
the case of camouflage, the goal ismore challenging than the
simple minimization of the first-order scattering coefficient
since the aim is to achieve a given level of the total scattering.

As known in Ref. [32], the intrinsic bandwidth limitations of
the cloaking effect are due to Foster’s reactance theorem, and
an increase of the operational bandwidth necessarily
requires active loads. We expect the same bandwidth
behavior in the case of camouflage, at least for the cases
of reduction of the scattering amplitude of the coated object.
This behavior is confirmed by Fig. 3, where some significant
cases of the frequency behavior of Eq. (6) are reported. It is
interesting to notice that there are some scenarios where the
camouflaging surface reactance exhibits a Foster response;
i.e., the surface reactance increases as the frequency

FIG. 3. Frequency behavior of the camouflage condition (6) for
some significant cases.
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increases. Specifically, these scenarios appearwhena1 > a2
or ε1 > ε2; i.e., when we desire to increase the scattering of
the bare object to make it appear as if it were larger or
realized with electromagnetically denser materials. In the
following sections, we provide more physical insights into
the camouflage possibilities by showing the analytical and
full-wave results of some significant examples.

III. SCATTERING REDUCTION

To demonstrate the versatility of the general approach, in
this section, we present some examples showing how a
metasurface-coated infinite cylinder can match the scatter-
ing properties of another one with different electromagnetic
and geometrical characteristics. As a first case, we consider
a coated infinite conducting cylinder designed to behave as
an infinite dielectric cylinder with the same physical size.
This case is somehow similar to the invisibility one, where

it is desirable to minimize the scattering signature of the
object. However, in our case, we want to achieve a specific
level of the scattering signature of the coated object and not
its generic minimization.
We consider a cylinder made of a perfect electric con-

ductor (PEC) with radius a2 ¼ λ0=20 and a targeted dielec-
tric cylinder with the same radius a1 ¼ λ0=20 and ε1 ¼ 4,
being λ0 the wavelength at the camouflage frequency f0. By
using an ideal ultrathin metasurface, the camouflage effect
can be achieved with a metasurface that has a radius ac ¼
1.5a2 and surface impedance equal to −j65 Ω=sq, accord-
ing to Eq. (6). Please note that the radius of the coating
metasurface is chosen in order to still satisfy the quasistatic
condition we use above for deriving Eq. (6).
In Fig. 4, we report the SCS of the targeted, coated, and

bare cylinders as the frequency changes. These curves are
evaluated by solving the analytical problem that we discuss
in the previous section. As can be appreciated, an ideal
nondispersive metasurface with surface impedance Zs ¼−j65 Ω=sq allows us to achieve the camouflage condition
at the design frequency f0. It is interesting to note that,
apparently, a second camouflage condition seems to exist
around 0.86f0. This solution that is not predicted by Eq. (6)
arises from the fact that the SCS is directly related to the
magnitude of the scattering coefficients and that there are
two distinct values of Zs for which the equation jb0j ¼ jb00j
applies. However, the second solution implies only an
equivalence of the magnitude but not of the phase of the
scattered waves and, therefore, does not yield to cylinders
with identical scattering response ðb0 ≠ b00Þ. Therefore, for
camouflage applications, this second solution is not of
interest since the camouflaged object can still be detectable
from the phase distribution of the scattered electromagnetic
field that is different from the expected one (see
Appendix B for details).
Finally, it is also worth noticing that as predicted from

the analysis on the physical phenomena at the basis of the
camouflage effect, the coated cylinder also exhibits a

FIG. 4. Analytical SCS of PEC (bare), dielectric (targeted), and
camouflaged cylinder. The geometrical and electrical character-
istics used for this example are a1 ¼ a2 ¼ λ0=20, ac ¼ 1.5a, and
εr ¼ 4.

FIG. 5. Magnitude of the electric field distribution at f0 on a plane perpendicular to the cylinder axis of the (a) bare, (b) targeted, and
(c) camouflaged cylinder evaluated using full-wave simulations.
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minimum scattering condition (in particular, for this spe-
cific case, it occurs around 0.94f0).
To confirm the analytical results, in Fig. 5 we compare

the near-field electric field distributions of the bare
[Fig. 5(a)], targeted [Fig. 5(b)], and camouflaged
[Fig. 5(c)] infinite cylinder for a normally incident
plane-wave excitation obtained through full-wave simula-
tions [33]. As expected, the designed metasurface is able to
produce almost the same field distribution of the targeted
cylinder in terms of magnitude and spatial distribution. It is
also interesting to observe that the field is able to penetrate

the area between the metasurface and the PEC cylinder,
indicating that the conductor is not electromagnetically
isolated from the external world.
As we remark in the theoretical analysis, the intrinsic

frequency dependence of the SCS also allows us to achieve
a mantle-cloaking condition at a slightly different fre-
quency than f0. This effect is shown in Fig. 6, where it
is possible to appreciate the restoration of the plane-wave
phase front in the cloaked case.
To conclude this section, in Fig. 7, we show the

E-field distributions for several frequencies close to the

FIG. 6. Magnitude of the electric field distribution at 0.94f0 on a plane perpendicular to the cylinder axis of the (a) bare, (b) targeted,
and (c) cloaked cylinder evaluated using full-wave simulations.

FIG. 7. Magnitude of the electric field distribution on a plane perpendicular to the cylinder axis of the (a),(d) bare, (b),(e) targeted, and
(c),(f) camouflaged cylinder evaluated using full-wave simulations at [(a)–(c)] 0.83f0 and at [(d)–(f)] 1.17f0.
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camouflaged one. As expected, the illusion effect is quite
narrowband due to the intrinsic Foster behavior of the
passive camouflaging metasurface that is able to meet the
camouflaging condition (6) only at one frequency.
In Sec. V, we propose a possible solution for increasing

the bandwidth of the camouflaging effect based on the use
of lossy metasurfaces.

IV. SCATTERING ENHANCEMENT

To further emphasize more versatility of the camouflage
approach compared to cloaking, we show in this section
how a metasurface can be designed to enhance a weak
scattering response and make an object appear as if it were a
stronger scatterer. In this case, the targeted object is a
dielectric cylinder with relative permittivity ε1 ¼ 12 and
radius a1 ¼ λ0=20, whereas the coated cylinder has relative
permittivity ε2 ¼ 6 and radii a2 ¼ λ0=33.3 and ac ¼ 1.5a2.
Please note that the overall radius of the coated structure is
smaller than the targeted one, even considering the pres-
ence of the coating metasurface. Moreover, to demonstrate
the flexibility of the proposed method, we consider here
finite-length cylinders with length equal to 4λ0, which is a
reasonable length to consider still valid for the analytical
formulas that we derive above. The value of the surface
impedance needed to achieve the camouflage effect is
first calculated using Eq. (6) ðZs ¼ −j210.33 Ω=sqÞ and
then slightly optimized with a full-wave simulator in
order to take into account the finite size of the objects
ðZs ¼ −j200 Ω=sqÞ.
Figure 8 compares the 3D scattering cross section in the

three cases under a normally incident TM-plane-wave
excitation. It can be seen that the coated cylinder exhibits
a scattered field distribution very similar to the one of the
targeted cylinder. This additional case confirms that a
properly engineered single-layer metasurface can be
designed to effectively transform the scattering signature

of an object into that of another that can be either a weaker
or a stronger scatterer.
To analyze the frequency behavior of the scattering

enhancement metasurface, we decide to implement a real
metasurface having the specific value of the surface
impedance needed to achieve the camouflage behavior at
the design central frequency, i.e., Zs ¼ −j200 Ω=sq. The
required metasurface is capacitive, and, therefore, it can be
implemented using a horizontal-strip metasurface. Using
the design formulas available in Ref. [18], we can easily
obtain the geometrical values of the metasurface that have a
gap g ¼ 18 mm and a period D ¼ 50 mm. The metasur-
face shown in Fig. 9(b) is composed of eight copper
metallic rings placed around the cylinder to be coated
and is designed to operate at f0 ¼ 3 GHz.
The full-wave SCS as the frequency changes is reported

in Fig. 9(a) for the cases of bare, targeted, analytically
coated, and realistically coated cylinders. The analytical
metasurface used for the comparison is a mathematical
sheet whose surface impedance is equal, frequency by
frequency, to the camouflaging conditions expressed by
Eq. (6). As can be appreciated, and different from the
scattering-reduction case that we analyze in the previous
section, the coated object is able to achieve the scattering
level of the targeted one in a very broad frequency range.
As predicted at the end of Sec. II, this is due to the Foster-
like frequency behavior of the camouflaging metasurface
required in the scattering-enhancement scenario that is
well matched by the designed metasurface [18]. Moreover,
we also observe an excellent agreement between the SCS
of the real and analytical metasurfaces. At higher fre-
quency, an increasing mismatch between the two curves
can be observed. This is an expected effect, and it is due to
the fact that the analytical formulation is based on the
assumption of small arguments of the Bessel functions
and that it is progressively violated as the frequency
increases. For more details about this aspect, please refer
to Appendix A.

FIG. 8. 3D scattering cross section
at f0 of the (a) uncoated, (b) targeted,
and (c) camouflaged cylinder evalu-
ated through full-wave simulations.
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V. LOSSY METASURFACES

In this section, we investigate a possible solution that can
be used to improve the frequency performance of the
scattering-reduction approach that we analyze in Sec. III.
As discussed in Ref. [4], the minimization of the absolute
value of the scattering coefficient requires the use of the
lossless metasurface whose surface impedance is a purely
imaginary quantity. In other terms, the presence of Ohmic
losses severely limits the performance of an invisibility
device.
As we stress above, in the camouflage approach, we do

not aim for a total reduction of the visibility of an object but
to its manipulation. In this situation, we can force the
minimization of the fundamental Mie coefficient of the
covered object by properly tailoring both the imaginary and
real parts of the surface impedance in order to achieve the
desired level of the scattering coefficient. Such a new
degree of freedom allows us to flatten the invisibility
resonance, or, from a different point of view, increase
the operative bandwidth of the camouflage effect.
In order to analytically determine the required lossy

surface impedance,we need to slightlymodify the analytical
procedure used so far. The first step is to derive the cloaking
surface reactance needed to achieve a minimum scattering
condition in the response of the coated cylinder. To do so, it
is possible to use Eq. (6) with ε1 ¼ 1. Once the optimal
cloaking surface reactance (Xcloaking

s ) is derived, we need to
introduce a real part Rs in the surface impedance ðZs ¼
Rs þ jXcloaking

s Þ and determine the value of Rs which allows
us to achieve the desired level of the scattering coefficient at
the operation frequency f0. To do so, it is possible to equate
the two scattering coefficients b0 and b00 similar to how we
derive Eq. (6) but with the important difference that the
surface impedance now also includes a real part.
To better explain this concept, let us consider, as an

example, a coated dielectric cylinder and a targeted
dielectric cylinder with relative permittivity ε1 ¼ ε2 ¼ 10
and radius a1 ¼ λ0=33.3, a2 ¼ λ0=20, and ac ¼ 1.5a2,
respectively. First, we have to analytically determine the
lossless surface impedance required to achieve a cloaking

condition. We obtain jXcloaking
s ¼ j253 Ω=sq. Then, we

need to determine the real part of the surface impedance
needed to achieve the desired level of scattering. Equating
the two scattering coefficients and imposing Zs ¼
Rs þ j253 Ω=sq, we obtain Rs ¼ 137 Ω=sq. In Fig. 10,
we report the analytical scattering cross sections at f0 of the
targeted, bare, and cloaked cylinders as a function of the
real part Rs of the coating surface impedance. As can be
appreciated, the introduction of a specific amount of loss
allows us to flatten the invisibility condition, thus, trans-
forming the cloaking cover into a broadband camouflag-
ing one.
In Fig. 11, we report some full-wave simulations

confirming the bandwidth improvement returned by this
technique. The coated cylinder is surrounded with both an
optimal lossless camouflaging metasurface with surface
reactance Zs ¼ j369 Ω=sq, designed using Eq. (A6),
and different lossy metasurfaces ðZs ¼ Rs þ jXcloaking

s ¼
Zs ¼ Rs þ j253 Ω=sqÞ. The optimal lossy metasurface,

FIG. 9. (a) SCS of the bare, tar-
geted, analytically coated, and real-
istically coated cylinders. (b) Details
of the metasurface. The electrical
and geometrical parameters used
for this example are a1 ¼ λ0=20,
a2 ¼ λ0=33.3, ac ¼ 1.5a2, ε1 ¼ 12,
ε2 ¼ 6.

FIG. 10. Basic principle of lossy camouflaging. Analytically
evaluated SCS of a bare, targeted, and coated with a tailored lossy
metasurface cylinder. The electrical and geometrical parameters
used for this example are a1 ¼ λ0=33.3, a2 ¼ λ0=20, ac ¼ 1.5a2,
ε1 ¼ ε2 ¼ 10.
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whose performance is depicted with the dot-dashed
line, corresponds to a surface impedance equal to Zs ¼
137þ j253 Ω=sq.
As can be appreciated in Fig. 11(b), the optimal lossless

metasurface ðZs ¼ j369 Ω=sqÞ is able to meet the
camouflage condition only in a single-frequency point.
Conversely, in the lossy case ðZs ¼ Rs þ j253 Ω=sqÞ
shown in Fig. 11(a), a broadband camouflage effect is
obtained.
It is worth noticing that the introduction of losses in the

metasurface increases the extinction cross section (i.e.,
the sum of the scattering and absorption cross section) of
the coated object. Thus, while lossy metasurfaces allow us
to achieve the camouflage effect for the scattering cross
section in a broader bandwidth, the extinction cross
sections of the targeted object and of the coated one
are different. Consequently, the object coated with a lossy
metasurface cannot be considered perfectly “camou-
flaged” since its absorption is different from the expected
one. However, there are many applications, as, for
example, many radars at microwave frequencies or
dark-field microscopies at optical frequencies [34], where
the detectability of the object is related only to its
scattering. For these scenarios, the lossy metasurface
may provide excellent camouflage performance in a broad
frequency range.
We conclude this section by observing that the realiza-

tion of a lossy metasurface is a quite straightforward task,
since it can be achieved by exploiting the traditional
metasurface designs but replacing metals with lossy mate-
rials. Some examples of microwave and optical frequencies
are available in Refs. [35,36], respectively.

VI. CONCLUSION

In this paper, we present a systematic approach for
camouflaging objects through the use of metasurfaces. In
particular, we analytically discuss the scattering manipu-
lation problem for small cylinders and identify the behavior
of the surface impedance that is able to transform the
scattering of a particle into the one of another particle; i.e.,
it is able to achieve a camouflage effect. The proposed
approach provides a general methodology for transforming
the scattering signature of an object in a desired way. We
successfully validate the analytical results through a proper
set of full-wave simulations. Moreover, an analysis of the
frequency performance of the camouflage effect based on
the use of passive metasurfaces is investigated, and some
solutions to enhance the operative bandwidth are proposed.
The concept and the approach presented here for the case of
small cylinders can be potentially extended to different
geometries using an analytical approach (for canonical
shapes) or recurring to semianalytical approximations.

APPENDIX A: DERIVATION OF THE
SCATTERING COEFFICIENT b00

In the following, we describe the derivation of Eq. (5)
according to the notation of Ref. [29]. We know that the
magnetic field components of the incident, scattered, and
inner fields can be derived from the electric field compo-
nents reported in Eq. (4), using the relation Hijsj1jm ¼
−j=ωμ0∇ × Eijsj1jm, where the expressions ofM

ð1Þ
n ðr;ϕ;zÞ,

Nð1Þ
n ðr;ϕ; zÞ, Mð3Þ

n ðr;ϕ; zÞ, and Nð3Þ
n ðr;ϕ; zÞ in Eq. (4) in

cylindrical coordinate are

FIG. 11. Camouflage performance of lossless and lossy metasurfaces evaluated through full-wave simulations (a1 ¼ λ0=20,
a2 ¼ λ0=33.3, ac ¼ 1.5a1, ε1 ¼ ε2 ¼ 10). In (a), the performance of lossy metasurfaces is reported for different values of the surface
resistance Rs (from 0.1 to 137 Ω=sq). In (b) a comparison between the performance of the optimal lossless ðZs ¼ j177 Ω=sqÞ and
optimal lossy ðZs ¼ 137þ j253 Ω=sqÞ metasurfaces is shown.
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Mð1Þ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − h2

p �
jn

Zð1Þ
n ðρÞ
ρ

;−Zð1Þ0
n ðρÞ; 0

�
ejðnϕþhzÞ;

Nð1Þ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − h2

p

k

�
jhZð1Þ0

n ðρÞ;−hnZ
ð1Þ
n ðρÞ
ρ

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − h2

p
Zð1Þ
n ðρÞ

�
ejðnϕþhzÞ;

Mð3Þ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − h2

p �
jn

Zð3Þ
n ðρÞ
ρ

;−Zð3Þ0
n ðρÞ; 0

�
ejðnϕþhzÞ;

Nð3Þ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − h2

p

k

�
jhZð3Þ0

n ðρÞ;−hnZ
ð3Þ
n ðρÞ
ρ

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − h2

p
Zð3Þ
n ðρÞ

�
ejðnϕþhzÞ; ðA1Þ

where h ¼ cos ζ, ζ the angle of incidence (equal to π=2 for
a normally incident TM-plane wave), and Zn a solution of
the cylindrical Bessel equation ρðd=dρÞðρðd=dρÞZnÞ þ
ðρ2 − n2ÞZn ¼ 0. Thus, the analytical expressions of the
electric fields can be in the following form:

Eijρ¼k0r sin ζ; Esjρ¼k0r sin ζ;

E1jρ¼k0r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2−cos ðζÞ2

p ; Emjρ¼k0r sin ζ:

The boundary conditions to be applied at r ¼ a2 and
r ¼ ac are, respectively,

Etan
1 jρ¼k0a2 ¼ Etan

m jρ¼k0a2 ;

Htan
1 jρ¼k0a2 ¼ Htan

m jρ¼k0a2 ;

Etan
m jρ¼k0ac ¼ Zsr̂½ðHtan

i jρ¼k0ac þHtan
s jρ¼k0acÞ

−Htan
m jρ¼k0ac �;

Etan
i jρ¼k0ac þ Etan

s jρ¼k0ac ¼ Zsr̂½ðHtan
i jρ¼k0ac þHtan

s jρ¼k0acÞ
−Htan

m jρ¼k0ac �: ðA2Þ

Please note that, as for an uncoated dielectric cylinder
[29], all the scattering coefficients a0n vanish when the
impinging field is normal to the axis of the cylinder.
Therefore, the series of the scattering coefficients b0n can
be expressed in the convenient form b0n ¼ N=D with

N∶ An½jKnCnðBn−1C−n þ B1−nCnÞ þ 2ZsBn−1� þ j
ffiffiffiffiffi
ε2

p
An−1½KnCnðB−nCn þ BnC−nÞ þ j2ZsBn�;

D∶ πac½CnðDn−1An − ffiffiffiffiffi
ε2

p
DnAn−1Þðμ0ωEn − jk0ZsEn−1Þ þ EnAnð−μ0ωBn−1En þ jk0ZsDn−1Cn−1Þ

þ ffiffiffiffiffi
ε2

p
EnAn−1ðμ0ωBnEn − jk0ZsDnCn−1Þ�; ðA3Þ

where An ¼ Jnða2k0 ffiffiffiffiffi
ε2

p Þ, Bn ¼ Jnða2k0Þ, Cn ¼ Jnðack0Þ, Dn ¼ Hð1Þ
n ðack0Þ, En ¼ Hð1Þ

n ðack0Þ, Kn ¼ πacμ0ω cscðnπÞ,
and Jnð·Þ, Hð1Þ

n ð·Þ are the cylindrical Bessel and Hankel functions of the first kind, respectively.

Assuming that the coated cylinder is electrically small ðn → 0Þ, only the first- ðJ0ð·Þ; Hð1Þ
0 ð·ÞÞ and second-order

ðJ1ð·Þ; Hð1Þ
1 ð·ÞÞ Bessel and Hankel functions give a significant contribution in Eq. (A3). Thus, b00 ¼ N=D assumes the

following form:

N∶ ð2 ffiffiffiffiffi
ε2

p
B0A1 − 2B1A0Þ½2jC0ðμ0ωE0 − jk0ZsE1Þ − 2k0ZsC0E0� þ 2jμ0ωC2

0ð2D1A0 − 2
ffiffiffiffiffi
ε2

p
D0A1Þ;

D∶ A0½−4jμ0ωB1E2
0 − 2D1E0ð−2k0ZsC1 − 2jμ0ωC0Þ − 4k0ZsD1C0E1�

− 4
ffiffiffiffiffi
ε2

p
A1

�
1

2
E0ð2k0ZsD0C1 − 2jμ0ωB0E0Þ þD0C0ð−k0ZsE1 þ jμ0ωE0Þ

�
: ðA4Þ

Introducing the following asymptotic expansion of the Bessel functions for small arguments [30],

An →
1

n!

�
a2k0

ffiffiffiffiffi
ε2

p
2

�
n
; Bn →

1

n!

�
a2k0
2

�
n
; Cn →

1

n!

�
ack0
2

�
n
;

D0 → j
2

π
lnða2k0Þ; D1 → −j 1

π

�
a2k0
2

�−1
; E0 → j

2

π
lnðack0Þ; E1 → −j 1

π

�
ack0
2

�−1
; ðA5Þ

the expression of the fundamental order scattering coefficient of a coated cylinder b00 reduces from Eq. (A4) to Eq. (5).
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It is worth noticing that the approximations that lead
from Eq. (A4) to Eq. (A5) are rigorously valid only if the
arguments of the Bessel functions approach zero, i.e., for
a1k0; ack0; a2k0

ffiffiffiffiffi
ε2

p
→ 0. This is a stronger condition

compared to the assumption of the electrically small object

(i.e., a1k0; ack0; a2k0
ffiffiffiffiffi
ε2

p ≪ 1) that we employ to derive
Eq. (A4). However, we point out that it is possible to derive
the camouflage impedance Zs even without the small-
argument approximation. In this case, of course, the closed-
form expression is more cumbersome and reads as

Zs ¼ jXs ¼ j
πacμ0ωC0

2ðΔ1 − Δ2Þ
;

Δk¼1;2 ¼
ffiffiffiffi
εk

p
B0;kA1;k − B1;kA0;k

B1;kF0A0;k þ ffiffiffiffi
εk

p
A1;kðG0;kC0 − A0;1F0Þ −G1;kC0A0;k

; ðA6Þ

having An;k, Bn;k as the same expressions as in Eq. (A3)
but replacing the parameters a2, ε2 with ak, εk [e.g.,
An;k ¼ Jnðakk0 ffiffiffiffi

εk
p Þ] and being Fn ¼ Ynðack0Þ and

Gn;k ¼ Ynðakk0Þ, where Yð·Þ is the cylindrical Bessel
functions of the second kind.

APPENDIX B: THE APPARENT SECOND
CAMOUFLAGE SOLUTION

From Fig. 4, it can be observed that for a given
camouflage surface reactance evaluated at f0 using
Eq. (6), a similar value of the SCS is also achieved at
another frequency (in this specific case, around 0.86f0).
This fact can give the mistaken impression that a second
camouflage solution also exists.
To better understand this point, we invite the reader to

look at Fig. 12, where the values of the fundamental
scattering coefficient of the targeted cylinder ðb0Þ and
the coated cylinder ðb00Þ are reported in both real and
imaginary parts as a function of the frequency [Fig. 12(a)]
and as a function of the surface impedance of the cover

[Fig. 12(b)]. Please note that the geometrical parameters of
this case are the same as the ones of the example that we
discuss in Sec. III.
As we clarify in the theoretical part of the manuscript, a

camouflage condition is achieved when both the real and
the imaginary parts of the two scattering coefficients are
equal. As it should be clear in Fig. 12, this condition is met
only at the designed frequency f0, i.e., for the value of
the surface impedance returned by Eq. (6): Xs ¼ Xs1 ¼
−65 Ω=sq.
The other solution that seems to appear in Fig. 4 is due to

the fact that a different frequency also exists (around
0.86f0) for which only the absolute value of the two
scattering coefficients is the same. For this solution,
however, the phase of the scattering coefficient is opposite.
Therefore, this second apparent solution is not interesting
for camouflage applications because the camouflaged
object can still be detectable from the phase distribution
of the scattered electromagnetic field that is different from
the expected one.

FIG. 12. Comparison between the fundamental scattering coefficient of the coated ðb00Þ and targeted ðb0Þ cylinder as (a) the frequency
and as (b) the surface impedance Xs of the cover changes.
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