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Using a kinetic-equation approach, we study the dynamics of electrons and phonons in current-
carrying superconducting nanostrips after the absorption of a single photon of the near-infrared or optical
range. We find that the larger the Ce=CphjTc

ratio (where Tc is the critical temperature of a superconductor
and Ce and Cph are specific heat capacities of electrons and phonons, respectively), the larger the portion
of the photon’s energy goes to electrons. The electrons become more strongly heated and hence can
thermalize faster during the initial stage of hot-spot formation. The thermalization time τth can be less
than 1 ps for superconductors with Ce=CphjTc

≫ 1 and a small diffusion coefficient of D≃ 0.5 cm2=s
when thermalization occurs, mainly due to electron-phonon and phonon-electron scattering in a
relatively small volume of approximately ξ2d (ξ is a superconducting coherence length, while d < ξ
is a thickness of the strip). For longer time spans, due to diffusion of hot electrons’ effective temperature
inside the hot spot decreases, the size of the hot spot increases, the superconducting state becomes
unstable, and the normal domain spreads in the strip at a current larger than the so-called detection
current. We find the dependence of the detection current on the photon’s energy, the location of its
absorption in the strip, the width of the strip, and the magnetic field, and we compare this dependence
with existing experiments. Our results demonstrate that materials with Ce=CphjTc

≪ 1 are bad candidates
for single-photon detectors due to a small transfer of the photon’s energy to electronic system and a large
τth. We also predict that even a several-micron-wide dirty superconducting bridge is able to detect a
single near-infrared or optical photon if its critical current exceeds 70% of the depairing current and
Ce=CphjTc

≳ 1.
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I. INTRODUCTION

The main idea of single-photon detection by the current-
carrying superconducting strip is relatively simple. The
absorbed photon heats the electrons in the restricted area of
the strip (which is called a hot spot), superconductivity is
locally destroyed, and the critical current Ic of the strip is
reduced up to Ispotc < Ic. If the transport current exceeds
Ispotc , a transition to the resistive state occurs, and it is
detected in an experiment.
At the present time, there are several phenomenological

modelswhich offer different scenarios for the appearanceof a
resistive response after photon absorption and which explain
certain experimental results [1–6] (see also a recent review of
such models in Ref. [7]). The drawback of these models is
that they use phenomenological assumptions about the size
of the hot region, the level of suppression of the super-
conductivity, and the part of the photon’s energy which is
stored in the electronic system. Besides, some of these
models [1,4,6] operate with the number of nonequilibrium
quasiparticles in order to find the suppression of the
magnitude of the superconducting order parameter jΔj.
One should keep in mind that this approach is quantitatively

valid only when the deviation of the quasiparticle (electron)
distribution functionn from equilibriumoccurs in the narrow
energy interval δϵ near the superconducting gap ϵg ≫ δϵ,
which is not true in the case of the hot-spot formation in a thin
superconducting strip—especially at its initial stage, when
the effective temperature of electrons can be several times
larger than the bath temperature. Therefore, one can expect
only qualitative validity of the approaches using ideas of the
Rothwarf-Taylor model [8].
Below, we formulate two problems which we solve to

understand what material could be a good candidate for
usage in a superconducting nanowire single-photon detec-
tor. The first problem concerns the question regarding
which part of the energy of the photon goes to the
electronic system and how it is related to material
parameters of the superconducting strip. The second
problem is connected with the question of how fast the
electrons (throughout the paper, by electrons we mean
quasiparticle excitations) are thermalized and what the
role of electron-electron inelastic scattering is. It is known
that all materials which show a good ability to detect
single photons are extremely dirty superconducting strips
with a small diffusion coefficient of D≃ 0.5 cm2=s and a
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low critical temperature of Tc ≲ 10 K. First, a small D
does not allow fast diffusion of electrons, which favors
their fast thermalization because the energy of absorbed
photon is confined to a relatively small volume at the
initial stage of hot-spot formation, leading to a relatively
high “temperature” of the hot electrons. Second, the
smaller D is, the smaller the electron-electron inelastic
relaxation time τe-e, which also decreases the thermal-
ization time τth and increases the capability to detect a
single photon. Indeed, if the thermalization time τth of the
electrons is larger than their diffusion time τD;w ≃ w2=4D
across the strip, with width w, the photon’s energy will be
smeared over a large area, which leads to a smaller
influence on superconducting properties and complicates
the photon’s detection.
To answer the above questions, we numerically solve

kinetic equations for electron and phonon distribution
functions, taking into account electron-phonon, phonon-
electron, and electron-electron scattering. First, we study
the initial stage of the electron-phonon down-conversion
cascade on a time scale comparable to the characteristic time
of the variation of jΔj—τΔ ≃ ℏ=jΔj≃ ℏ=kBTc—during
which one cannot expect a strong suppression of the super-
conducting order parameter and where electrons diffuse at a
distance of only approximately

ffiffiffiffiffiffiffiffiffiffiffi
DτjΔj

p
, which is of about the

superconducting coherence length in dirty superconductors
ξ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏD=jΔjp

. We find that electron-phonon down-
conversion cascade and thermalization in an electronic
system depends not only on the strength of the electron-
electron scattering but also on the ratio of electronic Ce and
phonon Cph heat capacities taken at T ¼ Tc. Indeed, the
larger the ratio Ce=CphjTc

is, the larger the portion of the
photon’s energy that goes to the electronic system. Its
effective temperature becomes higher and the thermalization
time τth shorter.We show that a relatively short τth ≃ τjΔj can
be reached in superconductors with a large Ce=CphjTc

≫ 1

ratio when thermalization occurs, mainly via electron-
phonon and phonon-electron scattering.
We study the dynamics of a hot spot at times t≳ τjΔj for

two limits. For the limit with a short thermalization time
(τth ≃ τjΔj ≪ τD;w), we use a two-temperature model and
solve heat-conduction equations (taking into account the
Joule dissipation) for electron and phonon temperatures
coupled with a modified Ginzburg-Landau equation
for the superconducting order parameter. For the limit
with a large thermalization time (τth ≃ τD;w), we assume a
uniform distribution of electron and phonon effective
temperatures across the strip by the time t≃ τD;w. For
both limits, we find the current-energy relation and the
dependence of the cutoff photon’s energy on the temper-
ature at a fixed ratio I=IdepðTÞ (Idep is a depairing current),

and we study the role of the magnetic field and how the
current-energy relation depends on the strip’s width. We
show that a relatively narrow (width of about 100–
200 nm) superconducting strip with a small ratio of
Ce=CphjTc

≪ 1 needs a current close to Idep to be able to
detect a single photon with energy of about 1 eV. On the
contrary, such a strip with a ratio of Ce=CphjTc

≳ 1 can
detect the same photon at a current much smaller than the
depairing current. Finally, we predict that even wide a
superconducting strip with Ce=CphjTc

≳ 1 and a width of
about several microns can detect a single infrared or
optical photon if the strip can be biased, without a loss of
superconductivity, at I ≳ 0.7IdepðTÞ.
The structure of the paper is as follows. In Sec. II, we

present the basic equations. In Sec. III, we show results
for the initial stage of hot-spot formation (on a time scale
of about τjΔj after the photon’s absorption), when its
radius is smaller than the coherence length. In Sec. IV, we
study the case where instability of the superconducting
state occurs at the moment where the hot electrons reach
both edges of the strip and form a hot belt (the limit of a
large τth), while, in Sec. V, we consider the opposite case,
where the superconducting state becomes unstable before
the hot spot expands across the strip (the limit of a small
τth). In Sec. VI, we compare our results with existing
theories and experiments. In Sec. VII, we deliver our
main results.

II. EQUATIONS

In this section, we present equations which we use to
study the dynamics of electron and phonon distribution
functions in a superconducting strip at the initial stage of
hot-spot formation after absorption of the single photon.
First, here are the kinetic equations for energy, time- and
coordinate-dependent electron n, and phonon-N distribu-
tion functions:

N1

∂n
∂t ¼ D∇½ðN2

1 − R2
2Þ∇n� − R2

∂n
∂ϵ

∂jΔj
∂t

þ Ie-phðn; NÞ þ Ie-eðnÞ; ð1Þ

∂N
∂t ¼ −

N − Neq

τesc
þ Iph-eðN; nÞ; ð2Þ

where N1 and R2 are spectral functions [for their defini-
tions, see the text below Eq. (9)], Neq¼1=½expðϵ=kBTÞ−1�
is an equilibrium distribution function of the phonons, and
Ie-phðn;NÞ, Iph-eðN; nÞ, and Ie-eðnÞ are the electron-
phonon, phonon-electron, and electron-electron collision
integrals:
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Ie-phðn;NÞ ¼ −
1

ðkBTcÞ3
1

τ0

�Z
ϵ

0

dϵ1Mðϵ; ϵ1Þðϵ − ϵ1Þ2½½1þ 2Nϵ−ϵ1 �ðnϵ − nϵ1Þ þ nϵð1 − 2nϵ1Þ þ nϵ1 �

þ
Z

ϵþℏωD

ϵ
dϵ1Mðϵ; ϵ1Þðϵ − ϵ1Þ2½½1þ 2Nϵ1−ϵ�ðnϵ − nϵ1Þ − nϵð1 − 2nϵ1Þ − nϵ1 �

þ
Z

ℏωD−ϵ

0

dϵ1Mðϵ;−ϵ1Þðϵþ ϵ1Þ2½½1þ 2Nϵ1þϵ�ðnϵ þ nϵ1 − 1Þ − nϵð1 − 2nϵ1Þ − nϵ1 þ 1�
�
; ð3Þ

Iph-eðN; nÞ ¼ γ

τ0kBTc

�Z
ϵ

0

dϵ1M½ϵ1;−ðϵ − ϵ1Þ�½nϵ1nϵ−ϵ1 þ Nϵðnϵ−ϵ1 þ nϵ1 − 1Þ�

þ 2

Z
∞

0

dϵ1M½ϵ1; ðϵþ ϵ1Þ�½ð1 − nϵ1Þnϵþϵ1 þ Nϵðnϵþϵ1 − nϵ1Þ�
�
; ð4Þ

Mðϵ;�ϵ1Þ ¼ N1ðϵÞN1ðϵ1Þ ∓ R2ðϵÞR2ðϵ1Þ;

Ie-eðnÞ ¼
αe-e

τ0kBTc

Z
∞

0

Z
∞

0

dϵ1dϵ2

�
E1

jϵ − ϵ1j
½nϵð1 − nϵ1Þð1 − nϵ2Þð1 − nϵ−ϵ1−ϵ2Þ − ð1 − nϵÞnϵ1nϵ2nϵ−ϵ1−ϵ2 �Hvðϵ − ϵ1 − ϵ2Þ

þ E2

�
1

jϵþ ϵ1j
þ 2

jϵ − ϵ2j
�
½nϵnϵ1ð1 − nϵ2Þð1 − nϵþϵ1−ϵ2Þ − ð1 − nϵÞð1 − nϵ1Þnϵ2nϵþϵ1−ϵ2 �Hvðϵþ ϵ1 − ϵ2Þ

þ E3

�
1

jϵ − ϵ1j
þ 2

jϵþ ϵ2j
�
½nϵð1 − nϵ1Þnϵ2nϵ1−ϵ2−ϵ − ð1 − nϵÞnϵ1ð1 − nϵ2Þð1 − nϵ1−ϵ2−ϵÞ�Hvðϵ1 − ϵ2 − ϵÞ

�
; ð5Þ

E1 ¼ a½N1ðϵÞN1ðϵ1ÞN1ðϵ2ÞN1ðϵ − ϵ1 − ϵ2Þ
− R2ðϵÞR2ðϵ1ÞR2ðϵ2ÞR2ðϵ − ϵ1 − ϵ2Þ�
þ b½N1ðϵÞR2ðϵ1ÞR2ðϵ2ÞN1ðϵ − ϵ1 − ϵ2Þ
− R2ðϵÞN1ðϵ1ÞN1ðϵ2ÞR2ðϵ − ϵ1 − ϵ2Þ�:

Coefficients E2 and E3 are expressed via E1 in the
following way: E2 ¼ E1ðϵ1 → −ϵ1Þ, E3 ¼ E1ðϵ → −ϵ;
ϵ1 → −ϵ1Þ. a and b are coefficients on the order of unity
[9,10] and HvðxÞ is a Heaviside function.
Ie-phðn; NÞ and Iph-eðN; nÞ are written above for a case

where one can neglect the renormalization of the electron-
phonon coupling constant due to disorder [11,12], and

1

τ0
¼ g

�
kBTc

ℏωD

�
2 kBTc

ℏ
ð6Þ

is the familiar characteristic time introduced in Ref. [11]
(ωD is a Debye frequency and g is an electron-phonon
coupling constant). Coefficient

γ ¼ 4ℏωDNð0Þ
9Nion

�
ℏωD

kBTc

�
2

¼ 8π2

5

Ce

Cph

����
T¼Tc

; ð7Þ

staying in front of the Iph-e collision integral, is proportional
to the ratio of the electronic CeðTÞ ¼ ð2π2=3Þk2BNð0ÞT

and phonon CphðTÞ ¼ ð12π4=5ÞNionkBðkBT=ℏωDÞ3 spe-
cific heat capacities at T ¼ Tc [Nð0Þ is the one-spin density
of states of electrons in the normal state at the Fermi energy
EF, while Nion is the density of the ions].
The electron-electron collision integral in the form of

Eq. (5) is written for a dirty quasi-2D metallic super-
conducting film with a renormalized electron-electron
coupling constant due to impurities. Coefficient αe-e,

αe-e ¼ τ0
kBTc

4ℏ
R□

RQ
; ð8Þ

describes the strength of electron-electron inelastic scatter-
ing (R□ is the sheet resistance and RQ ¼ 2πℏ=e2 ≃
25.8 kΩ is the quantum resistance). In clean metal coef-
ficients 1=jϵ� ϵ1;2j are absent and Eq. (5) transfers [with
αe-e ¼ τ0ðkBTcÞ2=ð2ℏEFÞ] to an expression present in
Refs. [9,10]. In the normal state, E1 ¼ E2 ¼ E3 ¼ a,
and Eq. (5) coincides [with αe-e ¼ τ0kBTc=ð4ℏkFlÞ and
a ¼ 1] with an e-e collision integral for a 2D dirty metal
from Ref. [13]. For dirty quasi-2D metallic normal film
from Eqs. (1)–(5) and ϵ ≫ kBT, the familiar inelastic e-e
scattering time τe-eðϵÞ¼4ℏRQ=ðϵR□Þ follows [see Eq. (4.4)
in Ref. [14]].
Because the coefficients a and b are unknown for any

metal, we put a ¼ 1 and b ¼ 0. The choice of b ¼ 0 is
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connected with different expressions for Ei behind b which
are present in Refs. [9,10]. If we choose an expression for
Ei from Ref. [10] (as we do in our work), a finite b > 0
leads to an increase of τe-e for electrons having energy close
to jΔj.
The spectral functions N1ðϵÞ and R2ðϵÞ entering Eqs. (1)

and (3)–(5) have to be found in the dirty limit from the
Usadel equation

ℏD∇2Θþ
�
2iϵ −

D
ℏ
q2s cosΘ

�
sinΘþ 2jΔj cosΘ ¼ 0;

ð9Þ

where qs ¼ mvs ¼ ℏð∇ϕ − 2eA=ℏcÞ is the superfluid
momentum, ϕ is a phase of the superconducting order
parameter Δ ¼ jΔjeiϕ, cosΘ ¼ N1ðϵÞ þ iR1ðϵÞ, and
sinΘ ¼ N2ðϵÞ þ iR2ðϵÞ. N1ðϵÞNð0Þ indicates the density
of states of the electrons in the superconducting state, while
R2 enters the equation for the superconducting order
parameter.
A static self-consistency equation for the magnitude of

the order parameter has the following form:

1

λBCS
¼

Z
ℏωD

0

R2

jΔj ð1 − 2nÞdϵ

¼
Z

ℏωD

0

R2

jΔj ð1 − 2neqÞdϵ −Φneq; ð10Þ

where neq ¼ 1=½expðϵ=kBTÞ þ 1� is an equilibrium distri-
bution function of electrons (quasiparticles) and λBSC is a
coupling constant in BCS theory. The suppression of jΔj
due to hot electrons is described by Φneq,

Φneq ¼ 2

Z
ℏωD

0

R2

jΔj ðn − neqÞdϵ: ð11Þ

Very often, to describe the suppression of the order
parameter due to n ≠ neq, the coordinate-dependent density
of the nonequilibrium electrons is used, which is deter-
mined as

Nneqð~rÞ=V ¼ 4Nð0Þ
Z

∞

0

N1½nð~rÞ − neq�dϵ

¼ 4Nð0Þ
Z

∞

jΔj

ϵ½nð~rÞ − neq�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − jΔj2

p dϵ: ð12Þ

The last expression is valid when one can neglect the
gradient term and the term with q2s in the Usadel equation,
which leads to

N1ðϵÞ ¼
ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2 − jΔj2
p Hvðϵ − jΔjÞ ð13Þ

and

R2ðϵÞ ¼
jΔjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2 − jΔj2
p Hvðϵ − jΔjÞ: ð14Þ

The potential Φneq can be expressed via Nneq=V when a
deviation from equilibrium occurs in the narrow energy
interval near jΔj and one can replace ϵ≃ jΔj in the
numerator of Eq. (12) and take it off the integrand:

Φneqð~rÞ ¼ 2

Z
ℏωD

jΔj

nð~rÞ − neqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − jΔj2

p dϵ≃ Nneqð~rÞ
2Nð0ÞjΔjV : ð15Þ

When the deviation from equilibrium occurs in a wide
energy interval and/or it occurs at energies ϵ ≫ jΔj, then
Φneq ≠ Nneq=2Nð0ÞjΔjV due to the presence of an extra
factor ϵ in the numerator of Eq. (12). In this case, usage of
the approach with a number of nonequilibrium electrons
cannot pretend to be a quantitative description and may be
used only as a qualitative analysis.

III. INITIAL STAGE OF HOT-SPOT
FORMATION

When a deviation n from neq occurs in a volume smaller
than ξ3 and on a time scale shorter than a variation time of
jΔj, one cannot expect a strong suppression of super-
conductivity. Therefore, as a first approximation, at times
t < τjΔj we study dynamics of n and N after an absorption
of the photon with jΔj ¼ const. To further simplify the
problem, we also assume that the energy of the photon is
distributed instantly over the volume V init ¼ πξ2d (where
d < ξ is the thickness of the strip). In reality, it takes a time
of about ξ2=D ¼ τjΔj; we argue below that such a sim-
plification should not change the main result of this section.
With the above assumptions, we numerically solve

Eqs. (1)–(5), where we omit the gradient terms and consider
the case of zero current, I ¼ 0 (a finite I leads to a smearing
of the spectral functions at ϵ≃ jΔj and does not influence
our main result). We use different initial conditions, which
corresponds to different physical situations. The electronic-
bubble initial condition,

nϵðt ¼ 0Þ ¼ neq þ αe−ðϵ−ϵ0Þ2=δϵ2ffiffiffi
π

p
δϵ

;

Nϵðt ¼ 0Þ ¼ Neq; ð16Þ
corresponds to the absorption of the photon and the
creation of initial hot electron and hole quasiparticles at
the energy ϵ≃ ϵ0 ≫ δϵ.
The phonon-bubble initial condition,

nϵðt ¼ 0Þ ¼ neq;

Nϵðt ¼ 0Þ ¼ Neq þ βe−ðϵ−ϵ0Þ2=δϵ2ffiffiffi
π

p
δϵ

; ð17Þ

models a situation where, for example, the molecule hits
the strip and excites phonons with the energy ϵ≃ ϵ0.

D. YU. VODOLAZOV PHYS. REV. APPLIED 7, 034014 (2017)

034014-4



Instead of a photon bubble, one can use a phonon-plateau
initial condition (when acoustic phonons of all available
energies 0 ≤ ϵ ≤ ℏωD are excited with an equal proba-
bility), and the results are practically indistinguishable from
the phonon-bubble initial condition (if one is interested
in the thermalization time and dynamics of the energy
contained in the electronic and phonon systems).
The third initial condition corresponds to an extreme

case of a very high e-e relaxation rate, which, at all energies
where ϵ < Ephoton, exceeds the e-ph relaxation rate and at
ϵ≃ kBT is larger than 1=τjΔj. In this situation, electrons are
thermalized at t ≪ τjΔj and all of the energy of the photon is
kept in the electronic system at t ¼ 0,

nϵðt ¼ 0Þ ¼ 1

eϵ=kBTe þ 1
;

Nϵðt ¼ 0Þ ¼ Neq: ð18Þ

In all cases, we choose parameters α, β, and Te in
Eqs. (16)–(18) in a way to keep the absorbed energy per
unit of volume the same. For the electron-bubble condition,
we choose ϵ0 ≫ ℏωD, while, for the phonon-bubble con-
dition, ϵ0 ≃ ℏωD.
During calculations, we check to see that the energy is

conserved:

Ephoton=V init ¼ ðEph þ EeÞ=V init − ðEph þ EeÞeq=V init;

ð19Þ

where Eph is the energy of the phonon system in the Debye
model with a quadratic density of states DðϵÞ ¼ 9ϵ2=ℏωD
per ion,

Eph=V init ¼
1

V init

DðℏωDÞ
ℏðℏωDÞ2

Z
ℏωD

0

ϵ3Ndϵ

¼ E0

γ

Z
ℏωD=kBTc

0

~ϵ3Nd~ϵ: ð20Þ

Ee is the energy of electrons (quasiparticles) in the super-
conductor,

Ee=V init ¼ 4Nð0Þ
�Z

∞

0

ϵN1ndϵ −
jΔj2
4

�
1

2
þ ln

�
Δ0

jΔj
��	

¼ E0

�Z
∞

0

N1 ~ϵnd~ϵ −
� jΔj
2kBTc

�
2

×

�
1

2
þ ln

�
Δ0

jΔj
��	

; ð21Þ

with ~ϵ¼ ϵ=kBTc,Δ0¼ 1.76kBTc, and E0 ¼ 4Nð0ÞðkBTcÞ2.
In our numerical calculations, we use parameters typical

for NbN: ℏωD ¼ 30 meV (the chosen value of ℏωD is a
compromise among a variety of values known for different
phases of NbN [15]), kBTc ¼ 0.86 meV (Tc ¼ 10 K),

T ¼ Tc=2, and Ephoton=E0V init ¼ 60 [with Nð0Þ ¼
25.5 eV−1 nm−3 [16], ξ ¼ 4.8 nm, and d ¼ 4 nm, this
value corresponds to Ephoton ≃ 1.3 eV], and we neglect
the escape of nonequilibrium phonons to the substrate
because, usually, τesc ≫ τjΔj.
When t≲ τjΔj, energy of the absorbed photon of about

1.3 eV is concentrated at a relatively small volume,
V init ≃ πξ2d≃ 290 nm3, which indicates a high energy
concentration. The larger the γ, the higher the temperature
of both the electrons Te and the phonons Tph ¼ Te, as one
can see from Eqs. (19)–(21) if one inserts Fermi-Dirac and
Bose-Einstein functions in them for nϵ and Nϵ, respectively
(these functions nullify collision integrals when the down-
conversion cascade is over and one neglects the diffusion
of the electrons). Because the electron-phonon relaxation
time τe-phðϵ≪kBTeÞ≃T−3

e and τe-eðϵ≪ kBTeÞ≃α−1e-eT−1
e ,

one can expect that, for a relatively large γ and αe-e, the
energy of an optical or near-infrared photon can be shared
between electron and phonon systems and electrons with
phonons can be thermalized by the time t≃ τjΔj.
To prove it in Fig. 1, we show the time dependence of the

energy of the electronic system calculated at different initial
conditions, γ ¼ 1–100, and at the same injected energy.
One can see that, for γ ¼ 100, by the time τsh ≃ 0.001τ0,
the largest part of the injected energy is already shared
between electrons and phonons (even in the absence of
e-e scattering), and τsh increases with a decrease of γ.
Parameter γ controls what part of injected energy goes to
electronic system—the larger γ is, the larger this part is
(see Fig. 1).
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FIG. 1. Dependence of the electronic energy Ee on the time
found in a solution of kinetic equations at different γ’s and
different initial conditions: an electron bubble with ϵ0 ¼
600kBTc, αe-e ¼ 0 (the solid thick curves), a phonon bubble
with ϵ0 ¼ 30kBTc, αe-e ¼ 0 (the dashed curves), and hot elec-
trons with the initial electronic temperature Te ¼ 8.6Tc, αe-e ¼
1000 (the solid thin curves). In all cases, the energy injected into
the electrons and the phonons is the same and is equal to≃1.3 eV
in the volume V init ¼ πξ2d≃ 290 nm3. (Inset) The dynamics of
Ee with an electron-bubble initial condition, αe-e ¼ 0, and
different ϵ0’s. The dashed lines indicate the linear dependence
Ee ¼ Ephotonð1 − t=τleakÞ, with τleak taken from Eq. (22).
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The sharing time, τsh, is actually the thermalization time,
τth, in electronic and phonon systems. In Fig. 2, we show
the time evolution of Φneq (which controls the suppression
of jΔj) at different γ’s and αe-e’s. Results are found for the
case with the phonon-bubble initial condition. Φneq

practically stops depending on time when the electrons
are thermalized and nϵ is described by the Fermi-Dirac
function. We fit numerically ΦneqðtÞ with the expression
Φneqðt → ∞Þ½1 − expð−t=τthÞ� and find τth (examples of
the fitting are shown in Fig. 2). One can see that thermal-
ization time decreases with an increase of γ (which is a
consequence of a larger energy transfer to an electron
system) or an increase of αe-e (which is a consequence of a
shorter τe-e).
In the case with an electron-bubble initial condition

and ϵ0 ≫ ℏωD; δϵ ≪ ϵ0, one can find an analytical expres-
sion for the time τleak during which the energy leaks
from electrons to phonons at the very beginning of the

down-conversion cascade. Indeed, inserting nϵ in the
form of Eq. (16) into a phonon-electron collision integral,
one finds that Iph-e ≃ 2γα=ðτ0kBTcÞ at energies where
ϵ ≫ jΔj. Then, assuming that α depends on time and the
full energy is conserved and is equal to the energy of
the photon (we neglect here Eeq

e þ Eeq
ph ≪ Ephoton), one

finds that Ee ¼ Ephoton expð−t=τleakÞ, with

τleak ¼ τ0
2ϵ0ðkBTcÞ3
ðℏωDÞ4

¼ 2ϵ0ℏ
gðℏωDÞ2

: ð22Þ

At t ≪ τleak, one has the linear decay Ee ¼ Ephoton
ð1 − t=τleakÞ, which is shown as dashed lines in the inset
of Fig. 1. For γ ¼ 100, τleak ≃ τth and the above simple
calculations are valid only qualitatively. For γ ¼ 1, 10,
τleak ≪ τth and there is good quantitative agreement
between the numerical and analytical results at t≲ τleak
(see the inset in Fig. 1). When τleak ≪ τth, the phonon
system absorbs more energy by the time t≃ τleak than it
should have at t ≫ τth, according to the energy-conservation
law [see Eqs. (19)–(21)], and it leads to nonmonotonic time
dependence of Ee when γ ¼ 1, 10 (this effect is absent for
γ ¼ 100 when τleak ≃ τth; see Fig. 1).
For self-consistency of the cited τth, the radius of the

initial hot spot (ξ in our model) should coincide or be
smaller than the diffusion length of the hot electrons,
approximately 2

ffiffiffiffiffiffiffiffiffi
Dτth

p
. To make such a comparison, one

should know τ0, γ, and αe-e for NbN. A theoretical
estimation with the help of Eq. (6) and g ¼ 1 gives
τ0 ≃ 925 ps. τ0 can also be found if one knows
τe-phðTcÞ via the relation τ0 ¼ 14ζð3Þτe-phðTcÞ [9,17]. In
thin NbN film τe-phðTc ¼ 10 KÞ≃ 16 ps [18], which gives
us τ0 ≃ 270 ps. With the last value for τ0 and R□ ¼ 500 Ω,
we find αe-e ≃ 1.8. Such a small αe-e indicates that [see
Fig. 2(b)], at least at the initial stage of hot-spot formation,
e-e scattering plays a small role and down-conversion
cascade and thermalization occurs mainly via electron-
phonon and phonon-electron scattering. Our estimation of
γ ¼ 9 for NbN is based on Nion ¼ 4.8 × 1022 cm−3, calcu-
lated with a molar mass of 106.9 g=mol and a density of
ρ ¼ 8.47 g=cm3 [19]. Therefore, for NbN, τth ≃ 2.1 ×
10−3τ0 ≃ 0.57 ps > τjΔj ≃ 0.42 ps and the radius of the
initial hot spot is 2

ffiffiffiffiffiffiffiffiffi
Dτth

p ≃ 11 nm, more than 2 times
larger than ξ ¼ 4.8 nm. These calculations show that one
cannot expect complete thermalization of electrons and
phonons in NbN by the time that the radius of the hot spot
becomes about ξ and Ephoton ¼ 1.3 eV.
We also do calculations for WSi material, which

demonstrate a good ability to detect single photons in
the optical and near-infrared range [20]. We take the
parameters of WSi from Ref. [21] [Tc ¼ 3.4 K,
Nð0Þ ¼ 26.5 eV=nm3, ℏωD ¼ 34 meV, D ¼ 0.58 cm2=s,
d ¼ 3.4 nm]. The results are shown in Fig. 3, where we use
only the phonon-bubble initial condition and γ ¼ 100,
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FIG. 2. (a) Time evolution of Φneq at different γ’s and two
values of αe-e. Fitting ΦneqðtÞ (when αe-e ¼ 0) with the expres-
sion Φneqðt → ∞Þ½1 − expð−t=τthÞ� is shown by thick dashed
curves with a corresponding τth. (b) Time evolution of Φneq at
γ ¼ 10 and different αe-e’s. All results are obtained for a phonon-
bubble initial condition and T ¼ Tc=2. (Inset) Time evolution of
Tϵ ¼ ϵ=kB lnð1=nϵ − 1Þ at different energies and γ ¼ 10,
αe-e ¼ 100. At t ¼ 0, nϵ ¼ neqϵ , and Tϵ ¼ T ¼ Tc=2 at all
energies. After an injection of energy to the phonon system,
nϵ deviates from equilibrium, which leads to different Tϵ’s. Tϵ ¼
Te ≃ 3Tc at all energies when t ≫ τth ≃ 1.2 × 10−3τ0.
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which is close to the γ ¼ 89 expected for WSi
(Ce=CphjTc

¼ 5.65 is calculated in Ref. [21] with the help
of the molar mass and density of WSi). In this material,
τ0 ≃ 10 ns if one uses the theoretical estimation from
Ref. [21] or τ0 ≃ 1.9 ns, which follows from a recent
experiment where τe-ph was extracted from the temperature
dependence of magnetoconductivity [22]. We adopt the
last value and, with R□ ¼ 595Ω, it gives us αe-e ≃ 5. For
Ephoton ¼ 1.3 eV, we have τth ≃ 1.9 × 10−4τ0 ≃ 0.36 ps ≪
τjΔj ∼ 1.3 ps for WSi, and the radius of the hot spot
2

ffiffiffiffiffiffiffiffiffi
Dτth

p ≃ 9.1 nm is close to the coherence length in
WSi, ξ≃ 8.3 nm, which we use when calculating V init.
It seems that accounting for the diffusion of nonequili-

brium electrons at the initial stage of hot-spot formation (at
t≲ τjΔj) should only decrease τth. Indeed, the volume of hot
spot is V ≪ V init at times t ≪ τjΔj, which leads to a higher
energy concentration and, hence, faster thermalization.
It is obvious that τth depends on the energy of the photon

and V init. This thermalization time can be estimated without
solving the kinetic equations, with the help of the energy-
conservation law [Eq. (19)] and if one associates τth with
τe-phðTeÞ for electrons having the energy ϵ ≪ kBTe.
Assuming that the electron and phonon distribution func-
tions are described by Fermi-Dirac and Bose-Einstein
expressions with T ¼ Te ¼ Tph from Eqs. (20) and (21),
one finds Eqs. (24) and (25) from Sec. IV. For NbN and
WSi materials, it follows from Eqs. (19), (24), and (25) that
the absorption of a photon with the energy 1.3 eV in a
chosen volume Vinit ¼ πξ2d heats locally electrons and
phonons up to the temperatures Te ¼ Tph ≃ 3Tc and
Te ¼ Tph ≃ 7Tc, respectively, which is close to the results
of the numerical calculations [see the insets in Figs. 2(b)

and 3]. τe-phðTeÞ can be expressed via τ0 as τe-phðTeÞ ¼
τ0=½14ζð3Þ�ðTc=TeÞ3 [9,17], which gives τth ¼ τe-phðTeÞ≃
2.2 × 10−3τ0 and 1.8 × 10−4τ0 for these materials, which is
again close to the numerical results.
We make the same calculations for normal metal (we put

jΔj ¼ 0, which in the experiment can be done with the
application of a relatively large magnetic field) and get very
similar results. This finding is not surprising because, at
times where t ≪ τleak, deviation from equilibrium occurs at
energies much larger than jΔj, while, when t > τth, the
main contribution to the collision integrals comes from
energies ϵ≃ kBTe ≫ jΔj≃ 1.76kBTc (see the insets in
Figs. 2 and 3), where the spectral functions N1 and R2

are close to their values in the normal state. We also expect
weak dependence on the bath temperature (if it varies in the
range 0≲ T ≲ Tc) because of large injected energy, which
provides local heating of electrons and phonons up to
Te ≫ Tc.
We have to stress that our results are valid only at

t≲ τjΔj, when the volume of the hot spot is smaller than
V init ¼ πξ2d. At larger times, t≳ τjΔj, shown in Figs. 1–3,
the results should be considered as only a precursor for
the consequent dynamics of Ee and Φneq. To study the
evolution of a hot spot at t≳ τjΔj, we consider two limits.
In the first limit, with the long thermalization time τth ∼
τD;w ≫ τjΔj (τD;w ≃ w2=16D − w2=4D≃ 12.5–50 ps for a
strip with w ¼ 100 nm and D ¼ 0.5 cm2=s, depending on
where the photon is absorbed—in the center or at the edge
of the strip), it is assumed that the largest impact on
superconducting properties occurs when hot electrons
reach both edges of the strip and simultaneously become
thermalized. We expect such a situation in superconductors
with a smallD (≲1 cm2=s) and γ ≤ 1, or in materials with a
relatively large γ (>1) and a large diffusion coefficient,
D ≫ 1 cm2=s. Because, usually, τD;w ≫ τjΔj, we expect
that jΔjðtÞ changes with ΦneqðtÞ instantly and, by the time
that t≃ τD;w, one has a hot belt—a region with heated
electrons and phonons up to a temperature of Te ¼ Tph >
T and a partially suppressed jΔjðTeÞ across the entire width
of the strip [see Fig. 4(a)]. To calculate Te and to find the
critical current of the strip with a hot belt, one can use the
energy-conservation law. This problem is considered
in Sec. IV.
In the second limit, with the short thermalization time

τth ≲ τjΔj, Φneq already reaches its maximal value a short
time after the energy injection (see Fig. 2) with a radius of
the hot spot Rhs ∼ ξ ≪ w [we expect that it is realized in
superconductors with relatively small D (≲1 cm2=s) and a
large γ (≳100)]. Because of the diffusion of electrons, Te
decreases (and Φneq decreases, too) inside the hot spot but,
while Te > Tc and Rhs ≫ ξ, the order parameter in the hot
region is strongly suppressed. It provides a large current-
crowding effect around the hot spot (the superconducting
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FIG. 3. Time evolution of Φneq at γ ¼ 100 and for different
αe-e’s. All results are obtained for the phonon-bubble initial
condition, T ¼ Tc=2, and the parameters of WSi taken from
Ref. [21]. (Inset) Time evolution of Tϵ ¼ ϵ=kB lnð1=nϵ − 1Þ at
different energies and αe-e ¼ 0. After injection of energy to the
phonon system, nϵ deviates from equilibrium, which leads to
different Tϵ’s. Tϵ ¼ Te ≃ 7Tc at all energies where t ≫ τth≃
1.9 × 10−4τ0.
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current avoids the region with a suppressed Δ), and the
current-carrying state may become unstable before hot
electrons reach both edges of the strip [this situation is
shown in Fig. 4(b)]. We study the dynamics of Δ in this
limit using modified time-dependent Ginzburg-Landau
equation. We also introduce the effective temperature of
the electrons and phonons and solve heat-conduction
equations instead of Eqs. (1) and (2). This limit is studied
in Sec. V.

IV. HOT-BELT MODEL

In the hot-belt model, we assume that hot electrons are
thermalized among themselves and with phonons by the
time that they reach the edges of the strip and form a hot
belt with a size of about w × w and with a local temperature
of Te ¼ Tph > T. As a result, the critical current of the strip
becomes equal to IcðTeÞ because usually w ≫ ξ and the
proximity effect from the regions next to the belt, where
jΔjðTÞ > jΔjðTeÞ, can be neglected. We also assume that
the escape time of nonequilibrium phonons to substrate is
τesc ≫ τD;w. The effective temperature Te may be deter-
mined at a given bath temperature T and energy of the
photon from the energy-conservation law

Ephoton

E0w2d
¼ ½EeðTeÞ þ EphðTeÞ� − ½EeðTÞ þ EphðTÞ�; ð23Þ

where EphðTÞ is the dimensionless energy of the phonon
system per unit of volume,

EphðTÞ ¼
1

γ

Z
ℏωD=kBTc

0

~ϵ3N ~ϵd~ϵ ¼
1

γ

π4

15

�
T
Tc

�
4

ð24Þ

(where ℏωD=kBTc ≫ 1 and N ~ϵ is described by the Bose-
Einstein function). In Eq. (23), EeðTÞ is the dimensionless
electronic energy per unit of volume,

EeðTÞ ¼
Z

∞

jΔj=kBTc

~ϵN1n~ϵd~ϵ

−
� jΔj
2kBTc

�
2
�
1

2
þ ln

�
Δ0

jΔj
��

¼ π2

12

�
T
Tc

�
2

− EsðTÞ; ð25Þ

where n~ϵ is described by the Fermi-Dirac function. For N1,
we use Eq. (13) and

EsðTÞ ¼
Z jΔj=kBTc

0

~ϵn~ϵd~ϵ −
Z

∞

jΔj=kBTc

~ϵðN1 − 1Þn~ϵd~ϵ

þ
� jΔj
2kBTc

�
2
�
1

2
þ ln

�
Δ0

jΔj
��

ð26Þ

is the gain in the energy of the electrons due to their
transition to the superconducting state at T < Tc
[EsðTÞ ¼ 0 at T > Tc].
For practical purposes, one may use the following

interpolation expressions for EsðTÞ and jΔjðTÞ:

EsðTÞ ¼
�jΔjðTÞ
2kBTc

�
2
�
1 – 0.053

�jΔjðTÞ
kBTc

�
2

− 0.1

�jΔjðTÞ
Δ0

�
4

− 0.236e−12½1−jΔjðTÞ=Δ0�0.7
�
; ð27Þ

jΔjðTÞ ¼ 1.76kBTc tanhð1.74
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc=T − 1

p
Þ; ð28Þ

which satisfy Eqs. (9), (10), and (26) with an accuracy
better than 2%. Note that the maximal value of Es is
reached at about T ¼ Tc=2, where Emax

s ≃ 1=2.
In the presence of the superconducting current, Es

decreases with a maximal change at I ¼ IdepðTÞ. This
effect can be taken into account only numerically, and it
leads to small quantitative differences from the results
presented in Figs. 5 and 6. We neglect it here.
To calculate at which threshold (we call it detection Idet)

current the photon drives the superconducting strip to
the resistive state, one needs to know the temperature-
dependent critical current, which is equal to IdepðTeÞ in our
model. For simplicity, we adopt the Bardeen expression

Idet ¼ IdepðTeÞ ¼ Idepð0Þ
�
1 −

�
Te

Tc

�
2
�
3=2

: ð29Þ

With Eqs. (23)–(29), it is easy to determine how the
detection current changes with the photon’s energy at a
given T and γ. Examples of these dependencies are shown
in Fig. 5. With an increasing γ, detection current drastically
decreases and, at large γ, practically does not depend on it
because almost all energy of the photon goes to an
electronic system when γ ≫ 1. At γ ≲ 1, only a small

w >>

th
~ 2/4Dth

~ w2/4D

(b) hot spot(a) hot belt

I I

FIG. 4. (a) In material with relatively large thermalization time
τth ∼ w2=4D the superconducting state becomes unstable when
photon induced hot electrons form hot belt (weak link) in the strip.
(b) In material with short thermalization time τth ∼ ξ2=4D the
superconducting state becomes unstable, due to current crowding
effect, before the hot electrons reach both edges of the strip.
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fraction of the photon’s energy goes to the electronic
system, and the detection current is about Idep for the
considered photon’s energies.
If we fix the I=IdepðTÞ ratio, the energy of the photon

Ephoton, whose absorption drives the superconducting strip
to the resistive state, changes nonmonotonically with
temperature (see Fig. 6). The nature of the effect can be
easily understood with the help of Fig. 7. In this figure, we
present IdepðTÞ (the solid curve) and show how much one
should increase the temperature (by δT) in the hot belt to
transfer the strip to the resistive state at three different
temperatures and I=IdepðTÞ ¼ 0.5. δT decreases with an
increase of T but, due to the nonlinear temperature
dependencies EeðTÞ and EphðTÞ, heating the strip from

T ¼ 0.5Tc up to 0.74Tc takes more energy than it does
from T ¼ 0 up to 0.61Tc. Because δT → 0 as T → Tc,
there is a local maxima in dependence EphotonðTÞ (the
position of the maxima depends on γ and I=Idep; see Fig. 6).
In the above consideration, we assume that, at I > Idet,

expanding the normal domain appears in the superconduct-
ing strip, which leads to a relatively large voltage signal in a
contemporary superconducting nanowire single-photon
detector (SNSPD). It is well known that, below some
retrapping current IrðTÞ, the normal domain cannot expand
and shrinks in the current-carrying strip [23,24]. Therefore,
to see the voltage signal in existing SNSPDs, the current in
the strip should at least exceed Ir. Thus, for relatively large
photon energies Idet should be about IrðTÞ and does not
depend on Ephoton. Support for this idea can be found in
Ref. [25], where WSi-based SNSPDs were studied. In
Fig. 3(a) of that work, the dependence of the photon
detection efficiency (DE) on the current is present at
different temperatures. One can see that, in a wide temper-
ature interval, DE starts to increase at the current which
weakly depends on the temperature. This phenomena
resembles weak temperature dependence of Ir at relatively
low temperatures [see, for example, Fig. 7(b) in Ref. [24]],
in contrast to the noticeable temperature dependence of the
critical (switching) current in the same temperature interval
[compare Fig. 3(a) of Ref. [25] to Fig. 7(b) of Ref. [24]].
For the same reason, one should treat the results shown

in Fig. 6 carefully at temperatures close to Tc. As T → Tc,
the retrapping current approaches the depairing (critical)
current and at a certain temperature where Ir ¼ Idep (in
Ref. [24], it occurs at T ≃ 0.82Tc). Therefore, the results
presented in Fig. 6 are valid when the current is larger
than IrðTÞ.
Let usmake estimations forNbNandWSi.E0w2d≃ 3 eV

and γ ∼ 9 in the case of a NbN strip with w ¼ 100 nm and
d ¼ 4 nm. For WSi strip E0w2d≃ 0.7 eV and γ ∼ 89
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(w ¼ 150 nm, d ¼ 3.4 nm). According to Fig. 5 at current
I ¼ Idep=2 and temperature T ¼ Tc=2 NbN strip would be
able to detect single photons with energy 1.35 eV, while a
WSi strip can detect photons with a much smaller energy
0.23 eV, if one believes that the hot-belt model is valid for
these materials and τesc ≫ τD;w.

V. HOT-SPOT TWO-TEMPERATURE MODEL

In this section, we study a limiting case with a short
thermalization time τth ≃ τjΔj at the initial stage of hot-spot
formation. Because of the diffusion of hot electrons (one
may neglect the diffusion of hot phonons due to their much
lower group velocity compared to the one for electrons),
concentration of the absorbed photon’s energy in a hot
spot with a radius Rhs > d decreases as 1=R2

hs. However,
because Ee ∼ T2

e [see Eq. (25)] and Eph ∼ T4
ph [see Eq. (24)],

the temperature of the electrons drops under about 1=Rhs.
One also should keep in mind that, with a decrease of Te
and Tph, the major part of the photon’s energy goes to the
electronic system due to a faster decrease of Eph than in Ee.
Because, the diffusion time τD ∼ R2

hs=4D rapidly
increases, one can expect that during diffusion the non-
equilibrium electrons have time for their thermalization and
that the electron distribution function can be described by the
Fermi-Dirac function with an effective temperature Te ≠ T.
Indeed, when Te ≃ Tc, the diffusion of hot electrons is
impeded due to a large jΔj (≃Δ0 ≃ 1.76kBTc) outside the
hot spot, which should favor the thermalization of electrons.
In NbN, electrons and phonons are not thermalized on

time scales ≲ξ2=4D (see Sec. III). However, the difference
between diffusion time and thermalization time is not
huge and one can expect that, despite an absence of full
thermalization, Φneq is relatively strong inside the growing
hot spot and is sufficient to suppress jΔj substantially.
Indirect prove of this idea comes from the experiment with
a magnetic field [26] which validates the hot-spot model
with a strongly suppressed Δ in this material. From a
quantitative point of view, usage of the two-temperature
(2T) model for NbN leads to a smaller value for the
detection current (at a fixed energy of the photon) due to the
stronger suppression of jΔj inside the hot spot than when
the electrons are not fully thermalized.
In the absence of phonon-phonon interaction, thermal-

ization of the phonons occurs only via electron-phonon and
phonon-electron scattering. Our study of the initial stage of
hot-spot formation demonstrates the dependence of the
dynamics ofΦneq only on the value of the injected energy to
the phonon system, not on the method of injection
(phonon-bubble or phonon-plateau initial conditions). To
account for the energy adopted by the phonon system
during the diffusion of electrons, we assume that the
phonon distribution function is described by the Bose-
Einstein expression with a phonon temperature Tph, which,
in general, can be different from Te.

With the above assumptions from Eqs. (1)–(4), one
can derive (as was done in Ref. [27] for a normal metal)
equations for the dynamics of electron and phonon
temperatures,

∂
∂t

�
π2k2BNð0ÞT2

e

3
− E0EsðTe; jΔjÞ

�

¼ ∇ks∇Te −
96ζð5ÞNð0Þk2B

τ0

T5
e − T5

ph

T3
c

þ ~j ~E; ð30Þ

∂T4
ph

∂t ¼ −
T4
ph − T4

τesc
þ γ

24ζð5Þ
τ0

15

π4
T5
e − T5

ph

Tc
; ð31Þ

where ks is the heat conductivity in the superconducting
state,

ks ¼ kn

�
1 −

6

π2ðkBTeÞ3
Z jΔj

0

ϵ2eϵ=kBTedϵ

ðeϵ=kBTe þ 1Þ2
�
: ð32Þ

kn ¼ 2Dπ2k2BNð0ÞTe=3 is the heat conductivity in the
normal state, and the last term in Eq. (30) describes the
Joule dissipation (~j is the current density and ~E is an
electric field).
Note that, when both jΔj and Te vary on a time scale

comparable to τjΔj, jΔj is not determined by Te via Eq. (10)
or (27), and for Es in Eq. (30), one has to use Eq. (26) with
the independent time-dependent variables TeðtÞ and jΔjðtÞ.
As a physical consequence, variation of jΔj leads to the
heating or cooling of electrons [28], depending on the sign
of ∂jΔj=∂t.
For the derivation of Eqs. (30)–(32) we use Eqs. (13) and

(14) for N1 and R2 and we put M ¼ 1 into Ie-ph and Iph-e,
which is strictly valid when jΔj ¼ 0. In the superconduct-
ing state, M ≠ 1, which leads to an increase of τe-ph and,
hence, the process of the cooling of electrons via their
coupling with phonons becomes longer. However, because
the cooling of electrons is faster due to diffusion [usually,
τe-phðTcÞ > τD;w], we do not expect a large influence for
this effect, at least on a time scale t < τD;w.
For a normal metal with Tph ¼ T, Eq. (30) was obtained

in Refs. [27,29] and, in the limit jTe;ph − Tj ≪ T, the above
equations with zero-gradient terms coincide with Eqs. (13)
and (14) in Ref. [30].
Appearance of the hot spot (the region with a suppressed

jΔj) in the strip leads to current redistribution. To find the
current distribution in each moment in time, one has to solve

equation div~j ¼ 0, where the current density ~j ¼ ~js þ ~jn
consists, in general, of superconducting ~js and normal ~jn
parts. The superconducting current in the dirty (Usadel) limit
is described by the following expression:
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~jUss ¼ σn
eℏ

~qs

Z
∞

0

2N2R2ð1 − 2nϵÞdϵ

≃ πσn
2eℏ

jΔj tanh
� jΔj
2kBTe

�
~qs; ð33Þ

where σn ¼ 2e2DNð0Þ is the normal-state conductivity.
The last expression in Eq. (33) is obtained in the limit of

a small jqsj (≪ qdeps ), omitting the spatial derivative in
Eq. (9) [in this case, 2N2R2 ¼ πδðϵ − jΔjÞ=2, where δðxÞ is
the Dirac function] and when, for nϵ, one uses the Fermi-
Dirac function. It turns out that this expression gives a good
approximation for ~jUss at all jqsj’s and we use it in our
calculations. When kBTe ≫ jΔj, from Eq. (33), one can
derive a well-known expression for js in the Ginzburg-
Landau model,

~jGLs ¼ πσnjΔj2
4ekBTcℏ

~qs: ð34Þ

For the normal component of the current density, we
adopt the simplified expression

~jn ¼ −σn∇φ ð35Þ
(φ is the electrostatic potential), which follows from a more
general expression (see, for example, Refs. [31,32]) in the
limit kBTe ≫ jΔj. Note that the normal current density has
a large value (comparable to or larger than js) only in the
region with a suppressed jΔj, which confirms our choice.
To calculate the effect of nϵ ≠ neqϵ or Te ≠ T on jΔj, we

use a modified time-dependent Ginzburg-Landau equation
which describes the dynamics of the complex order
parameter Δ ¼ jΔjeiϕ. Equation (10) is not convenient
for studying the situation when a vortex (or vortices)
appears in the superconducting system because, strictly
in the center of the vortex jΔj ¼ 0, j~qsj ¼ ∞ and there is a
nonzero vorticity

H ∇ϕdl ¼ �2π (þ for vortex and − for
antivortex). It is more convenient to deal with an equation
which operates with a complex order parameter where
vortices appear naturally. Unfortunately, the usual
Ginzburg-Landau (GL) equation is quantitatively valid
only near Tc. Therefore, we modify the coefficients at
the spatial derivative and at the nonlinear term (ΔjΔj2) in
the GL equation to have the temperature dependence
jΔjðTÞ and ξðTÞ close to correct at all temperatures,

πℏ
8kBTc

� ∂
∂tþ

2ieφ
ℏ

�
Δ

¼ ξ2mod

�
∇ − i

2e
ℏc

A

�
2

Δþ
�
1 −

Te

Tc
−

jΔj2
Δ2

mod

�
Δ

þ i
ðdiv~jUss − div~jGLs Þ

jΔj
ℏD

σn
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Te=Tc

p ; ð36Þ

where ξ2mod ¼ π
ffiffiffi
2

p
ℏD=ð8kBTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Te=Tc

p Þ, Δ2
mod ¼

½Δ0 tanhð1.74
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc=Te − 1

p Þ�2=ð1 − Te=TcÞ, and A is the

vector potential. When Te → Tc, the coefficients ξ2mod and
Δ2

mod go to familiar GL coefficients in the dirty limit. We
check to see that Eqs. (36) and (33) give the depairing
current close to the one which follows from the dirty limit at
all temperatures (the largest deviation < 5% occurs at
T ¼ 0), in contrast to the Ginzburg-Landau depairing
current. The last term on the right-hand side of Eq. (36)
provides a conservation of the superconducting current in
the stationary state with _ϕþ 2eφ=ℏ ¼ 0: div~jUss ¼ 0. If we
do not include this term, the stationary solution of Eq. (36)
leads to div~jGLs ¼ 0. The presence of hot electrons is
reflected in Eq. (36) by Te ≠ T, whose effect on jΔj is
analogical to the effect of Φneq ≠ 0 in Eq. (10).
In the framework of the considered model, the electro-

static potential should be found from the current conser-
vation law,

div~jn ¼ −σn∇2φ ¼ −div~jUss : ð37Þ
Equations (30), (31), (36), and (37) are solved numeri-

cally for a 2D superconducting strip of finite width
w ¼ 20ξc and length L ¼ 4w ¼ 80ξc. ξ2c ¼ ℏD=kBTc ≃
1.8ξ2modðTe ¼ 0Þ is a natural length scale in the Usadel
equation when the energy is scaled in units of kBTc, and we
keep it for a modified GL equation, too. At the transverse

edges, we use the boundary conditions ~jnjn ¼ ~jsjn ¼ 0 and
∂Te=∂n ¼ 0, ∂jΔj=∂n ¼ 0, while, at the longitudinal

edges, Te ¼ T, jΔj ¼ 0, ~jsjn ¼ 0, ~jnjn ¼ I=wd. The latter
boundary conditions model contact of the superconducting
strip with a normal reservoir in equilibrium. This choice is
not explained by any physical reason, but it is connected
with the simplest way “to inject” the current into the
superconducting strip in numerical modeling.
In numerical calculations, we scale the time in units

τTc
¼ ℏ=kBTc, which is proportional to τjΔj at low temper-

atures. We choose τ0 ¼ 900 ps≃ 1184τTc
, which corre-

sponds to our theoretical estimation for NbN with
Tc ¼ 10 K (see the discussion in Sec. III). We check to
see that the results change slightly with an increase or
decrease of τ0 because main cooling of the hot electrons is
due to their diffusion and not their coupling to the phonons
(which is controlled by τ0), at least at times t≲ w2=4D.
Based on the results of Sec. III, we assume that, after

absorption of the photon by the strip, the hot spot with size
2ξc × 2ξc appears with Te;ph ¼ T init > T inside the hot spot
and Te;ph ¼ T outside it, while jΔj ¼ jΔjðTÞ everywhere.
With this initial condition at t ¼ 0, we study the dynamics
of Δ and Te;ph in the strip. In our calculations, we put
τesc ¼ ∞ (the effect of a finite τesc is discussed in Sec. VI).
We find that, for any T init > T, there is a threshold

current (we call it a detection current, Idet) above which the
normal domain nucleates and expands in the strip after the
appearance of the initial hot spot. The mechanism of
destruction of the superconductivity depends on the
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position of the initial hot spot in the strip. When it is located
near the edge, at some stage of the hot-spot evolution
(expansion), the vortex enters the region with a suppressed
jΔj from the nearest edge of the strip and passes through the
superconductor. After that, the second, third, and suc-
ceeding vortices pass through the strip, and the electrons
are heated because of the presence of electric field ~E and
diffuse along the strip, which leads to expansion of the
normal domain in the superconductor. When the initial hot
spot is located near the center of the strip, the vortex and
antivortex nucleate inside the expanding hot spot and move
to opposite edges of the strip and, at I > Idet, the normal
domain again spreads in the strip. The time evolution of the
voltage drop along the strip and the electronic temperature
in the center of hot spot located in the center of the strip are
shown in Fig. 8 for photons with different energies (differ-
ent T init’s) and at a current slightly above IdetðT initÞ.
Note that the moving vortices can be nucleated in the

strip with a hot spot at a smaller current, I ¼ Ivort < Idet,
but their motion does not lead to the appearance of the
growing normal domain when Idet ≪ Idep. Instead, after the
passage of one or several vortices (the number of vortices
depends on the current), the superconductivity recovers in
the strip. This recovery occurs because, in the range of the
currents Ivort < I < Idet, cooling of the hot electrons due to
their diffusion outside the moving vortex core (where j~Ej is
maximal) is not compensated for by their heating due to
Joule dissipation, ~j ~E∼I2.
The dependence of both Ivort and Idet on the coordinate of

the initial hot spot and different T init’s is present in Fig. 9
(for material with γ ¼ 10). This result qualitatively

coincides with the one found in the quasistationary hot-
spot model (where the present Ivort was defined as Idet)
[5,26] and resembles the experimental result in Ref. [33] [in
Ref. [6], the nonmonotonic dependence IdetðyÞ was pre-
dicted, but without two local minima near the edges and, in
that model, vortices enter the strip only via the edges].
Neither in Refs. [5,26] nor in Ref. [6] has the heating of the
superconductor due to vortex motion or the condition for
the appearance of the normal domain been studied.
As is discussed in Ref. [5], dependence IdetðyÞ explains

the monotonic dependence of the detection efficiency of the
SNSPD on the current [when it changes from its minimal,
Idet (Imin

det ), up to its maximal value, Imax
det ]. It is interesting to

note that the difference, Imax
det − Imin

det , decreases with an
increase of T init (the energy of the photon), which resem-
bles the experimental results found for detectors based on
WSi (see Fig. 2 in Ref. [20]), NbN (see Fig. 1 in Ref. [26]),
and MoSi (see Figs. 2 and 4 in Ref. [34]). If one does not
take into account the heating effects and associates Idet with
Ivort, then Imax

det − Imin
det ¼ Imax

vort − Imin
vort increases with an

increase of the energy of the photon (see Fig. 9 here or
Fig. 5 in Ref. [5]).
When I > Imax

det , the detection efficiency reaches its
maximal value [5]. Imax

det is located either in the center of
the strip or at its edge, depending on T init (see Fig. 9 and
compare it to Fig. 5 in Ref. [26] and Fig. 4 in Ref. [5]). In
Fig. 10, we show the dependence of Imax

det on the energy of
the photon. Qualitatively, Fig. 10 resembles the results
shown inFig. 5 for the hot-beltmodel, butwith one important
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is slightly larger than Idet for a corresponding T init (see Fig. 9). At
t≳ δt, there is rapid growth of the voltage because of expansion
of the normal domain. Oscillations in Vs and Tcenter

e are connected
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the photon with the energy Ephoton ≃ 30.5E0ξ

2
cd ≃ 0.38 eV,
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cd≃1.04 eV, T init ¼ 2.4Tc →

Ephoton ≃ 162E0ξ
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cd≃ 2.0 eV) by a NbN strip with the

parameters used in Sec. III.
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quantitative difference. In the case of a superconductorwith a
short thermalization time (Fig. 10), one needs a smaller
current to detect the single photon—or, at fixed current, the
photon—with lesser energy than can be detected by the strip
with a large thermalization time (Fig. 5).
In Fig. 11, we present the dependence Imax

det ðEphotonÞ for
strips of different widths. The most interesting result is that
the detection ability of the strip does not depend on its
width when Imax

det =Idep ≳ 0.7. The effect originates from
current crowding around a finite-size spot with a sup-
pressed jΔj, which leads to instability of the superconduct-
ing state at I ≲ Idep even in the infinitely wide film [2].
Owing to magnetic-field screening by the supercondu-
ctors, this effect exists only in finite-width strips with

w≲ Λ ¼ 2λ2L=d, where λL is the London penetration depth
and screening can be neglected (for a NbN film with the
thickness d ¼ 4 nm and λL ≃ 450 nm, Λ≃ 100μm≃
15800ξc). Analytical calculations in the London model
predict that a static normal spot with a radius R ≫ ξ
destroys the superconducting state in the infinite film at
a current I > 0.5Idep [see Eq. (12) in Ref. [2]], while
calculations using a stationary Ginzburg-Landau equation
give I ≳ 0.7Idep (see the inset of Fig. 4 in Ref. [35]). The
last result is very close to our finding where, in addition,
we take into account the expansion of the hot spot and
Joule heating.
As in the case of the hot-belt model, we calculate how

the energy of the photon, whose absorption drives the strip
to the resistive state, depends on the temperature at a fixed
ratio I=IdepðTÞ. From Fig. 12, one can see that this
dependence is a nonmonotonic one, as it is in the hot-belt
model (compare Figs. 12 and 6).
Finally, we study the effect of the perpendicular mag-

netic field on Idet. The results (see Fig. 13) are similar to the
theoretical findings of Ref. [26], where Idet is associated
with Ivort [compare Fig. 13 to Fig. 6(a) in Ref. [26]]. The
only difference is that, in the present model, we do not find
pinning of the vortices in the strip with w ¼ 20ξc at any of
the considered T init’s (we find that, in a wider strip,
expanding the hot spot can pin the vortices when T init is
relatively large). A small variation of Imin

det in the case of a
large T init, we mainly connect with weaker Joule heating as
the current decreases, which worsens conditions for the
appearance of the growing normal domain. This result
correlates with a known effect: that the retrapping
current of a superconducting strip has a much weaker
field dependence than its critical current (see, for example,
the current-voltage characteristics of the NbN strip
in Ref. [35]).
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VI. DISCUSSION

A. Electron-phonon down-conversion cascade

The initial stage of an electron-phonon down-conversion
cascade on a time scale of t≲ τjΔj is studied in our work
using kinetic equations for a spatially uniform system with
the volume V init ¼ πξ2d≃ πDτjΔjd. In a comparison to
previous works [36,37], we take into account e-e inelastic
scattering and focus on the question of how the thermal-
ization time, τth, and the distribution of the photon’s energy
between the electronic and phonon systems depend on
parameters of the superconductor and on time.
By the time t≃ τleak (which is about 1 ps for both the

NbN and WSi materials and Ephoton ≃ 1 eV), part of the
photon’s energy, initially fully absorbed by the electrons,
leaks to the phonons, while another fraction stays with the
electrons. Subsequent dynamics depends on the relation
between τleak and τth. When τleak ≪ τth in the time interval
τleak < t≲ τth, both Ee and Eph vary nonmonotonically in
time (with back energy flow from phonons to electrons and
vice versa), while, at t ≫ τth, they become time indepen-
dent. In the case of a short thermalization time, τth ≲ τeak,
such a nonmonotonic dependence is absent and, at
t > τth ∼ τleak, both Ee and Eph practically do not depend
on time and the electrons are thermalized.
We find both analytically and numerically that τleak is

proportional to the energy of the photon and is inversely
proportional to the square of the Debye energy. The
expression for τleak [see Eq. (22)] coincides with
the expression for time τ1, introduced in Ref. [37] with
the replacement of 3E1 by 2ϵ0 [E1 ≫ ℏωD is determined
in Ref. [37] as the energy at which τe-phðϵÞ ¼ τe-eðϵÞ]. By

the time t≃ τ1 in the model of Ref. [37], practically all of
the energy of the photon is transferred to the phonon
system. Our calculations show that, by the time t≃ τleak,
only part of photon’s energy goes to the phonons and the
size of this part depends on the parameter γ (see Fig. 1).
The thermalization time depends on γ, the strength

of the e-e scattering, and the energy of the photon. The
larger that γ ∼ Ce=CphjTc

is, the larger the part of the
photon’s energy that finally goes to the electrons and
the shorter τth is. We find that, in the case of a relatively
large γ (≳100) and Ephoton ≃ 1 eV, the thermalization time
may be about that of the leakage time—even in the absence
of e-e scattering. We also find that, for a typical low
temperature, “dirty” superconducting NbN- or WSi-film
e-e scattering plays no role in the electron-phonon energy
cascade at t≲ τjΔj.
In materials with a short τth (≃τjΔj), the electron-phonon

down-conversion cascade at t > τjΔj is connected with a
cooling of the electrons and phonons due to the diffusion of
hot electrons and the suppression of jΔj. We study this
problem assuming the complete thermalization of electrons
at every step of the diffusion process. In this approach,
suppression of the superconducting order parameter is
described solely by Te ≠ T and instability of the super-
conducting state occurs before the hot electrons reach both
edges of the superconducting strip.

B. Effect of finite escape time
and kinetic inductance

In our calculations, we neglect energy flow to the
substrate, which is controlled by the escape time of the
nonequilibrium phonons, τesc, in Eq. (2). One also should
keep in mind that, in SNSPDs, the current deviates from the
superconductor and flow via the shunt when the super-
conducting strip or meander transits to the resistive state.
Both effects obviously should increase Idet because a
decrease of τesc enhances a cooling of the electrons, while
a decrease of the current weakens Joule heating and
worsens the conditions for the appearance and the expan-
sion of the normal domain. An impression about character-
istic time scales can be extracted from Fig. 8. The normal
domain expands at t≳ δt (at such times, voltage grows
rapidly) and δt increases with a decreasing Idet due to a
decrease of Joule dissipation as I2. Therefore, when τesc ≲
δt and the kinetic inductance of the detector Lk is relatively
small—thus, Lk=Rs ≲ δt (Rs is averaged over the time-
interval ½0; δt� resistance of the superconductor)—these
effects must be taken into account. In Fig. 14, we show the
effect of a finite τesc on the energy-current relation. For a
large γ, escape of the nonequilibrium phonons to a substrate
has less effect on Idet because of the large Ce=CphjTc

ratio,
leading to a rise in the time of the energy transfer from the
electronic system to the phonon one and then to the
substrate.
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C. Current-energy relation

Both the hot-belt and 2T hot-spot models predict a
nonlinear current-energy relation (see Figs. 5 and 10). The
nonlinearity at small energies comes from the nonlinear
temperature dependence of the critical (depairing) current
and the energy of the electron and phonon systems and, in
the case of the hot-spot model, additional nonlinearity
comes from the current-crowding effect around the hot spot
in a strip with a finite width [38]. Nonlinearity at high
energies originates from the existence of a retrapping
current, below which the normal domain cannot expand
in current-carrying superconductors. Therefore, at high
energies, Idet should not depend on the photon’s energy
(at least in modern SNSPDs, where a large voltage signal
appears only when a large part of the superconducting strip
converts to the normal state) and it should be about that of
Ir. The retrapping current goes to zero when τesc → ∞
(when the length of the superconductor is much larger than
the so-called healing length [39]). That is why, in Figs. 5
and 10, there is no saturation of Idet at high energies (in
those calculations, τesc ¼ ∞).
In Ref. [40], a nonlinear current-energy relation was

found (see Fig. 12 therein) in a model which resembles our
hot-belt model. Kozorezov et al. [40] assume that the
electrons are thermalized and become uniformly distributed
across the strip soon after absorption of the photon. The
main difference between our hot-belt model and the
approach of Ref. [40] is that we explicitly take into account
the heating of the phonons by an absorbed photon and, for
simplicity, we neglect the effect of the current on the
electronic energy in the superconducting state (the last
effect should be important for studying multiphoton detec-
tion [41] when relaxation of the hot-spot induced by the
first photon at long time periods is determined mainly by
electron-phonon inelastic relaxation [40] on the back-
ground of a large jΔj (≫kBTe). In Ref. [40], the part of

the photon’s energy which goes to the electronic system is
called the energy-deposition factor, and it is considered a
fitting parameter which does not depend on Ephoton. From
Eqs. (23)–(25) and (29), it follows that the part of the
photon’s energy which goes to the electronic system does
depend on Ephoton due to the nonlinear temperature
dependencies EeðTÞ and EphðTÞ.
An experimentally nonlinear current-energy relation was

observed for NbN- and WSi- [26] (in the inset of Fig. 10
from Ref. [26], results for a WSi detector are extracted from
the results of Ref. [20]) and MoSi-based [34] detectors. To
make a quantitative comparison between theory and experi-
ment, one has to know many material parameters, some of
which are known [Nð0Þ, Tc, R□, D] and some of which are
not (γ, αe-e, τesc). The last parameters can be extracted from
additional experiments where Nion, ωD, τe-e, and τesc can be
measured. Our calculations of γ for NbN andWSi are based
on the Nion found from the molar mass and density of these
materials, while the Debye frequency either is taken from
the available experimental data (where it varies for different
phases of NbN by more than 2 times [15]) or is the result of
a reasonable estimation [21]. In the expression for αe-e, we
set a ¼ 1 [see Eq. (5)], which is not justified by any
experiments or rigorous calculations (due to their absence).
Taking into account these circumstances and the absence of
reliable value for τesc, we did not make a quantitative
comparison with an experiment in our work.
In a theoretical paper [6] by Engel et al., a nearly linear

current-energy relation is predicted, and in Ref. [42], such a
dependence is observed for a NbN bridge in a large interval
of photon’s energies (in Ref. [43], current-energy relations
for NbN and TaN meanders look like linear ones, but they
were found in a narrow energy interval and could be fitted
by nonlinear functions with only one fitting parameter; see
Ref. [38]). An experiment shows [44] that, for a WSi
bridge, the current-energy relation is also nearly linear, with
a small deviation from linear behavior at low energies. The
reason for the discrepancy between experimental results
found in the meander and the bridge geometry is not clear at
the moment. For example, it could be connected to the
nonuniform current distribution which appears naturally in
the bridge whose length is comparable to its width. In such
a geometry, the current density is maximal near the edges of
the bridge, which definitely should affect the position-
dependent detection current and may influence the current-
energy dependence quantitatively.

D. Temperature-dependent cutoff wavelength

It has been found in many experiments that the detection
efficiency of SNSPDs at fixed current drops very fast at
wavelengths larger than some critical value (referred to as
the cutoff wavelength, λc, or the red-boundary wavelength
[16,43]). Systematic measurements of λcðTÞ in Ref. [45]
reveal that λc decreases with an increase in the temperature
(in the considered temperature interval 0.05Tc–0.6Tc)
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when one keeps the I=IdepðTÞ ratio constant. It is in contrast
to the naive expectation that, as T → Tc and jΔj decreases,
one needs a lower energy photon (having a longer wave-
length) to destroy superconductivity.
We calculate the cutoff photon’s energy at different

temperatures and a fixed I=IdepðTÞ ratio in hot-belt (see
Fig. 6) and 2T hot-spot (see Fig. 12) models. Both models
predict an increase of cutoff energy (a decrease of λc) with a
temperature increase when T ≲ T1 [T1 ¼ 0.6Tc–0.8Tc,
depending on the model, the I=IdepðTÞ ratio, and the
parameter γ]. In both models, the effect mainly comes
from the nonlinear temperature dependence of the elec-
tronic and phonon energies (see the discussion around
Fig. 7).

E. Photon detection at temperatures near Tc

As T → Tc, both models predict a decrease of cutoff
energy (an increase of λc) in the temperature interval
0.6Tc–0.8Tc ≲ T < Tc when one does not take into
account expansion of the normal domain. When
I < IrðTÞ, the normal domain cannot expand in the super-
conducting strip and SNSPDs should lose their ability to
detect single photons. Because IrðTÞ ¼ IcðTÞ [IcðTÞ is the
critical current of the real meander or strip], at some
temperature T� close to Tc, the detector cannot detect
single photons when T ≳ T�. Actually, it can stop detecting
single photons even at lower temperatures. Indeed, the
retrapping current is determined from the balance between
Joule heating and heat removal to the substrate. For a
relatively short normal domain (with a length shorter than
the thermal healing length η [39]), additional heat removal
comes from the diffusion of hot electrons from the hot
spot, which increases Ir. From Eqs. (30) and (31), it follows
that the healing length at Te ≃ Tc and jTe − Tcj ≪ Tc is
η¼ ½2π2Dτ0=1440ζð5Þ�1=2½ð1þαÞ=α�1=2, where α ¼ π4τ0=
½450ζð5Þγτesc�. With the parameters used for NbN, τ0 ¼
270 ps and τesc ≃ 20 ps, we find that α≃ 0.3 and
η≃ 29 nm≃ 4.5ξc, which is larger or comparable to the
radius of a hot spot when it drives the current-carrying
superconducting strip to the resistive state (the radius of
such a hot spot can be extracted for different Ephoton’s from
Fig. 8; Idet is minimal for a hot spot which touches the edge
of the strip [5,26]).

F. Magnetic field as a probe for detection mechanism

Current-energy relation and temperature dependence of
cutoff photon’s energy following from hot-belt and 2T hot-
spot models are qualitatively the same. To distinguish
which model is related to the experiment, one needs to
make a quantitative comparison, but it is difficult to do so
due to the lack of many material parameters. However, the
response of the detector to a magnetic field is qualitatively
different in hot-belt and hot-spot models. In the hot-belt
model (and in any model which assumes a uniform, across

the strip distribution of nonequilibrium electrons), the
applied magnetic field increases detection efficiency at
any current [26] (or does not change it if DE reaches a
plateau at high current). In the hot-spot model, due to a
position-dependent Idet, a weak magnetic field may
decrease DE in a finite interval of currents [26].
Therefore, the magnetic field plays the role of a qualitative
probe for the detection mechanism.

G. Single-photon detection by a micron-wide strip

In the hot-spot model, detection of a relatively high-
energy photon by a wide thin strip (with a width of up to
several microns) does not depend on its width if it can carry
a superconducting current larger than 0.7Idep (see Fig. 11
and the accompanying text). It brings a qualitative differ-
ence with a hot-belt model where the detection ability
depends strongly on the width of the strip at any current.
Experimental observation of this effect could open the way
for an alternative design of SNSPDs in the form of a wide
bridge, which has a much smaller kinetic inductance than
present meander-type detectors and, hence, much shorter
voltage pulses. Nowadays, detectors based on NbN or TaN
have a critical current up to 0.6Idep [43], which is not large
enough (see Fig. 11) for an implementation of this idea.

H. Single-photon detection by a high-Tc
superconducting strip

Let us discuss perspectives of high-Tc materials to be
used as active elements in SNSPDs. For simplicity, we use
the normal-spot (NS) model and neglect the current-
crowding effect and the position dependence of the
detection current. In this oversimplified model, the radius
of a normal hot spot can be found using Eq. (23) with the
replacement w2 → πR2, Te ¼ Tc and assuming a bath
temperature T ≪ Tc [in this case, EsðTÞ≃ 0.4]:

RNS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ephoton

4πdNð0ÞðkBTcÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

π2=12þ π4=ðγ15Þ þ 0.4

s
:

ð38Þ

In this model, the detection current linearly depends on
the radius of the normal spot and does not depend on its
position,

Idet
Idep

¼
�
1 −

2RNS

w

�
; ð39Þ

which is a consequence of neglecting the current-crowding
effect and the assumption that the photon absorbed near the
edge of the strip creates a normal spot of the same shape (a
circle) as the photon absorbed in the center of the strip.
This normal-spot model gives an order-of-magnitude-

correct estimation when (i) the current is smaller than
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0.5Idep (but larger than the retrapping current), and
(ii) RNS ≳ w=4 and the effect of current crowding is
relatively small [see Fig. 4 in Ref. [35] for a comparison
of Eq. (39) to a numerical result where this effect is taken
into account for a normal spot located in the center of the
strip]. Indeed, for parameters of the NbN-based detector
from Ref. [26], which demonstrated an intrinsic detection
efficiency (IDE) of about unity at I=Idep ≃ 0.5 for a photon
with the wavelength λ ¼ 1000 nm (see Fig. 2 in Ref. [26])
and γ ¼ 9, one finds RNS ≃ 26 nm from Eq. (38). With the
help of Eq. (39) and with w ¼ 100 nm, we get
Idet=Idep ≃ 0.5, which is close to the experimental value.
However, in a superconductor with Tc ¼ 100 K and the
same other material parameters, such a photon creates a hot
spot with a radius 10 times smaller (RNS ≃ 2.6 nm), and
one needs a strip with a width w≃ 10 nm to detect this
photon with IDE≃ 1 at I ¼ 0.5Idep. The actual width
should be even smaller because parameter γ is approx-
imately equal to 1=T2

c [see Eq. (7)], which additionally
decreases the radius of the normal spot.
The situation differs at currents larger than about 0.7Idep,

where the energy of the photon weakly depends on the
width of the strip (see Fig. 11). For example, for a NbN
detector in Ref. [26] and a photon with λ ¼ 1000 nm,
Ephoton=E0ξ

2
cd≃ 100, while, for a superconductor with

Tc ¼ 100 K and the same other parameters, Ephoton=
E0ξ

2
cd≃ 10, which means that one needs a current of

about 0.9Idep to have an IDE≃ 1, but with no limit for the
width (while it is smaller than the Pearl length).
The above arguments show that the use of a high-Tc

material in SNSPDs necessitates a much narrower strip than
a low-Tc material requires or that a strip must be of very
high quality to have a critical current of about 90% of the
depairing current to detect an optical or near-infrared
photon with an intrinsic detection efficiency of about unity.

VII. CONCLUSION

Our main conclusions are as follows:
(1) After absorption of the near-infrared or optical

photon by a dirty superconducting strip, the thermal-
ization time of both electrons and phonons can be of
about the time variation of magnitude of super-
conducting order parameter τjΔj when the radius of
the hot spot does not exceed the superconducting
coherence length. Such a situation can be realized in
superconductors with a relatively small diffusion
coefficient (D≃ 0.5 cm2=s) and a large Ce=CphjTc

ratio (≫ 1).
(2) At times t > τjΔj, the hot electrons are cooled due to

their diffusion, energy exchange with phonons, and
suppression of jΔj inside the expanding hot spot.
The larger the energy of the photon, the larger the
size of the hot spot where the local temperature
Te ≳ Tc and the superconducting state becomes
unstable at smaller currents.

(3) Instability is connected with the nucleation and
motion of the vortices before the hot spot expands
over the whole width of the strip. However, vortex
motion leads to the appearance of a growing normal
domain only at currents larger than the so-called
detection current, whose value depends on the
energy of the photon, the place where the photon
is absorbed and the magnetic field. The detection
current cannot be smaller than the retrapping current
of the strip.

(4) In superconductors with a small Ce=CphjTc
ratio

(≪ 1), detection of a near-infrared or optical photon
is possible only at a current close to the depairing
current in the strip with a width w ≥ 20ξc because
only a small fraction of the photon’s energy goes to
the electrons. We may make the same conclusion for
superconductors with a large diffusion coefficient
because, in this case, the size of the hot spot is pretty
large by the time that the electrons are thermalized
(hot electrons may form the hot belt across the strip),
which leads to locally smaller heating and a weaker
influence on the superconducting properties.

Calculations made for WSi with material parameters
available from the literature allow us to conclude that the
hot-belt model should be irrelevant for detectors made from
this material and a strip with w ¼ 150 nm because
τD;w ≃ w2=16D≃ 28 ps, which is much larger than τth ≃
0.36 ps (see Sec. III). We can make the same conclusion for
NbN materials despite the absence of complete thermal-
ization of the electrons at the initial stage of hot-spot
formation. This conclusion is mainly based on the exper-
imental results of Ref. [26], which support the hot-spot
model with a strongly suppressed jΔj inside the hot spot.
Only for high-energy photons—when Idet ≪ Idep and the
size of the expanding hot spot, which drives the super-
conductor to the resistive state, is comparable to the width
of the strip—may one expect the hot-belt model to give
reasonable results. The hot-belt model can be also useful
for the study of two-photon detection [40,41], where there
is a time delay between the absorption of two photons and
the hot region can expand over the whole width of the
superconducting strip.
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