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We report on the design and implementation of a field-programmable Josephson amplifier (FPJA)—a
compact and lossless superconducting circuit that can be programmed in situ by a set of microwave drives
to perform reciprocal and nonreciprocal frequency conversion and amplification. In this work, we
demonstrate four modes of operation: frequency conversion (transmission of −0.5 dB, reflection of
−30 dB), circulation (transmission of −0.5 dB, reflection of −30 dB, isolation of 30 dB), phase-preserving
amplification (gain > 20 dB, one photon of added noise) and directional phase-preserving amplification
(reflection of −10 dB, forward gain of 18 dB, reverse isolation of 8 dB, one photon of added noise). The
system exhibits quantitative agreement with the theoretical prediction. Based on a gradiometric super-
conducting quantum-interference device with Nb=Al-AlOx=Nb Josephson junctions, the FPJA is first-order
insensitive to flux noise and can be operated without magnetic shielding at low temperature. Owing to its
flexible design and compatibility with existing superconducting fabrication techniques, the FPJA offers a
straightforward route toward on-chip integration with superconducting quantum circuits such as qubits and
microwave optomechanical systems.
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I. INTRODUCTION

Many superconducting quantum circuits rely on micro-
wave photons tomeasure or couple quantumsystems, such as
superconducting qubits ormicromechanical resonators [1,2].
The ability to process microwave fields with minimal
degradation is crucial to the observation of truly quantum
behavior. For example, quantum-limited amplification max-
imizes measurement fidelity, a crucial metric in quantum
computing [1,3,4], quantum feedback [5–7], the observation
of quantum trajectories [8], and position measurements [9].
Similarly, the efficient routing ofmicrowave photons enables
long-distance entanglement [10] and is an important tool in
proposals for quantum networks [11].
Recent developments in Josephson-junction-based

parametric amplifiers have led to an order of magnitude
improvement in measurement efficiency compared to
commercially available high-electron-mobility-transistor
(HEMT) amplifiers [12–14]. However, these amplifiers
are reciprocal devices; i.e., their scattering parameter
amplitudes are symmetric under the exchange of source
and detector [15–17]. As a consequence, in order to protect
the device under test from amplifier backaction and to
control signal flow, they require the use of microwave
circulators to separate input signals from amplified output
onto different physical ports. These components drastically
reduce quantum measurement efficiencies [18,19]. In

addition to their intrinsic loss, circulators are relatively
large and require large dc magnetic fields, preventing direct
integration into modern superconducting circuits.
The limitations outlined above have motivated the devel-

opment of nonreciprocal, nonmagnetic, lossless circuits
[16,17,20–27]. Many of these approaches seek to provide
highly efficient routing or amplification solutions that can be
tightly integrated with superconducting circuits. For exam-
ple, Josephson traveling-wave parametric amplifiers were
specifically designed to achieve high directional gain over
several gigahertz of bandwidth, with a large dynamic range
[27]. In this work, we demonstrate a wider range of
nonreciprocal behavior, using parametrically coupled multi-
mode circuits to build an interferometer in frequency space
[16,17]. Owing to the directional phase shift inherent in
parametric interactions, different interferences occur in the
forward and backward directions. Complex networks of
coupled modes can be programmed in situ by choosing a set
of applied parametric microwave drives, leading to a variety
of nonreciprocal scattering parameters. The versatility of this
approach was recently demonstrated in a Josephson para-
metric converter [26]. In this work, we present an alternative
circuit design, based on lumped-element niobium compo-
nents coupled via a single gradiometric superconducting
quantum-interference device (SQUID), insensitive to flux
noise. Experimental measurements of both the scattering
parameters and noise performance show quantitative agree-
mentwith theoretical calculations.Here,we focus on cases in
which two or three modes are coupled and demonstrate four
basic functions: frequency conversion, circulation, phase-
preserving amplification, and directional phase-preserving
amplification. In the following, we discuss the device and
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measurement setup and then describe each mode of oper-
ation. Detailed calculations, noise calibrations, and device
fabrication details are given in the appendixes.

II. DESCRIPTION OF THE
FIELD-PROGRAMMABLE JOSEPHSON

AMPLIFIER (FPJA)

The device shown in Fig. 1 consists of three lumped-
element resonant circuits in parallel connected to a single
SQUID. The SQUID acts as a tunable linear inductor that can
be modulated at microwave frequencies. The device is
mounted in a dilution refrigerator and measured in reflection;
see Fig. 1(a). The scattering parameters are measured using a
vector network analyzer with a frequency-conversion option.
A separate broadbandpump line is used to thread flux through
the SQUID loop. The circuit exhibits resonances at three
frequencies,ωa, ωb, andωc. Each of these resonances shows
a dependence on the SQUID inductance which is, in turn,
modulated by the applied SQUID flux Φ, as shown in
Fig. 1(b). The circuit components are designed to place all
three resonances within the 4-GHz to 8-GHz band, while
ensuring that all of the possible frequency combinations
ωj � ωk, where j, k ∈ fa; b; cg, are well separated—a
critical property for well-controlled parametric interactions
(see Appendix B). Coupling capacitors to ground and to the
50-Ω environment set the external coupling rates to the single
measurement line, κextj . The use of a low-loss dielectric for the
capacitors (amorphous silicon, loss tangent ≲5 × 10−4)
ensures that these rates exceed the internal loss rates κintj
by more than an order of magnitude and dominate the total

linewidths κj ¼ κextj þ κintj . In the following,we fix thedc flux
bias to Φ=Φ0 ≈ 0.29, where Φ0 is a flux quantum, and the
measured frequencies and linewidths are summarized in
Fig. 1(c).

III. OPERATION OF THE FPJA

Currents from the three resonators of the FPJA flow
through the SQUID, effectively linearly coupling their
dynamics. These dynamics occur at vastly different frequen-
cies and, to first order, they can be treated independently.
However, the modulation of the coupling element, here
the SQUID inductance, can lead to parametric coupling
between the resonators [28,29], as discussed in Appendix B.
In the presence of such a pump, the time-dependent coupling
strength between the modes j and k is

gjkðtÞ ¼
δΦjkðtÞ

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂ωj

∂Φ
∂ωk

∂Φ
r

; ð1Þ

where δΦjkðtÞ ¼ jδΦjkj cosðωp
jktþ ϕjkÞ is the flux modu-

lationwith an amplitude jδΦjkj, a frequencyωp
jk, and a phase

ϕjk. The coupling term in the Hamiltonian of the system
depends on the modulation frequency. Specifically, the
pump canmediate two kinds of parametric coupling between
two modes. For pump frequencies of the form jωj − ωkj,
where j, k ∈ fa; b; cg, the creation or annihilation of a pump
photon enables the coherent exchange of a photon between
the modes j and k, leading to frequency conversion. For
pump frequencies of the form ωj þ ωk, the annihilation of a
pump photon creates a correlated pair of photons in the
modes j and k, leading to amplification. Importantly,
multiple pumps can be simultaneously applied to program
an arbitrary set of coupling terms between the modes. A
network of modes and couplings can be built, defining the
behavior of the circuit.We utilize a graph-based analysis [16]
that emphasizes the topology of the coupling network, which
is crucial to building intuition and leads to a good agreement
with the data. The general methodology consists of solving
the Heisenberg-Langevin coupled equations of motion
(EOM) of the circuit for a given pump configuration.
Using input-output formalism, we calculate the scattering
parameters and the output noise of the system. Detailed
calculations are available in Appendix B.

A. The FPJA as a frequency converter

We start with the first building block: frequency con-
version between two modes—here chosen to be a and b. We
modulate the flux through the SQUID with a pump at a
frequencyωp

ab ≈ jωb − ωaj. An input signal of amplitudeain,
driving themode amplitudea at a frequencyωs

a, is coupled to
the mode amplitude b, leading to an output signal of
amplitude bout at a frequency ωs

b ¼ ωs
a þ ωp

ab, and vice
versa [see Fig. 2(a)]. The EOMs in the signal frame reduce to
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FIG. 1. Device and experimental setup. (a) A superconducting
resonant circuit is measured in reflection in a cryostat (LPF: low-
pass filter). It exhibits three resonances whose frequencies are
tunable by the flux applied to a single SQUID. (b) Measured
resonance frequencies ωa, ωb, and ωc, as a function of the flux
bias to the SQUID. (c) Table of device parameters for
Φ=Φ0 ≈ 0.29, showing the resonance frequency ωj, the total
linewidth κj, and the coupling efficiency ηj ¼ κextj =κj of each
mode j.
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κaΔaaþ ffiffiffiffiffiffiffiffiffi
κaκb

p
βabb ¼ i

ffiffiffiffiffiffiffi
κexta

p
ain;

κbΔbbþ ffiffiffiffiffiffiffiffiffi
κaκb

p
β�aba ¼ i

ffiffiffiffiffiffiffi
κextb

q
bin; ð2Þ

with Δj ¼ ðωs
j − ωjÞ=κj þ i=2 being the normalized detun-

ing for mode j and βab ¼ jgabjeiϕab=ð2 ffiffiffiffiffiffiffiffiffi
κaκb

p Þ the normal-
ized coupling between the mode amplitudes a and b.
Importantly, this coupling term is complex, with its phase
ϕab and amplitude jgabj inherited from the pump.We show in
Fig. 2(b) a graph representation of theEOMs inEq. (2), where
vertices represent the mode amplitude and arrows represent
the detuning and coupling terms. In the ideal resonant case,
defined as ωp

ab ¼ jωb − ωaj and ωs
j ¼ ωj, and neglecting

internal loss, κintj ¼ 0, the scatteringmatrixS for the system is

S ¼

0
B@

1−4jβabj2
1þ4jβabj2

4iβab
1þ4jβabj2

4iβ�ab
1þ4jβabj2

1−4jβabj2
1þ4jβabj2

1
CA: ð3Þ

Close examination of the scattering matrix reveals that
unity transmission coincides with impedancematching (zero
reflection) at jβabj ¼ 1=2, and the corresponding signal-flow
diagram [30] is shown in Fig. 2(c). We note here that

Sba ¼ −S�ab, naively providing gyration. While this relation
will be crucial later for establishing directionality, on its own
it is not unconditionally nonreciprocal due to an ambiguity in
the reference frame when describing scattering between two
different frequency modes [15,16,31].
The measured scattering parameters in our device are

shown in Fig. 2(d) as a function of the detuning
δj ¼ ωs

j − ωj. We fit the measured response using the full
solutions of Eq. (2), finding very good agreement with the
data. Specifically, we measure only 0.5 dB of insertion loss,
fully captured by including the internal loss of the reso-
nators so that jSbaj2 ¼ κexta κextb =κaκb (see Appendix B). The
circuit is well matched, with 30 dB of return loss. The
bandwidth of conversion is

ffiffiffiffiffiffiffiffiffi
κaκb

p
=2π ≈ 30 MHz.

B. The FPJA as a two-mode amplifier

We now describe the second building block: amplifica-
tion between two modes—here chosen to be a and b. We
modulate the flux through the SQUID with a pump at the
sum frequency ωp

ab ≈ ωb þ ωa. An input signal at a
frequency ωs

a is amplified and generates an idler at −ωs
b ¼

ωs
a − ωp

ab [see Fig. 3(a)]. In contrast to the frequency-
conversion case in Eq. (2), the dynamics of the mode
amplitude a are now coupled to the conjugate-mode
amplitude b�, and the EOMs in the signal frame reduce to

κaΔaaþ ffiffiffiffiffiffiffiffiffi
κaκb

p
βabb� ¼ i

ffiffiffiffiffiffiffi
κexta

p
ain;

−κbΔ�
bb

� −
ffiffiffiffiffiffiffiffiffi
κaκb

p
β�aba ¼ i

ffiffiffiffiffiffiffi
κextb

q
b�in; ð4Þ

withΔj¼ðωs
j−ωjÞ=κjþi=2 and βab¼jgabje−iϕab=ð2 ffiffiffiffiffiffiffiffiffi

κaκb
p Þ.

Again, when making a comparison with the frequency-
conversion case, one can notice the sign change for the
detuning term and the coupling term in the equation for b�.
These subtle differences lead to a very different scattering
matrix S, which, in the ideal resonant case (ωp

ab ¼ ωb þ ωa

and ωs
j ¼ ωj) and neglecting internal loss (κintj ¼ 0), is

S ¼

0
B@

1þ4jβabj2
1−4jβabj2

4iβab
1−4jβabj2

−4iβ�ab
1−4jβabj2

1þ4jβabj2
1−4jβabj2

1
CA: ð5Þ

Close examination of the scattering matrix in Eq. (5)
reveals a divergence for jβabj ¼ 1=2, in stark contrast to the
frequency-conversion case [Eq. (3)]. In the limit
jβabj → 1=2−, each scattering parameter has an amplitude
gain related to

ffiffiffiffi
G

p
≈ 2=ð1 − 4jβabj2Þ, and the full signal

flow is shown in Fig. 3(c). As in the frequency-conversion
case, note that Sba ¼ S�ab. In Fig. 3(d), we show the
measured scattering parameters for various values of
jβabj, i.e., for various pump powers. As jβabj increases,
so too does the gain, at the expense of a typical reduction in
linewidth [32]. Good agreement is found with a fit to the
solutions of Eq. (4).
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FIG. 2. Frequency converter. (a) Frequency-space diagram. A
strong pump of frequency ωp

ab ¼ jωb − ωaj converts an input
signal at the frequencyωs

a ¼ ωa þ δa to a output signal frequency
ωs
b ¼ ωb þ δb, and vice versa. (b) Graph representation of the

EOM (2). (c) Ideal signal-flow diagram. (d) Measured scattering
parameters (the dots) and fits to Eq. (2) (the lines), for a fixed
pump strength jβabj ≈ 0.5, as a function of the detuning δj. The
device exhibits good impedance matching (low return loss) and
near-unity transmission.
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The noise performance of the amplifier is shown in
Fig. 3(e), and additional details can be found in
Appendix C. In a separate experiment, we calibrate an upper
bound for the system-addednoiseof themeasurement setup at
the reference plane of the FPJA, allowing us to convert the
noise floor into photonunits. The system-addednoise referred
to the input of theFPJA is thenobtainedbydividing the output
noise by themeasured gain. For jβabj ¼ 0, the internal loss of
the resonators acts as an attenuator and we observe a slight
degradation of the system-added noise, up to nadd ≈
40 photons at ωa and nadd ≈ 30 photons at ωb. As the gain
increases, the noise contribution of the measurement chain is
overwhelmed and the system-added noise decreases, down to
nadd ≈ 1.0� 0.1 photons at ωa and ωb, approaching the
standard quantum limit (SQL) of nSQLadd ¼ 0.5. The system-
added noise plateaus at high gain, remaining slightly above
the SQL. This limit could originate from excess thermal
population of the resonators or potential excess loss in the
FPJA packaging—or simply from an offset in the reference
plane of the noise calibration.

C. The FPJA as a circulator

By connecting all three resonators via frequency con-
version, we can build the first nontrivial mode of operation:
the circulator. Using three pumps, we modulate the flux
through the SQUID at the difference frequencies

ωjk ≈ jωj − ωkj, where j, k ∈ fa; b; cg, satisfying the
condition ωp

ab þ ωp
bc ¼ ωp

ac [see Fig. 4(a)]. Effectively,
these pumps form a closed loop in frequency space
connecting the input and output signals at ωs

j, where
j ∈ fa; b; cg. The EOMs in the signal frame reduce to

κaΔaaþ ffiffiffiffiffiffiffiffiffi
κaκb

p
βabbþ ffiffiffiffiffiffiffiffiffi

κaκc
p

β�acc ¼ i
ffiffiffiffiffiffiffi
κexta

p
ain;

κbΔbbþ ffiffiffiffiffiffiffiffiffi
κbκc

p
βbccþ ffiffiffiffiffiffiffiffiffi

κaκb
p

β�aba ¼ i
ffiffiffiffiffiffiffi
κextb

q
bin;

κcΔccþ ffiffiffiffiffiffiffiffiffi
κaκc

p
βacaþ ffiffiffiffiffiffiffiffiffi

κbκc
p

β�bcb ¼ i
ffiffiffiffiffiffiffi
κextc

p
cin; ð6Þ

with Δj¼ðωs
j−ωjÞ=κjþi=2 and βjk¼jgjkjeiϕjk=ð2 ffiffiffiffiffiffiffiffiffi

κjκk
p Þ,

where j, k ∈ fa; b; cg. The graph representation of this
equation is shown in Fig. 4(b). This loop topology is at the
heart of the nonreciprocal behavior of this mode of
operation. Indeed, by closing this loop, we build an
interferometer, where the phase shift in each arm is
direction dependent. The interference is controlled by
the loop phase ϕloop ¼ ϕab þ ϕbc − ϕac, where ϕjk is the
phase of the pump connecting modes j and k. In the ideal
resonant case ωjk ¼ jωj − ωkj and ωs

j ¼ ωj, neglecting
internal loss, tuning each coupling strength to produce the
ideal frequency conversion (jβjkj ¼ 1=2), and, for
ϕloop ¼ −π=2, the scattering matrix S for the system is
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FIG. 3. Two-mode amplifier. (a) Frequency-space diagram. A strong pump of frequency ωp
ab¼ωbþωa amplifies an input signal at the

frequency ωs
a ¼ ωa þ δa and generates an idler at the frequency −ωs

b¼−ωbþδb, and vice versa. (b) Graph representation of the EOM (4).
(c) Ideal signal-flow diagram. (d)Measured scattering parameters (the dots) and fits to Eq. (4) (the lines), as a function of the detuning δj, for the
increasingpumpstrengthβab (fromdark to light color). (e)Measured system-addednoise (thedots) and theoretical predictions (the lines) referred
to the input of the FPJA, as a function of the detuning δj.
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S ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA: ð7Þ

In this case, the system is matched, with jSjjj ¼ 0, and
nonreciprocal, jSjkj ≠ jSkjj, corresponding to the signal-
flow diagram in Fig. 4(c). An input signal in mode a
circulates to mode b and then c. The direction of circulation
is controlled by the loop phase and can be reversed by
setting ϕloop ¼ π=2.

Experimentally, we start by tuning the pumps to produce
ideal frequency conversion between each pair of modes
separately, and then we simultaneously turn on all three
pumps. The measured scattering parameters for ϕloop ¼
−π=2 are shown in Fig. 4(d). The full dependence with the
loop phase ϕloop is shown in Fig. 8. Very good agreement is
obtained with the solutions of Eq. (6). With the return loss
exceeding 20 dB, the device exhibits an excellent imped-
ance match at all three modes. We measure a transmission
efficiency of more than −0.5 dB and an isolation exceeding
20 dB over a 6-MHz bandwidth. A transmission efficiency
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of more than −1 dB and an isolation exceeding 10 dB is
maintained over a 60-MHz bandwidth.

D. The FPJA as a directional amplifier

When operated as a two-mode amplifier, the FPJA is
nondirectional (see Fig. 3), and it requires a circulator to
separate the input and output signals. In this section, we
circumvent this requirement by operating the FPJA as a
directional amplifier. Using three pumps, we modulate the
flux through the SQUID at the frequencies ωp

ac ≈ ωc − ωa,
ωp
ab ≈ ωb þ ωa, and ωp

bc ≈ ωc þ ωb, satisfying the overall
loop closure condition ωp

ac þ ωp
ab ¼ ωp

bc [see Fig. 5(a)].

This pump configuration corresponds to simultaneously
connecting modes a and c via frequency conversion
while connecting modes a and b and modes b and c via
amplification, forming a loop in frequency space. The
resulting EOMs are

κaΔaaþ ffiffiffiffiffiffiffiffiffi
κaκb

p
βabb� þ

ffiffiffiffiffiffiffiffiffi
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p
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p
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κbκc

p
βbcc −

ffiffiffiffiffiffiffiffiffi
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p
β�aba ¼ i

ffiffiffiffiffiffiffi
κextb

q
b�in;

κcΔccþ
ffiffiffiffiffiffiffiffiffi
κaκc

p
β�aca −

ffiffiffiffiffiffiffiffiffi
κbκc
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ffiffiffiffiffiffiffi
κextc

p
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The graph representation of these EOMs is shown in
Fig. 5(b). As in the circulator case, the loop phase ϕloop ¼
ϕab þ ϕbc þ ϕac controls the directionality of the device. In
the ideal resonant case, neglecting internal loss, tuning
coupling strength to produce ideal frequency conversion
between modes a and c, jβacj ¼ 1=2, for symmetric
amplification coupling strength jβabj ¼ jβbcj and for
ϕloop ¼ −π=2, the scattering matrix S is

S ¼

0
B@

0 0 1ffiffiffiffiffiffiffiffiffiffiffiffi
G − 1

p ffiffiffiffi
G

p
0ffiffiffiffi

G
p ffiffiffiffiffiffiffiffiffiffiffiffi

G − 1
p

0

1
CA; ð9Þ

where
ffiffiffiffi
G

p ¼ ð1þ 4jβabj2Þ=ð1 − 4jβabj2Þ. In this configu-
ration, mode a serves as the input port and is impedance
matched (no reflection). An input signal is amplified
toward both output modes b and c. The amplified signal
at each output is added to the amplified vacuum seeded into
mode b, resulting in the same minimum system-added
noise as for a standard two-mode amplifier. Finally,
vacuum noise seeded into mode c is routed to mode a
with unity gain. The measured scattering parameters for
ϕloop ¼ π=2 are shown in Fig. 5(d). The full dependence
with the loop phase ϕloop is shown in Fig. 9. Good
agreement is obtained with the numerical solutions of
Eq. (8). We obtain a forward gain of 18 dB while
maintaining good impedance matching (a return loss in
excess of 10 dB) and isolation (in excess of 8 dB). The
noise performances are shown in Figs. 5(e), 5(f), and 5(g),
corresponding to the respective outputs of modes a, b,
and c. The system-added noise measured at the outputs of
modes b and c, referred to the input of mode a, approach the
quantum limit with nadd ≈ 1.1� 0.1 photons. Moreover,
because of the directionality of the amplifier, we do not
observe any noise rise at the output of mode a, and we
therefore do not expect any backaction on a future device
under test— a crucial property for the integrated measure-
ment of a microwave quantum system.

IV. DISCUSSION AND CONCLUSION

The approach presented in this work is compatible with
most superconducting quantum-computation systems, open-
ing the way to full integrability and scalability. We note that,
to accommodate various devices under test, it would be
straightforward to design a circuit with bare resonance
frequencies placed between 2 and 20 GHz and linewidths
individually set between 5 and 500 MHz. Routing the
different mode frequencies to separate physical ports relies
on the design of a low-loss on-chip microwave multiplexer,
directly compatible with the device fabrication.
Compared to recent work using a Josephson parametric

converter (JPC) [26], our approach differs on both the
design and technological levels. The JPC exploits a design
with a high degree of symmetry to naturally separate the

modes to different physical ports and to maximize the
dynamic range. The design choices in the FPJA are
intended to take advantage of a powerful niobium-based
fabrication technology that enables (1) the design of low-
loss and compact lumped-element circuits, (2) the fabri-
cation of a high critical current, gradiometric, SQUIDs with
on-chip ac and dc flux bias, and (3) the straightforward
extension to more complex multimode circuits.
To conclude, we have demonstrated the ability to

program in situ a low-loss superconducting device to
perform reciprocal and nonreciprocal analog microwave
signal processing close to the quantum limit. We emphasize
that we have shown here only a small subset of all the
possible networks of parametrically coupled modes. Other
networks, using three or more modes, could, for example,
lead to phase-sensitive directional amplification, opening
the way to the ideal detection efficiency of microwave
signals.
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APPENDIX A: DEVICE FABRICATION
AND LAYOUT

The device is fabricated with optical lithography by
using a Nb=Al-AlOx=Nb trilayer process to form
Josephson junctions, and by utilizing amorphous silicon
(a-Si) as a low-loss interlayer dielectric. The circuit layout
and pictures are shown in Fig. 6. The device fabrication is
summarized in Fig. 6(c):

(i) A Nb=Al-AlOx=Nb trilayer is prepared on a high-
resistivity intrinsic silicon wafer (>20 kΩ cm) by
subsequently sputtering a 200-nm Nb layer (red), an
8-nm Al layer which is then oxidized to form a
tunnel barrier (black) and, finally, a 110-nm Nb layer
(yellow). The preparation of the trilayer is performed
in situ in a sputtering deposition tool without
breaking vacuum.

(ii) The trilayer is patterned top down in three iterations
of optical lithography followed by material etching.
First, the Josephson-junction (JJ) areas are defined
by etching the top Nb layer (yellow) using a vertical
plasma etch (SF6=O2). Second, the excess Al-AlOx
(black) is removed everywhere except around the
junctions by a wet etch (MF-26A, which is also
the optical resist developer). Finally, we define the
bottom wiring layer in Nb (red) using a sloped
plasma etch (CF4=O2).

(iii) The Josephson junctions and the bottom wiring layer
are covered by a 300-nm amorphous silicon layer
(a-Si) deposited by PECVD. Vias are then defined
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by etching into the a-Si layer using a sloped plasma
etch (SF6=O2).

(iv) After an in situ rf clean, a 300-nm Nb layer is
sputtered and patterned by a vertical plasma etch
(SF6) to define the top wiring layer (blue). This etch
also removes any uncovered a-Si.

The properties of the a-Si layer are characterized by
independent measurements of lumped-element LC reso-
nators fabricated on the same wafer as the FPJA, yielding a
relatively high dielectric constant (ϵr ≈ 9) and a low loss
tangent (1.5–5 × 10−4). This allows for the design of
compact and low-loss lumped-element capacitors and
inductors. The Josephson junctions have an area of
2.5 × 2.5 μm2, and the oxidation parameters lead to a
critical current of Ic ¼ 5 μA per junction. The SQUID

loop has a gradiometric design, first-order insensitive to
magnetic fields.
The design of the device is based on a circuit with three

discrete poles, each tunable by a single SQUID inductance.
The circuit consist of three LC resonators connected in
parallel (LSQC1, L2C2, and L3C3), as shown in Fig. 6.
Alternatively, this device can be understood as two LC
resonators, L2C2 and L3C3, coupled via a resonant cou-
pling element (formed by the SQUID shunted by C1). The
resonances of this circuit, denoted a, b, and c, tune with the
SQUID flux, as shown in Fig. 1. Throughout this work, we
use the SQUID as a tunable linear coupling element,
neglecting the intrinsic nonlinearity of the SQUID. To
understand the origin of the bilinear coupling between the
three modes, one can consider the energy stored in the

(d) (e)

(a)

C1
C2 C3

L2 L3

Cg Cg
Fig. 6(e)

Fig. 6(d)

(b)

C1 C3C2

L3L2

Cg Cg

Linecut z2

in Fig. 6(c)

Linecut z1

in Fig. 6(c)

(c)

JJ JJ C1 C2 via via

z1z2

crossovers

Nb

Nb

Si

a-Si

Al-AlOx Trilayer

Nb

1

2

3

4

FIG. 6. Device fabrication and layout. (a) False colored optical micrograph. The silicon substrate is in gray, the bottom Nb layer in red,
and the top Nb layer in blue. Overlap between the two Nb layers forms parallel-plate capacitors, in purple. (b) Circuit equivalent of the
device. (c) Fabrication process, along the cross sections z1 and z2 shown in (d) and (e). In step 1, the Nb=Al-AlOx=Nb trilayer is
prepared on an intrinsic silicon wafer. In step 2, the trilayer is patterned top down in three steps to define Josephson junctions and the
bottom Nb wiring layer. In step 3, the a-Si dielectric layer is deposited and patterned to define vias. In step 4, the Nb layer is deposited
over the a-Si and vias, and it is patterned to define the top wiring layer. Any uncovered a-Si is also removed in this step. (d),(e) Scanning
electron micrograph of one of the coil inductors, and of the gradiometric SQUID, using the same color scheme, with, additionally, the
Josephson junction in yellow.
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SQUID, ESQ ∝ LSQI2SQ. For each mode j, a fraction αj of
the mode current Ij flows through the SQUID such that
ISQ ¼ P

jαjIj. This results in ESQ ∝
P

j;kαjαkLSQIjIk,
effectively producing linear coupling of the modes j and k.

APPENDIX B: THEORY OF PARAMETRICALLY
COUPLED MODES

In this section, we describe our approach to solving the
EOMs for a system of parametrically coupled modes. We
aim at deriving the resulting scattering parameters
(Appendixes B 1–B 4) and output noise (Appendix B 5).
We begin with the case of a single damped and driven
oscillator to introduce the concepts and our notation. We
then describe the building blocks of parametric physics,
namely, frequency conversion and amplification between
two modes. Combining these processes in three-mode
systems allows us to describe the circulator and the direc-
tional amplifier. We largely reproduce the concepts and
style from Ranzani and Aumentado [16], with minor
changes of notation and normalization.

1. A single driven and damped oscillator

The Hamiltonian for a driven harmonic oscillator with
resonant frequency ωa and a loss rate κa, after tracing over
bath modes in the rotating-wave approximation, is

Ĥ
ℏ
¼

�
ωa − i

κa
2

�
â†âþ i

ffiffiffiffiffiffiffi
κexta

p
ðâin − â†inÞðâþ â†Þ; ðB1Þ

where κexta is the external coupling to the drive port, and â and
âin are the time-dependent annihilation operators for the
internal mode and the input drive, respectively. To simplify
the notation, we choose (1) to include the loss as an imaginary
component of the resonant frequency, making the
Hamiltonian non-Hermitian and (2) to have the phase quad-
rature of the drive coupled to the amplitude quadrature of the
internal mode. Note that, to preserve quantum commutators,
Eq. (B1) needs an extra noise input term proportional toffiffiffiffiffiffi
κinta

p
, so that κa ¼ κexta þ κinta (see Appendix B 4).

The Heisenberg-Langevin EOM is _̂a ¼ −i½â; Ĥ=ℏ�. To
analyze the EOM, we consider an input signal at the signal
frequency ωs

a and move to a rotating frame at that
frequency by redefining the annihilation operators â →
â expð−iωs

atÞ and âin → âin expð−iωs
atÞ, so that â and âin

are time independent in this frame. Additionally, we will
study the dynamics of the expectation values, defining
a≡ hâi. The equation of motion reads

κaΔaa ¼ i
ffiffiffiffiffiffiffi
κexta

p
ain; ðB2Þ

where

Δa ¼
ωs
a − ωa

κa
þ i
2

ðB3Þ

is a normalized complex detuning parameter. In the above,
we apply the rotating-wave approximation (RWA), neglect-
ing a term with explicit time dependence in the signal
frame. We assume that the frequency of this term, 2ωs

a, is
much larger than the relevant linewidth of the oscillator, κa,
so that the susceptibility, χ ¼ i=ðκaΔaÞ, at those frequen-
cies is small enough to not cause any appreciable dynamics.
To introduce the graph representation that we will use in

the following cases, Fig. 7(c) shows the graph correspond-
ing to the single-oscillator EOM (B2). It consists of a single
vertex for the mode amplitude a, with a self-loop associated
with the complex detuning Δa.
The output field at the signal frequency ωs

a is obtained
via the input-output relation aout ¼

ffiffiffiffiffiffiffi
κexta

p
a − ain, finally

leading to the familiar Lorentzian form of the reflection
coefficient:

Saa ¼
aout
ain

¼
�
κexta

κa

i
Δa

− 1

�
: ðB4Þ

2. Two coupled modes

Let us now consider two oscillators with resonant
frequencies ωa and ωb, loss rates κa and κb, and a time-
dependent coupling rate gabðtÞ ¼ jgabj cosðωp

abtþ ϕabÞ.
The Hamiltonian of the system is

Ĥ=ℏ ¼
�
ωa − i

κa
2

�
â†âþ i

ffiffiffiffiffiffiffi
κexta

p
ðâin − â†inÞðâþ â†Þ

þ
�
ωb − i

κb
2

�
b̂†b̂þ i

ffiffiffiffiffiffiffi
κextb

q
ðb̂in − b̂†inÞðb̂þ b̂†Þ

− gabðtÞðâþ â†Þðb̂þ b̂†Þ; ðB5Þ

where κexta and κextb are the coupling rates to the external port,
and â, b̂, âin, and b̂in are the time-dependent annihilation
operators for the internal mode and input drives for each
oscillator, respectively. We consider the oscillators to be
driven at the frequencies ωs

a and ωs
b, related to each other by

the pump frequency of ωp
ab. We move to a corotating

frame and redefine the (time-independent) annihilation
operators â → â expð−iωs

atÞ, b̂ → b̂ expð−iωs
btÞ, âin →

âin expð−iωs
atÞ, and b̂in → b̂in expð−iωs

btÞ.
In the case of resonant coupling, gab is time independent,

so ωs
a ¼ ωs

b. In this case, if the two oscillators are detuned
from one another (jωb − ωaj ≫ κa; κb), then the large
detuning (small susceptibility) prevents appreciable energy
transfer between the oscillators. If the pump frequency is
near the sum or difference of the two resonant frequencies,
however, then both detunings can be small (with a
corresponding large susceptibility) to allow energy transfer
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between the two oscillators. When ωp
ab ≈ jωb − ωaj, a

pump photon can bridge the energy gap between the
two oscillators allowing for frequency conversion. When
ωp
ab ≈ ωa þ ωb, a pump photon can be down-converted

into a photon in each oscillator, amplifying each oscillator’s
amplitude.

a. Frequency conversion

Consider the case where the coupling term is modulated
near the difference frequency ωp

ab ≈ jωb − ωaj. To simplify
the notation, let us choose ωb > ωa, such that
ωs
b ¼ ωs

a þ ωp
ab. The EOMs after the RWA become

κaΔaaþ ffiffiffiffiffiffiffiffiffi
κaκb

p
βabb ¼ i

ffiffiffiffiffiffiffi
κexta

p
ain;

κbΔbbþ ffiffiffiffiffiffiffiffiffi
κaκb

p
β�aba ¼ i

ffiffiffiffiffiffiffi
κextb

q
bin; ðB6Þ

where Δj ¼ ðωs
j − ωjÞ=κj þ i=2 are normalized complex

detunings, and βab ¼ jgabjeiϕab=ð2 ffiffiffiffiffiffiffiffiffi
κaκb

p Þ is the normal-
ized complex coupling between the mode amplitudes
a and b.
When working with multiple modes, it becomes useful to

adopt amatrix representation of these equations.We define a
vector of intracavity mode amplitudes A ¼ ða; bÞT ,
input mode amplitudes Ain ¼ ðain; binÞT , output mode
amplitudes Aout ¼ ðaout; boutÞT , diagonal matrices for the
total loss ratesK ¼ diagð ffiffiffiffiffi

κa
p

;
ffiffiffiffiffi
κb

p Þ, and external couplings
Kext ¼ diagð

ffiffiffiffiffiffiffi
κexta

p
;

ffiffiffiffiffiffiffi
κextb

p Þ, and, finally, the mode-coupling

matrix M, so that Eq. (B6) becomes KMKA ¼ iKextAin,
where

M ¼
� Δa βab

β�ab Δb

�
: ðB7Þ

The graph representation of the mode-coupling matrix
M is shown in Fig. 7(d). Each vertex corresponds to a mode
amplitude, with self-loops associated with the complex
detuning Δj. The vertices are connected by coupling edges
associated with the coupling terms βab and β�ab.
We can solve these EOMs to calculate the scattering

matrix S ¼ Aout=Ain
T , resulting in

S ¼ iHM−1H − 1; ðB8Þ

where we introduce the matrix H ¼ diagð ffiffiffiffiffi
ηa

p
;

ffiffiffiffiffi
ηb

p Þ,
where ηj ¼ κextj =κj are coupling efficiency parameters
characterizing the degree to which each mode is over-
coupled. Expanding Eq. (B8) results in

S ¼

0
B@

iηaΔb
ΔaΔb−jβabj2 − 1

−i ffiffiffiffiffiffiffi
ηaηb

p
βab

ΔaΔb−jβabj2
−i ffiffiffiffiffiffiffi

ηaηb
p

β�ab
ΔaΔb−jβabj2

iηbΔa
ΔaΔb−jβabj2 − 1

1
CA: ðB9Þ

On resonance (Δj ¼ i=2) and neglecting internal loss
(ηj ¼ 1), one recovers Eq. (3):

(b) Two-mode amplifier:

(d) Frequency converter:

(c) Harmonic oscillator:

(e) Circulator:

(f) Directional amplifier:

(a)
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FIG. 7. Process spectroscopy. (a) Mode frequencies ωj, and first-order modulation frequencies jωj � ωkj (j, k ∈ fa; b; cg) as a
function of flux. The shaded areas represent a bandwidth of 180 MHz, necessary to ensure a good rotating-wave approximation. Graph
representation of the EOM for (b) parametric amplification between two modes, (c) a single harmonic oscillator, (d) frequency
conversion between two modes, (e) circulation, and (f) directional phase-preserving amplification.
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S ¼

0
B@

1−4jβabj2
1þ4jβabj2

4iβab
1þ4jβabj2

4iβ�ab
1þ4jβabj2

1−4jβabj2
1þ4jβabj2

1
CA:

Unity transmission coincides with impedance matching
(zero reflection) for jβabj ¼ 1=2. Note that, when βab is
complex, Sab ≠ Sba (although jSabj ¼ jSbaj). However, for
modes at different frequencies, the phase shift between Sab
and Sba must be measured relative to a reference whose
phase is arbitrary. In a two-mode system, there can always
be found a reference phase such that βab is real and S is
reciprocal. Yet, the phase dependence of S will become
crucial when discussing three-mode systems, in which the
phase reference is built into the system. Finally, note that,
for resonant coupling, where βab is required to be real, the
scattering matrix is unambiguously reciprocal.

b. Parametric amplification

We now consider the case where the coupling is
modulated near the sum frequency ωp

ab ≈ ωa þ ωb, such
that ωs

b ¼ ωp
ab − ωs

a. The EOMs after applying the RWA
become

κaΔaaþ ffiffiffiffiffiffiffiffiffi
κaκb

p
βabb� ¼ i

ffiffiffiffiffiffiffi
κexta

p
ain;

−κbΔ�
bb

� −
ffiffiffiffiffiffiffiffiffi
κaκb

p
β�aba ¼ i

ffiffiffiffiffiffiffi
κextb

q
b�in; ðB10Þ

or, in the matrix form KMKA ¼ iKextAin, where

M ¼
� Δa βab

−β�ab −Δ�
b

�
; ðB11Þ

and A ¼ ða; b�ÞT , Ain ¼ ðain; b�inÞT , Aout ¼ ðaout; b�outÞT .
Here, note that, for parametric amplification,
βab ¼ jgabje−iϕab=ð2 ffiffiffiffiffiffiffiffiffi

κaκb
p Þ, where the sign of the phase

comes from the convention in Eq. (B5). The corresponding
graph representation is shown in Fig. 7(b). When making a
comparison to the EOMs for the frequency conversion
(B6), one notices three differences: (1) the mode amplitude
a is now coupled to the conjugate-mode amplitude b�,
(2) the complex detuning term for the conjugate mode is
conjugated and with a minus sign, and (3) the coupling
term for the conjugate mode has a minus sign. These subtle
differences lead to the following scattering matrix:

S ¼

0
B@

iηaΔ�
b

ΔaΔ�
b−jβabj2

− 1
i
ffiffiffiffiffiffiffi
ηaηb

p
βab

ΔaΔ�
b−jβabj2

−i ffiffiffiffiffiffiffi
ηaηb

p
β�ab

ΔaΔ�
b−jβabj2

−iηbΔa
ΔaΔ�

b−jβabj2
− 1

1
CA: ðB12Þ

On resonance (Δj ¼ i=2) and neglecting internal loss
(ηj ¼ 1), we recover Eq. (5):

S ¼

0
B@

1þ4jβabj2
1−4jβabj2

4iβab
1−4jβabj2

−4iβ�ab
1−4jβabj2

1þ4jβabj2
1−4jβabj2

1
CA:

The scattering parameters diverge for jβabj ¼ 1=2, in stark
contrast to the frequency-conversion case. In the limit
jβabj → 1=2−, each scattering parameter has an amplitude
gain,

ffiffiffiffi
G

p
≈ 2=ð1 − 4jβabj2Þ. Similar to the frequency-

conversion case, we observe Sab ≠ Sba for βab complex.

3. Three-mode systems

Parametric frequency conversion and parametric ampli-
fication are the building blocks from which we can
construct complex coupled-mode networks. Both processes
exhibit a directional phase shift, which is the first ingredient
for building nonreciprocal devices like isolators and cir-
culators. The second ingredient required is an interferom-
eter to unambiguously define the reference phase. Here, we
will build such an interferometer in frequency space by
parametrically coupling three modes to form a loop. We
will use the matrix formalism and its graph counterpart,
which become very useful when extending the mode basis
to three or more modes. Indeed, the coupling network is
well captured by the mode-coupling matrixM alone. Let us
now consider three oscillators with resonant frequencies ωj

and loss rates κj, driven at the signal frequencies ωs
j,

for j ∈ fa; b; cg.

a. Circulation

Tobuild a circulator, wewill connect these threemodes via
frequency conversion. For that, we simultaneously modulate
the coupling between themodes at the difference frequencies
ωp
ab ≈ jωb − ωaj, ωp

bc ≈ jωc − ωbj, and ωp
ac ≈ jωa − ωcj,

satisfying the condition ωp
ab þ ωp

bc ¼ ωp
ac. The resulting

equations of motion for the internal modes A ¼ ða; b; cÞT
are described by the mode-coupling matrix

M ¼

0
B@

Δa βab βac

β�ab Δb βbc

β�ac β�bc Δc

1
CA; ðB13Þ

whereΔj ¼ ðωs
j − ωjÞ=κj þ i=2 is the complex detuning for

mode j, and βjk ¼ jgjkjeiϕjk=ð2 ffiffiffiffiffiffiffiffiffi
κjκk

p Þ is the normalized
coupling between the modes j and k. The graph representa-
tion of this Langevin matrix is shown in Fig. 7(e), which
highlights the loop structure of the coupling network. Each
pair of modes is now coupled via two different paths. These
couplings lead to interference, controlled by the loop phase
ϕloop ¼ ϕab þ ϕbc − ϕac. Solving for the scattering matrix
using Eq. (B8), we obtain

NONRECIPROCAL MICROWAVE SIGNAL PROCESSING … PHYS. REV. APPLIED 7, 024028 (2017)

024028-11



S ¼

0
BBB@

iηa
ΔbΔc−jβbcj2

jMj − 1 i
ffiffiffiffiffiffiffiffiffi
ηaηb

p βacβ
�
bc−βabΔc

jMj i
ffiffiffiffiffiffiffiffiffi
ηaηc

p βabβbc−βacΔb
jMj

i
ffiffiffiffiffiffiffiffiffi
ηaηb

p β�acβbc−β�abΔc

jMj iηb
ΔaΔc−jβacj2

jMj − 1 i
ffiffiffiffiffiffiffiffiffi
ηbηc

p β�abβac−βbcΔa

jMj

i
ffiffiffiffiffiffiffiffiffi
ηaηc

p β�abβ
�
bc−β

�
acΔb

jMj i
ffiffiffiffiffiffiffiffiffi
ηbηc

p βabβ
�
ac−β�bcΔa

jMj iηc
ΔaΔb−jβabj2

jMj − 1

1
CCCA; ðB14Þ

where jMj ¼ ΔaΔbΔc − jβbcj2Δa − jβacj2Δb − jβabj2Δcþ
2jβabjjβbcjjβacj cosϕloop. Importantly, compared to the
two-mode cases, the magnitudes of the scattering param-
eters are now nonreciprocal, jSijj ≠ jSjij, for ϕloop ≠ 0; π.
Maximum isolation from mode b to mode a (Sab ¼ 0) is
achieved for βacβ�bc ¼ βabΔc. On resonance (Δj ¼ i=2) and
neglecting internal loss (ηj ¼ 1), this condition coincides
with unity transmission from a to b, jSbaj ¼ 1, for jβabj ¼
jβbcj ¼ jβacj ¼ 1=2 and for a loop phase ϕloop ¼ −π=2.
Setting ϕab ¼ ϕbc ¼ −ϕac ¼ π=2, one recovers the ideal
circulator scattering matrix from Eq. (7):

S ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA:

In Fig. 8, we show the measured and simulated scattering
parameters as a function of the total loop phase ϕloop for the
FPJA operating as a circulator. Excellent agreement is
found between data and theory. For the opposite loop
phase, ϕloop ¼ π=2, the direction of circulation is reversed.
Additionally, one can recover reciprocal scattering param-
eters for ϕloop ¼ 0 and ϕloop ¼ π.

b. Directional phase-preserving amplification

To build a directional amplifier, we will connect two
pairs of modes via amplification and close the interferom-
eter using frequency conversion. For that, we simultane-
ously modulate the coupling between the modes at the
frequencies ωp

ab ≈ ωs
a þ ωs

b, ωp
bc ≈ ωs

b þ ωs
c, and ωp

ac ≈
jωs

a − ωs
cj, satisfying the condition ωp

ac þ ωp
ab ¼ ωp

bc.
The resulting equations of motion for the internal modes
A ¼ ða; b�; cÞT are described by the matrix
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FIG. 8. Circulator. Magnitude of the (a) measured and (b) simulated scattering parameters as a function of the loop phase ϕloop for
near-ideal pump strengths.
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M ¼

0
B@

Δa βab βac

−β�ab −Δ�
b βbc

β�ac −β�bc Δc

1
CA: ðB15Þ

The detuning and coupling terms for the frequency-
conversion and amplification processes are defined using

the same convention as in the two-mode cases, with
Δj ¼ ðωs

j − ωjÞ=κj þ i=2, βac ¼ jgacjeiϕac=ð2 ffiffiffiffiffiffiffiffiffi
κaκc

p Þ, and
βjk ¼ jgjkje−iϕjk=ð2 ffiffiffiffiffiffiffiffiffi

κjκk
p Þ, where j; k ∈ fb; cg. The graph

representation of this mode-coupling matrix is shown in
Fig. 7(f), again forming an interferometer. Solving for the
scattering matrix using Eq. (B8), we obtain

S ¼

0
BBBBB@

iηa
jβbcj2−Δ�

bΔc

jMj − 1 i
ffiffiffiffiffiffiffiffiffi
ηaηb

p −βabΔc−βacβ�bc
jMj i

ffiffiffiffiffiffiffiffiffi
ηaηc

p βacΔ�
bþβabβbc
jMj

i
ffiffiffiffiffiffiffiffiffi
ηaηb

p β�abΔcþβ�acβbc
jMj iηb

ΔaΔc−jβacj2
jMj − 1 i

ffiffiffiffiffiffiffiffiffi
ηbηc

p −βbcΔa−β�abβac
jMj

i
ffiffiffiffiffiffiffiffiffi
ηaηc

p β�acΔ�
bþβ�abβ

�
bc

jMj i
ffiffiffiffiffiffiffiffiffi
ηbηc

p β�bcΔaþβabβ
�
ac

jMj iηc
jβabj2−ΔaΔ�

b
jMj − 1

1
CCCCCA
; ðB16Þ

where jMj¼−ΔaΔ�
bΔcþjβbcj2Δaþjβacj2Δ�

bþjβabj2Δcþ
2jβabjjβbcjjβacjcosϕloop and ϕloop ¼ ϕab þ ϕbc þ ϕac.
Similar to the circulation case, the magnitude of the
scattering parameters are nonreciprocal. The condition
for maximum isolation from port b to port a, Sab ¼ 0, is
achieved for βacβ

�
bc ¼ −βabΔc. On resonance, this con-

dition leads to a loop phase ϕloop ¼ −π=2. We further
neglect internal loss and require an input match jSaaj ¼ 0
on resonance, which can be accomplished by choosing the
matching condition for the frequency-conversion branch
(jβacj ¼ 1=2) and letting the two amplification branches be
equal jβabj ¼ jβbcj. To fix the phases of the scattering-
matrix elements, we choose ϕab ¼ ϕac ¼ −ϕbc ¼ −π=2 to
arrive at the scattering matrix of Eq. (9):

S ¼

0
B@

0 0 1ffiffiffiffiffiffiffiffiffiffiffiffi
G − 1

p ffiffiffiffi
G

p
0ffiffiffiffi

G
p ffiffiffiffiffiffiffiffiffiffiffiffi

G − 1
p

0

1
CA;

where
ffiffiffiffi
G

p ¼ ð1þ 4jβabj2Þ=ð1 − 4jβabj2Þ. Let us consider
a coherent signal at the input of mode a, while modes b and
c are seeded by vacuum fluctuations. Both the signal in
mode a and the vacuum fluctuations in mode b are
amplified toward modes b and c. This leads to the same
minimum system noise as a standard two-mode amplifier.
Finally, the vacuum fluctuations in c are routed to mode a
with unity gain. The direction of the amplification is
reversed for ϕloop ¼ π=2, and one recovers reciprocal
scattering parameters for ϕloop ¼ 0 and ϕloop ¼ π. The
measured and simulated scattering parameters as a function
of the total loop phase ϕloop for FPJA operation as a
directional amplifier are shown in Fig. 9. Excellent agree-
ment is found between data and theory for jϕloopj ≳ 80. The
return loss and isolation are very sensitive to the perfect
interference between all coupling branches, i.e., to the
pump strengths and detunings. In addition, at high gain,
higher-order nonlinearities such as self-Kerr and cross-Kerr
nonlinearity require us to manually adjust the pumps. More

careful tuning would, in principle, allow us to increase the
isolation and return losses, here on the order of 10 dB.
For jϕloopj≲ 80 deg, the system undergoes free oscil-

lations. While the free oscillation threshold is simply
jβabj ¼ 1=2 for a two-mode amplifier [see Eq. (B12)],
the threshold for a three-mode directional amplifier
becomes phase dependent. A general method to calculate
whether the system will freely oscillate is to look for signal
frequency solutions of jMj ¼ 0 with a positive imagi-
nary part.

4. Generalization to multiple input and
output ports per mode

In this section, we generalize the formalism to include
multiple input ports for each mode, crucial for accurate
noise calculation in the next section.
In Appendixes B 1–B 3, we consider each mode j to be

coupled to a single external port and account for internal
loss using the coupling efficiency parameter ηj ¼ κextj =κj.
This method is sufficient for calculating the scattering
parameters between the external ports of interest. However,
to describe a system with multiple external (or internal)
ports per mode, and also to reach accurate noise calcu-
lations, one needs to generalize this formalism. Intuitively,
if a fraction of the input signal can be lost in the
environment, then, conversely, noise from this environment
enters the system. In other words, in order to preserve the
commutators of the input and output fields, one must
account for all of the ports contributing to the total loss rates
of each mode.
The generalization to multiple ports per mode consists of

a straightforward redefinition of the input and ouput field,
Ain and Aout, and of the matrix H. Note that, because the
network of coupled internal modes stays unchanged, the
mode-coupling matrixM does as well. Each mode j can be
coupled to multiple ports (which can include “ports”
to the thermal environment), so that κj ¼

P
kκ

k
j , where k

indexes all ports to which mode j is coupled. For a system
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of n modes coupled to a total of m ports, Ain and Aout
become vectors of length m, H becomes a matrix of size

n ×m where Hjk ¼
ffiffiffiffiffi
ηkj

q
, and M remains a matrix of size

n × n. The condition
P

kη
k
j ¼ 1 ensures that all noise

sources are accounted for. Equation (B8) becomes

S ¼ iHTM−1H − 1: ðB17Þ

As an example, we consider the directional amplifier
shown in Appendix B 3 a and include a single additional
port per mode to describe the coupling to the environment
at a rate κintj , so that κj ¼ κextj þ κintj . We define the input

field as Ain ¼ ðâin; ξ̂a;in; b̂†in; ξ̂†b;in; ĉin; ξ̂c;inÞT , where ξ̂j;in is
the input field for the environment of mode j. Similarly,
we define Aout ¼ ðâout; ξ̂a;out; b̂†out; ξ̂†b;out; ĉout; ξ̂c;outÞT . The
matrix H becomes

H ¼

0
BBB@

ffiffiffiffiffiffiffi
ηexta

p ffiffiffiffiffiffi
ηinta

p
0 0 0 0

0 0
ffiffiffiffiffiffiffi
ηextb

p ffiffiffiffiffiffi
ηintb

q
0 0

0 0 0 0
ffiffiffiffiffiffiffi
ηextc

p ffiffiffiffiffiffi
ηintc

p

1
CCCA:

5. Output noise

In this section, we use the generalized scattering param-
eters [Eq. (B17)] to calculate the output noise of a system of
parametrically coupled modes. The quantum-noise spectral
density of the output fields [33], N ½ω�, is defined as the
diagonal elements of the covariance matrix of the output
fields, hA†

out½ω0�AT
out½ω�i=2πδðω − ω0Þ, in units of photons.

One can then express the spectral density of the output field
using the relation between the input and output covariance
matrix:

hA†
out½ω0�AT

out½ω�i ¼ S�½ω0�hA†
in½ω0�AT

in½ω�iST ½ω�: ðB18Þ

The input covariance matrix contains all of the informa-
tion about the input noise, including bath temperatures
or correlations, and can describe both classical and non-
classical noise sources. For example, if the environment
of mode j is in a thermal state, the corresponding input
noise follows hξ̂†j;in½ω0�ξ̂j;in½ω�i ¼ 2πnj;thδðω − ω0Þ and

hξ̂j;in½ω�ξ̂†j;in½ω0�i ¼ 2πðnj;in þ 1Þδðω − ω0Þ, where nj;th ¼
½expðℏωj=kBTÞ − 1�−1 is the mean thermal occupation
number at the resonator frequency ωj at a temperature T
(kB is the Boltzmann constant).
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FIG. 9. Directional phase-preserving amplifier. Magnitude of the (a) measured and (b) simulated scattering parameters as a function of
the loop phase ϕloop for near-ideal pump strengths. In practice, the device undergoes free oscillations for jϕloopj ≲ 80 deg (see
Appendix B 3).
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Note that, in this work, we perform linear measurements
of the output field quadratures. Therefore, we access the
symmetrized (classical) spectral density [33], N ½ω�:

N ½ω� ¼ 1

2
ðN ½ω� þN ½−ω�Þ: ðB19Þ

The theoretical predictions for the output noise made in
Figs. 3(e), 5(f), and 5(g) are based on our best guess for the
scattering parameters, shown in Figs. 3(d) and 5(d), and we
assume that each port is seeded by vacuum noise.

6. Discussion

The agreement between theory and experiment is pri-
marily due to a clean mode basis. Indeed, the EOMs rely on
the rotating-wave approximation to eliminate dynamics at
any spurious frequencies. If the approximation cannot be
made, new modes appear in the coupled network, leading,
for example, to losses or added noise. The device presented
here is carefully designed so that all first-order parametric
processes can be separated by frequency. In Fig. 7(a), we
show the mode frequencies ωj and all of the modulation
frequencies jωj � ωkj for j, k ∈ fa; b; cg as a function of
flux. The shaded areas represent a bandwidth 3 times larger
than the largest mode width (3κc=2π ¼ 180 MHz),

necessary to ensure a good rotating-wave approximation.
At the flux bias chosen in this work, Φ=Φ0 ≈ 0.29, all of
these processes are well separated.

APPENDIX C: SYSTEM NOISE CALIBRATION

The calibration of the noise performance of an amplifier
at millikelvin temperature and close to the standard
quantum limit is not a trivial task. Most commonly used
is the so-called Y-factor method. It requires a calibrated
noise source, such as a variable-temperature resistor [18], a
circuit QED system [27], or a biased metallic tunnel
junction [19,34]. While each technique is subject to various
experimental and conceptual challenges, all techniques
share a common problem: they calibrate the system-added
noise to a reference plane that is usually not the one of the
amplifier. For a simplistic but concrete and general exam-
ple, consider that the noise source and the amplifier are
connected by a transmission line with unknown loss: the
calibrated noise at the output of the source is now
uncalibrated at the input of the amplifier. This fact leads
to the following general consideration when calibrating the
noise of an amplifier: all components necessary for the
proper operation of the amplifier (circulators, filters,
couplers, cables, etc.) should be included in the system
noise calibration.
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FIG. 10. Noise calibration. (a) The noise emitted by a biased metallic tunnel junction is measured using the same setup as for the
FPJA (LPF: low-pass filter). (b)–(d) Measured power spectral density in photon unit as a function of the voltage across the shot-noise
junction, measured at the frequencies ω1=2π ¼ 4.155 GHz, ω2=2π ¼ 5.756 GHz, and ω3=2π ¼ 7.915 GHz, corresponding to the
resonances of the FPJA shown in Fig. 1(c). The solid black lines are a fit to Eq. (C2). The dashed lines are linear extrapolations of
the noise at high voltage, and their crossing point corresponds to the system-added noise. (e) Measured system-added noise as a function
of frequency.
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In this work, we choose a slightly different approach. In a
separate cooldown, we replace the FPJA by a metallic
tunnel junction and a bias tee, leaving every other compo-
nent of the measurement chain the same (including the
HEMT amplifier bias parameters), as shown in Fig. 10(a).
This allows for the calibration of the system noise down to
the junction’s reference plane, which differs from the FPJA
reference plane only by the loss of the bias tee (<0.5 dB).
We therefore obtain an upper bound for the system noise
temperature at the reference plane of the FPJA.
The power spectral density of the noise emitted by a

metalic tunnel junction, at a frequency ω and a temperature
T, as a function of the voltage V across the junction is
N ¼ N þ þN − (unit of quanta s−1 Hz−1), where

N � ¼ kBT
2ℏω

�
eV � ℏω
2kBT

coth

�
eV � ℏω
2kBT

��
; ðC1Þ

where kB is the Boltzmann constant, e is the electron
charge, and ℏ is the reduced Planck constant. The gain
of the full measurement chain, Gsys, and the noise added
by that chain, nadd (unit of quanta), is extracted from the
measured power spectral density, N meas, following

N meas ¼ GsysðN þ naddÞ: ðC2Þ

The power spectral density in photon units, N meas=Gsys,
measured at the frequencies ω1=2π ¼ 4.155 GHz,
ω2=2π ¼ 5.756 GHz, and ω3=2π ¼ 7.915 GHz, corre-
sponding to the resonance of the FPJA, are shown, respec-
tively, in Figs. 10(b), 10(c), and 10(d). From a fit to Eq. (C2),
we extract a constant temperature of 100 mK and a system-
added noise of nadd ¼ 34.1, 22.5, and 22.8, respectively, at
ω1, ω2, and ω3. Similar measurements are performed over
the 4- to 8-GHz band, and the measured system noise as a
function of frequency is shown in Fig. 10. One can see
oscillations due to slight impedance mismatches and com-
ponent imperfections throughout the chain. The temperature
is consistently measured at 100 mK, probably due to the
imperfect thermalization of the sample box.
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