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We explore a type of synthetic saturable absorber based on quantum-inspired photonic arrays. We
demonstrate that the interplay between optical Kerr nonlinearity, interference effects, and non-Hermiticity
through radiation loss leads to a nonlinear optical filtering response with two distinct regimes of small
and large optical transmissions. More interestingly, we show that the boundary between these two
regimes can be very sharp. The threshold optical intensity that marks this abrupt “phase transition” and its
steepness can be engineered by varying the number of the guiding elements. The practical feasibility of
these structures as well as their potential applications in laser systems and optical signal processing are
also discussed.
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I. INTRODUCTION

The emerging field of non-Hermitian photonics [1–7]
offers many new opportunities for building photonics
devices with novel functionalities such as single-mode
lasers [8–12], exceptional point-based sensors [13], as well
as light sources based on non-Hermitian phase matching
[14]. An area that still remains largely unexplored (apart
from thework in Ref. [6] and the recent results in Refs. [10–
12,14]) is the engineering of the nonlinear non-Hermitian
response function of photonic structures to achieve useful
functionalities. In this work, we explore one such possibility
andwe provide a photonic geometry that exhibits a saturable
absorber response with superior performance. As we will
explain in detail shortly, in our system the non-Hermiticity
arises from the interplay between discrete diffraction, Kerr
nonlinearity, and optical loss due to the coupling of light to
the electromagnetic continuum.
Saturable absorbers (SA) are optical components that

exhibit large or small optical-absorption coefficients at low
or high light intensity, respectively [15]. They are indispen-
sable tools for awide rangeof applications frommode locking
[16,17] and Q switching [16,17] to pulse shaping and
stabilization [18,19] and noise suppression [20]. In general,
saturable absorbers can be classified into twomain categories
based on their operation principle: (1) devices that rely on
engineered electronic band structures to achieve proper
functionality and (2) artificial saturable absorbers that exhibit
a decrease in optical absorption at high intensities without
having physical absorption saturation. Semiconductor SA
mirrors [21], quantum-dot-based SA [22], and SA that utilize

the optical and electronic properties of carbon nanotube [23]
and graphene [24] are examples of the former. The latter
includes Kerr lensing [25], fiber loops [26], and nonlinear
waveguide arrays [27].
In particular, using uniform waveguide arrays as artificial

saturable absorbers utilizes the interplay between Kerr
nonlinearity, which is an intrinsic property of the material,
and discrete diffraction which can be engineered by scaling
the uniform coupling coefficients between the guiding
channels [28]. This strategy has been used to investigate
mode locking using waveguide arrays [29–31]. In the past
few years, different types of nonuniform waveguide arrays
have been proposed and shown to exhibit interesting
features. A particular structure that received considerable
attention recently is the so-called Jx array [32–36]. Among
the intriguing characteristics of Jx photonic arrays is
coherent transport between ports that are related through
mirror reflection around the array’s axis of symmetry [32].
This feature was recently utilized in a theoretical proposal
to build on-chip optical isolators and polarization beam
splitters [37,38]. In addition, due to their ladder eigenvalue
spectrum, revival effects have been also recently predicted
in supersymmetric partners of Jx arrays [39], despite the
fact they do not possess any spatial symmetry.

II. SYNTHETICS SATURABLE
ABSORBERS IN Jx ARRAYS

To date, nonlinear light interactions inside Jx arrays have
not been investigated. In this paper, we consider the effect
of Kerr nonlinearity on light propagation in Jx arrays and
we show that under the appropriate conditions, these
structures can function as a synthetic digital saturable
absorber, i.e., as a SA with an extremely sharp transition*ganainy@mtu.edu
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between the low- and high-transmission regimes as a

function of the input optical intensity.
Figure 1 depicts a schematic illustration of a photonic Jx

waveguide array. Within the coupled mode formalism,
continuous-wave light propagation inside a Jx array having
a total number of guiding elements equal to 2N þ 1 (withN
being integer or half-integer number) is given by

i
dEn

dz
þ κðgn−1En−1 þ gnEnþ1Þ þ χjEnj2En ¼ 0: ð1Þ

In Eq. (1), En is the electric-field-envelope amplitude in
waveguide n ∈ ½−N;N�, z is the propagation distance,
while κ is a scaling constant that characterizes the coupling
between the different elements, and the coupling profile is
given by gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ nÞðN − nþ 1Þp

, g−N ¼ 0, and
gNþ1 ¼ 0 (see Refs. [32–38,40] for a detailed derivation
of the coupling profile gn). Furthermore, χ is the effective
nonlinear Kerr coefficient and it is proportional to the
material nonlinearity and the optical-mode confinement
factor [41]. Figure 1 depicts a schematic of a Jx array made
of seven waveguides (N ¼ 3). The input and output ports of
the device are also indicated on the figure. The additional
output ports serve as a means for introducing optical losses
to the system by coupling the undesired light components
in these channels to the radiation continuum. In practice,
depending on the modal profile and phase mismatch
between the waveguide modes and free-space propagation,
a small fraction of this light will be reflected and trans-
mitted back to the input channel. This feedback process
might hamper the operation of the device. This can be
overcome by extending the auxiliary ports beyond the
device length, bending them away from the main port, and

introducing physical optical absorption on each channel
through metal deposition. These design details will be
explored in future studies.
We proceed by using the scaling ξ ¼ κz and

En ¼
ffiffiffiffiffiffi

Po
p

an, where ξ and an are the normalized distance
and field amplitude, respectively, while Po represents the
input optical power. We finally obtain i½ðdanÞ=dξ�þ
ðgn−1an−1 þ gnanþ1Þ þ αjanj2an ¼ 0, where the nonlinear
parameter is given by α ¼ χPo=κ. Under linear conditions,
when α ¼ 0, light propagation in these arrays undergoes
coherent transport where an optical beam launched in one
port will exit from the mirror symmetric port with a unit
power transmission [32] after a certain propagation dis-
tance. As a result, in this case, the transmission coefficient
between input and output ports T belonging to the same
channel (leftmost waveguide in Fig. 1) will be zero. When
the input light intensity is increased, or equivalently by
increasing α, the transmission coefficient T is expected to
grow as the nonlinear self-trapping effects start to overcome
discrete diffraction [28]. These intuitive predictions are
confirmed in Fig. 2(a), where we plot the values of T as a
function of the nonlinear coefficient α or, equivalently, the
input light intensity for three different Jx arrays made of
three, seven, and eleven guiding elements, respectively. In
all arrangements, the input light is launched in the leftmost
waveguide. The normalized length of each Jx array is
chosen to be ξ ¼ L≡ π=2 in order to produce exactly zero
transmission when α ¼ 0 (see Ref. [28], and references
therein). Interestingly, we observe a very sharp transition
between the low- and high-transmission states (off and on
states) as a function of the nonlinear parameter α. In
addition, the location at which this transition takes place,
αTH defined as the threshold value of α at which the
transmission starts to rise above, say, 5 × 10−3 monoton-
ically (alternatively one might chose other criteria for αTH
such as the point where the slope of the curve changes to a
certain value), is a function of the waveguide number. For
comparison, we also study the dynamics in uniform wave-
guide arrays. If the array is infinite, the uniform coupling κu
can be chosen to produce exact zero transmission under
single excitation conditions after a propagation distance of
L, i.e., it satisfies the relation Joð2κuLÞ ¼ 0, where J0ðxÞ is
the Bessel function of order zero and argument x (see
Ref. [28] for discussion, and references therein for a
detailed derivation). A large but finite array can still exhibit
near-zero linear transmission similar to an infinite array if
we maintain the above condition and launch light only in
the central channel. Figure 2(b) shows the transmission
curves for uniform arrays made of three, seven, and eleven
waveguides when light is launched in the central element of
the array. Clearly, the transition between the two regimes in
this latter case is less abrupt than in the case of the Jx array
(the slope of the curve for a uniform array with eleven
waveguides is ∼10% of that of the case of a Jx array having
the same number of channels). Finally, for completeness,

FIG. 1. Schematic of a nonlinear Jx array made of seven
waveguide elements. The coupling profile is symmetric around
the central channel and values of the coupling coefficients are
indicated. The array length ξ ¼ L≡ π=2 is chosen to provide
coherent perfect transfer under linear conditions. The Kerr
nonlinear coefficient in these arrangements is a function of the
material properties and the mode confinement inside the wave-
guide. In our proposed saturable absorber scheme, light is
launched in and collected from in the leftmost port. The other
additional ports serve as a mean to introduce optical loss either by
direct radiation into free space or by introducing physical loss as
explained in the text.
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we also consider the case of edge coupling in a simple
directional coupler case as well as the case of uniform
arrays with three, seven, and eleven channels as depicted in
Fig. 2(c). In the directional coupler case, we observe smooth
but not very abrupt transition (the slope of the curve is∼16%
of that of the case of the Jx array having eleven waveguide
channels). For larger uniform arrays, we observe an inter-
play between sharp transitions and fast oscillations. Thus,
based on the above simulations, we find that the nonlinear
response of the Jx structures provides a superior perfor-
mance in the sense that it is very abrupt and free of any
oscillatory behavior. These resultsmight find applications in
several different photonic systems, as we will discuss later.
In order to illustrate the physics behind the observed

abrupt transition between the off and on states [Fig. 2(a)], we
investigate light-transport dynamics in a Jx photonic wave-
guide array made of seven guiding channels after a propa-
gation distance ξ ¼ L≡ π=2 when light is launched in the
leftmost channel. Under linear conditions α ¼ 0, we obtain
coherent perfect transfer as expected [Fig. 3(a)]. As the
nonlinear parameter increases, self-trapping effects take
place and reduce the transmission to the rightmost port,
as shown in Fig. 3(b) for α ¼ 10. However, in this regime,
the nonlinear response is not strong enough to steer an
appreciable optical energy to the leftmost channel from the
adjacent waveguides. As the input light intensity is further
increased, localization effects become stronger and just at
α ¼ 11.3, transmission through the output port (leftmost

FIG. 2 (a) Transmission coefficient between the input and
output ports as defined in Fig. 1 as a function of the nonlinear
parameters (or input light intensity) for Jx arrays made of three,
seven, and eleven waveguides, respectively. (b) A comparison
with the performance of a uniform array as described in the text.
Evidently, Jx arrays provide an abrupt transition between the off
and on regimes—an effect that is not observed in uniform arrays.
Note that the nonlinear response of the uniform array for M ¼ 7
and 11 is almost identical. The black arrows in (a) indicate
roughly the location of αTH on each curve. The transition region is
indicated on the M ¼ 11 curve by the black and red arrows. (c)
Nonlinear response under edge excitations in a simple directional
coupler with coupling coefficient κu ¼ 1 (curve C) and uniform
arrays with seven waveguide channels when the coupling is κu ¼
1 (S1), κu ¼ 2 (S2), and κu ¼ 3 (S3), respectively. In the direc-
tional coupler case, we observe smooth but not very abrupt
(compared to the Jx array) transition. For larger uniform arrays,
we observe a smooth transition for small coupling coefficients.
As the coupling increases, the transition becomes sharper and is
accompanied with fast oscillatory behavior.

FIG. 3. Light-transport dynamics in a nonlinear Jx array made
of seven waveguides under different input light intensities as
quantified by the value of the nonlinear parameter: (a) α ¼ 0, (b)
α ¼ 10, (c) α ¼ 11.3, and (d) α ¼ 12. For a wide range of α, the
self-trapping effects are not strong enough to prevent light
diffraction and force the optical intensities to be confined in
the same input channel. However, at a certain light-intensity
threshold (defined in the text by αTH), strong spatial soliton
effects emerge, leading to a sudden and sharp increase in the
transmission coefficient.
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channel) starts to rise as illustrated in Fig. 3(c). Finally, as
shown in Fig. 3(d), at α ¼ 12 we observe strong spatial
soliton effects where light remains mainly localized in the
input waveguide and thus leads to a high-transmission
coefficient. This same behavior is observed for arrays made
of a different number of guiding elementswith the difference
that stronger nonlinearities (or higher light intensities) are
needed to divert light from right to left when the number of
the waveguides increases. This explains the behavior
observed in Fig. 2(a), where the transmission curve shifts
as a function of the number of the waveguides M. This last
point is better illustrated in Fig. 4 where we quantify the
dependence of αTH and the sharpness of the transitions—
defined by the slope of the transmission curve in the
transition region (TR) and denoted by ðdT=dαÞTR and
computed by using a linear curve fitting at the central part
of the transition region—as a function of the number of
waveguides. Intuitively, one would expect that αTH should
scale with the coupling between the edgewaveguide and the
neighbor channel gedge ¼

ffiffiffiffiffiffiffi

2N
p

. Our numerical results con-
firm this prediction for large arrays. We also find that the
slope ðdT=dαÞTR follows a quadratic function with the array
size to within 7%. These results hint at the possibility of
semianalytical solutions for the nonlinear dynamics and
surface soliton effects [42,43] that underline the nonlinear
optical response of these structures, which we plan to
investigate in detail elsewhere.
Intuitively, one would also expect other ports in the array

(except the central one) to function as synthetic saturable
absorbers. However, as shown in Fig. 5 for an array made of
seven guiding channels, when light is launched and
collected from port 2 or 3 (second leftmost waveguide
or third leftmost one), interference effects become domi-
nant in the transition region, giving rise to oscillatory

transmission behavior before it eventually settles down. On
the other hand, when light is launched in the central channel
(waveguide number four in this example), the nonlinear
response resembles that of a band-stop filter with a reduced

FIG. 4. The dependence of the threshold intensity characterized
by αTH and transition steepness defined by ðdT=dαÞαTH on the
array size. Our numerical results indicate that αTH scales with the
coupling between the edge waveguide and its neighbor channel
gedge ¼

ffiffiffiffiffiffiffi

2N
p

. We also find that the slope ðdT=dαÞTR follows a
quadratic function with the array size to within 7%.

FIG. 5. Transmission dynamics in a Jx array made of seven
waveguides as a function of the input light intensity when light is
launched and collected from the same channel for waveguides
number two, three, and four, respectively, after a normalized
propagation distance of ξ ¼ L≡ π=2. Note that interference
effects play an important role in these cases, leading to oscillatory
behavior. When light is launched in the central channel, a low-
transmission band (defined by intensity range rather than fre-
quency range) exists between high-transmission bands—a feature
that might find applications in laser systems.

FIG. 6. Nonlinear wave propagation in the Jx array studied in
Fig. 5when light is excited at the centralwaveguide forα ¼ 0, 9, 12,
14.5, 16.5, and 18, respectively are depicted in (a)–(f). From the
plots, we can see that the interplay between nonlinear self-locali-
zation effects, reflection from the array edges, and interference lead
to the oscillatory transmission behavior observed in Fig. 5.
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transmission band between two high-transmission regions
at very low and very high intensities—a feature that might
find applications in controlling nonlinear laser dynamics.
The nonlinear wave propagation dynamics that leads to
the behavior observed in Fig. 5 are depicted in Fig. 6 for the
case of central port excitation for different values of the
nonlinear parameter α.
Now we briefly discuss several practical aspects of

proposed synthetic saturable absorber structure. (1)
Experimental realization.—We first note that linear Jx
photonic arrays have been demonstrated in silica glass
platforms [33]. Observing saturable absorption effects in
these silica-based structures is possible at relatively
higher optical intensities [41]. Another attractive alter-
native is to use (Al,Ga)As platforms which exhibit
higher nonlinearities (almost 3 orders of magnitude
higher than silica) [44] and are compatible with semi-
conductor laser technology—an advantage that might
lead to integrating the laser device and the synthetic SA
on the same chip to build microscale mode-locked
lasers. (2) Nonlinear response scaling.—In addition to
the predicted sharp “phase transition” between the low-
and high-transmission modes (a feature that cannot be
achieved by using uniform arrays) another advantage
offered by our proposed structure is the ability to tailor
the nonlinear response of the system by scaling the
coupling constants between the waveguide elements
without the need to employ a new material system.
In addition, being a waveguide array-based device, the
SA proposed in this work is expected to enjoy a
relatively large bandwidth (a feature that we plan to
investigate in future work by using full wave analysis).
(3) Ultrafast applications.—Another interesting feature
of the proposed device is that, similar to the work in
Refs. [29–31], the absorption saturation effects rely on
Kerr nonlinearity, which is an instantaneous effect that
does not depend on any carrier relaxation mechanism
and is thus suitable for ultrafast applications. We note
that our analysis in this work is based on continuous-
wave light-wave propagation. For ultrafast applications,
one has to modify Eq. (1) to include temporal dispersion
as well as additional nonlinear effects [41]. The details
of these terms, however, are material and structure
dependent and we will investigate them in detail in
conjunction with specific material systems and particular
photonic designs in future publications.

III. CONCLUSION

In conclusion, we explore a concept for building
synthetic saturable absorbers based on photonic Jx arrays.
We investigate the nonlinear response of these structures
and we study their light-transport dynamics. Our simu-
lations uncover an interesting behavior of sharp phase
transition between two different transmission regimes:
off and on states. This feature can be utilized to build

on-chip mode-locked lasers as well as optical comparator
devices that differentiate between zero and one states.
Finally, test the robustness of the proposed device against
possible fabrication errors by superimposing random
perturbations over the values of the ideal coupling
coefficients. The numerical results indicate that the non-
linear response function is very robust against 5% and
even 10% disorder.
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