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Optimization of Nanocomposite Materials for Permanent Magnets: Micromagnetic
Simulations of the Effects of Intergrain Exchange and the Shapes of Hard Grains
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In this paper, we perform a detailed numerical analysis of remagnetization processes in nanocomposite
magnetic materials consisting of magnetically hard grains (i.e., grains made of a material with a high
magnetocrystalline anisotropy) embedded into a magnetically soft phase. Such materials are widely used
for the production of permanent magnets because they combine high remanence with large coercivity. We
perform simulations of nanocomposites with Sr-ferrite as the hard phase and Fe or Ni as the soft phase,
concentrating our efforts on analyzing the effects of (i) the imperfect intergrain exchange and (ii) the
nonspherical shape of hard grains. We demonstrate that—in contrast to common belief—the maximal
energy product is achieved not for systems with a perfect intergrain exchange, but for materials where this
exchange is substantially weakened. We also show that the main parameters of the hysteresis loop—
remanence, coercivity, and the energy product—exhibit nontrivial dependencies on the shape of hard grains
and provide detailed explanations for our results. Simulation predictions obtained in this work open new
ways for the optimization of materials for permanent magnets.
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I. INTRODUCTION

Magnetic materials which can be used for the manufac-
turing of permanent magnets are among the key materials
used in many high-technology applications today [1]. Modern
electromotors, actuators, and magnetic-field-based sensors
(to name only a few applications) require high-performance
magnets. The effectiveness of these magnets is usually
estimated by the value of the maximal energy product
(BH),,,x achieved in the second quadrant of their B-H
hysteresis loop. One of the most promising ways to obtain
large values of this parameter is the usage of magnetic
nanocomposites, i.e., materials which combine a high coer-
civity of a magnetically hard phase (the phase made of a
material possessing a large magnetocrystalline anisotropy)
with the high saturation magnetization of another (soft) phase.

At present, the best performance magnets are produced
from rare-earth metals (NdFeB, SmCo) and by employing
the precise fabrication control (see, e.g., Ref. [2]).
Unfortunately, these magnets are relatively expensive
and are subject to availability and price fluctuations due
to the high volatility of the rare-earth-element market.

Another very important class of materials for permanent
magnets is represented by nanocomposites containing fer-
rites as the hard phase. The energy product of Co-, Ba-, and
Sr-ferrite-based magnets is sufficient for many applications
of permanent magnets, e.g., in microwave devices, telecom-
munication, recording media, and electronic industry.
Another important advantage of these materials is that they
have a much better temperature and corrosion resistance than
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NdFeB-based magnets (see, e.g., Chap. 12.2 in Ref. [3]). In
addition, the situation with the production of ferrite-based
magnets is more stable, and costs are much lower due to the
wider availability of the corresponding raw materials.

The specified performance of a nanocomposite material
can, in principle, be achieved by tailoring various param-
eters of a nanocomposite, such as relative fractions of the
soft and hard phases, the size and shape of hard grains,
mutual arrangement of grains belonging to different phases,
and the quality of the intergrain boundaries. The develop-
ment of new magnets of any type requires a thorough
understanding of the relationship between their micro-
structure and their magnetic properties [4]. Advanced
structural experimental techniques can provide a very
important information; well-known examples are, e.g.,
the electron Bragg scattering diffraction studies of the
grain alignment in sintered NdFeB [5] or the x-ray
diffraction along with the high-resolution transmission
electron microscopy applied for the measurements of the
grain size distribution in soft magnetic alloys [6].

Recent publications of different scientific collaborations
have shown that, in order to study the question of the
microstructure-magnetism relationship in detail, it is abso-
lutely necessary to employ numerical modeling—in particu-
lar, micromagnetic simulations—combining it with other
experimental methods like 3D atom probe [7], energy-
dispersive x-ray spectroscopy [8], and magnetic neutron
scattering [9,10]. The use of micromagnetic modeling in
the development process allows the a priori performance
optimization of permanent magnets by predicting magnetic
characteristics of a nanocomposite material before its actual
manufacturing.
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In general, micromagnetic simulations are perfectly
suited for modeling of magnetic composites because the
typical micromagnetic length—a few nanometers—allows
us to resolve very well the magnetization distribution inside
the nanocomposite grains with sizes of several tens of
nanometers. However, corresponding simulations require
an enormous computational effort, for two main reasons.
First, a very fine mesh of finite elements is required for the
adequate approximation of each single grain as a geomet-
rical object with a complicated shape. Second, a large
number of soft and (especially) hard grains should be
present in the simulated volume, in order to study the
magnetization reversal as a collective phenomenon and to
obtain a sufficiently accurate statistics for these disordered
systems (see a detailed discussion of these issues in
Refs. [11-13]).

In recent years, a major simulation effort was devoted to
the understanding of rare-earth-based materials, with the
strategic goal to “push the border” of the conventional
(nonsuperconducting) magnets. In the first line, a large
amount of numerical research was carried out for compo-
sites based on NdFeB [7,8,14—16] and PrFeB [17-19];
some results have also been published for SmCo and
similar compounds [20].

For NdFeB-based materials, the question of internal
magnetization structure (mainly vortex) in a single grain
have been studied [14]. The influence of the soft-phase
concentration (Fe or FeB), the hard-grain size [15] and
(very recently) magnetic behavior of hard grains for several
different shapes [16] was investigated. Special attention
was paid to Nd-rich compositions, where it has been shown
that enrichment with Nd leads to coercivity enhancement
due to the concentration of the additional Nd on intergrain
boundaries [7,8].

Studies of composites based on PrFeB and containing Fe
as the soft phase have been devoted to the increasing role of
the magnetodipolar interaction with the growing soft-phase
fraction [17], correlation of the magnetization reversal of
the soft and hard grains [18], and the effect of the hard-
grain alignment [19]. For SmCo-like materials, different
mechanisms of the magnetization reversal when changing
the angle between the anisotropy axis and the applied field
were identified [20].

Somewhat apart from the main path lie the simulations
of a highly interesting yet not really applicable class of
MnBi-based materials. Here, the influence of the soft-phase
concentration (Co and FeCo) and the orientation degree of
the hard-grain anisotropy axes was studied numerically
in Ref. [21].

In contrast to the rare-earth-based composites, materials
based on various ferrites as the hard phase have not been
studied—to our knowledge—by micromagnetic simula-
tions, although this class of materials becomes increasingly
important for the reasons listed above. In this paper, we
address this challenge, starting with detailed studies of the

effect of the intergrain exchange coupling and the influence
of the hard-grain shape on the material properties in
nanocomposites SrFe;,0,9/Fe and SrFe,0,9/Ni.

Our polyhedron-based micromagnetic algorithm pro-
vides a high statistical accuracy of simulated results
because we are able to handle systems containing a few
thousand grains, including the ability to resolve a possibly
nontrivial magnetization distribution in every grain.
Because of the flexibility of our mesh-generation method,
a nearly arbitrary grain shape can be adequately approxi-
mated so that a simulated sample may include the grains of
different shapes and sizes.

The paper is organized as follows. In Sec. I, we explain
the mesh-generation methods which we use to create a
polyhedron mesh for a system containing nonspherical hard
grains embedded in a magnetically soft matrix; micro-
magnetic energy contributions and their evaluation in our
methodology are also briefly presented. Section III contains
simulation results. Section III A is devoted to a detailed
analysis of the influence of the intergrain exchange weak-
ening on the magnetization reversal in our materials. The
main result there is that the maximal energy product is
achieved for an intergrain exchange coupling that is much
smaller than the perfect coupling. Section III B deals with
the effect of the nonspherical shapes of the hard grains,
which turns out to be highly nontrivial and has a very
interesting underlying physical mechanism. Both subsec-
tions contain a detailed physical discussion of the results
obtained. We conclude with a summary of our findings and
offer possible perspectives for the improvement of ferrite-
based composites in Sec. IV.

II. OUR MICROMAGNETIC METHODOLOGY
FOR SIMULATION OF NANOCOMPOSITES

To overcome the difficulties in modeling magnetic
nanocomposites using standard micromagnetic methods
(finite difference and tetrahedral finite elements), we
develop [13] an alternative micromagnetic methodology
based on a discretization of magnetic materials using
polyhedrons of a special type. This methodology combines
the flexibility of general finite-element schemes for the
geometrical description of a nanocomposite structure with
the possibility of using fast Fourier transformation for the
calculation of the most time-consuming contribution to the
total energy: the magnetodipolar interaction.

A. Mesh generation for grains of a general shape

One of the main questions discussed in this paper is the
influence of the nonspherical (spheroidal) shape of hard
grains on the magnetic behavior of nanocomposites. For
such a system, we have to introduce two additional steps
into the mesh-generation procedure described in our
previous publications [11-13]. Namely, in this work, the
mesh for hard grains is generated separately from the
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FIG. 1. Examples of a spatial distribution of hard crystallites
(soft crystallites are not shown) in simulated samples for different
aspect ratios a/b of corresponding ellipsoids of revolution (see
the text for details).

soft-phase mesh (Fig. 1; additional step 1) and the two
systems are then merged (Fig. 2; additional step 2).

As in our standard methodology, we start from the
generation of mesh consisting of small, nearly spherical
polyhedrons with sizes less than the characteristic micro-
magnetic length. These polyhedrons will be used in micro-
magnetic simulations as the corresponding finite elements
(see Refs. [11-13] for details).

Next, we generate a system of nonoverlapping ellipsoi-
dal particles (additional step 1) with sizes and shapes
corresponding to the hard grains of our composite. We
point out that the generation of an ensemble of non-
overlapping ellipsoids is computationally challenging:
the evaluation of an overlapping of two ellipsoids and
the introduction of the suitable overlapping criterion
require a development of a special numerical scheme.
We use a method described by Donev et al. [22], which
is based on the Perram-Wertheim overlap potential and

FIG.2. Example of a microstructure (hard and soft phases) used
in our modeling of nanocomposites.

provides a suitable parameter describing the overlapping
degree of two ellipsoids. This parameter is then used in a
model of interacting particles with a short-range repulsive
potential, where ellipsoids are initially placed randomly,
but, due to the nature of this potential, the number of
overlaps is continuously decreasing.

At the second additional step, these ellipsoids are
mapped onto the system of (much smaller) polyhedrons
used as mesh elements in our micromagnetic simulation.
By this mapping, all mesh elements with centers inside
ellipsoids are assigned to the hard phase, and the rest of
elements to the soft phase. Note that the discretization of
crystallites of the soft and hard phases is based on mesh
elements of the same size.

All mesh elements belonging to the same spheroid
(crystal grain) have the same direction of the magneto-
crystalline anisotropy axes. We note here also that
anisotropy axis directions assigned to “soft” grains (Fe
and Ni, in our system), which are approximately spherical,
are distributed randomly in space; it should also be
mentioned that, for the soft phase, both the anisotropy-
axis distributions and the exact values of the anisotropy
constants play a minor role compared to the influence of
other interactions. For a spheroidal (ellipsoid of revolution)
“hard” grain, the anisotropy-axis direction coincides with
its rotational-symmetry axis.

B. Energy contributions and minimization procedure

In our simulations, we take into account all four standard
contributions to the total magnetic free energy: energy in
the external field, magnetocrystalline-anisotropy energy,
exchange stiffness, and magnetodipolar-interaction ener-
gies [11-13].

The energy in the external field and the magnetocrystal-
line-anisotropy energy are computed in a standard way, by
multiplying the corresponding energy densities by the
volume of finite elements (polyhedrons, in our case) and
summing over all of these elements. Evaluation of the
exchange energy is discussed in detail in Sec. II A. The
magnetodipolar field and energy are computed using an
optimized version of the lattice Ewald method for disor-
dered systems. In this algorithm, the mapping of the initial
(disordered) system of mesh elements on the translationally
invariant regular lattice allows us to keep the high speed of
the lattice method (fast Fourier transformation), while at the
same time making the mapping errors negligibly small.
We point out that a mapping of our disordered grid to
the regular lattice is necessary only for the fast evaluation of
the magnetodipolar interaction via FFT; all other micro-
magnetic interactions are computed directly using the
disordered mesh.

For a minimization of the total magnetic energy, obtained
as the sum of all four contributions described above, we use
a simplified version of a gradient method employing the
dissipation part of the Landau-Lifshitz equation of motion
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for magnetic moments [23,24]. The minimization is con-
sidered converged when the condition for the local torque
max ; |[m; x h¢"]| < ¢ is fulfilled (here, m; is a normal-
ized magnetic moment of the ith mesh element and h¢' is
the corresponding effective field; the value & = 1073 is
found to be small enough for our quasistatic minimization
procedure).

Further details of our method can be found in Ref. [13].

III. RESULTS AND DISCUSSION

Because of the high performance of our methodology,
we are able to simulate bulk nanocomposites with hard
grains of any prescribed shape, whereby the simulated
system may contain up to 600 hard grains, with an average
discretization of 300 mesh elements per grain. The whole
simulation volume is a cube with sides 220 nm long and is
discretized into finite elements (polyhedrons) that approx-
imately equal 4 x 10°. Employing this algorithm, we could
obtain systematic results with a high statistical accuracy for
two model systems: SrFe;,0;9/Fe and SrFe;;0,9/Ni.
Every data point in the figures presented below is the
result of averaging over four independent simulation runs,
each with a new random configuration of soft and hard
grains.

For simulations of these nanocomposites, we use stan-
dard magnetic parameters of the corresponding materials
(see, e.g., Ref. [3], Chaps. 5.3 and 11.6), which are
summarized in Table 1.

The average grain volume for all phases is chosen to be
equal to the volume of a spherical grain with the diameter
D = 25 nm. The volume concentration of the hard phase in
all presented simulations is ¢p,q = 40%.

A. Effect of the exchange weakening in SrFe,0;9/Fe

One of the central questions for permanent magnets
made of nanocomposite materials is the dependence of
magnetic properties on the exchange weakening between
different grains. This weakening is unavoidable in real
systems because it is nearly impossible to obtain perfect
intergrain boundaries. The quality of these boundaries
strongly depends on the concrete method used for the
manufacturing of a nanocomposite, and substantial efforts
have been devoted to obtaining materials with more-perfect
intergrain boundaries (and especially boundaries between

TABLE 1. Magnetic properties of various materials used in
simulations.

SrFe ;019 Fe Ni
M, (G) 400 1700 490
Anis. kind uniaxial cubic cubic
K (erg/cm?) 4.0 x 10° 5.0 x 10° —4.5x 10*
A (erg/cm) 0.6 x 1076 2.0x 1076 0.8 x 1076

grains belonging to different phases) in order to achieve
better exchange coupling. However, recently [25], it was
demonstrated both experimentally and theoretically that the
perfect intergrain exchange may strongly decrease the
performance of a magnetic nanocomposite material, so
this possibility requires a detailed theoretical study.

The exchange energy in our methodology is computed in
the nearest-neighbor (NN) approximation as

1 N
Eexen = _EZ Z )Kij

i=1 jCNN(i

2A..V..
Y (m;m;), 1
Arzzj ( ! J) ( )

where V;; = (V,; 4+ V,)/2, Ar;; is the distance between the
centers of the ith and jth finite elements, with volumes V;
and V;. The exchange constant A;; for the homogeneous
bulk material is equal to the corresponding exchange
stiffness constant A, but it is obviously site dependent in
composite materials; detailed justification of expression (1)
can be found in Refs. [12,13].

The exchange weakening is defined by multiplying the
exchange energy of neighboring mesh elements in Eq. (1)
by a factor 0 < k;; < 1. As we study here the influence of
the intergrain exchange weakening, k;; = 1 if the neighbor-
ing magnetic moments i and j are located in the same grain
(crystallite). If neighboring moments belong to different
grains, then k;; may be < 1 and is the same for all intergrain
boundaries. From Eq. (1), it can be seen that x =1
corresponds to the perfect intergrain exchange (equal to
the exchange within a bulk material), and ¥ = 0 indicates
no exchange interaction at all between different grains.

Dependence of magnetic properties on this exchange
weakening is studied for the composite SrFe;,O,q/Fe
with approximately spherical hard grains (obtained from
the random placement of spheres with D = 25 nm; see
Sec. [T A).

The overall trend is shown in Fig. 3, where the
evolution of hysteresis curves by increasing the exchange
coupling (x = 0.0 — 0.5) between grains is demonstrated.
Systems without (x = 0.0) or with a strongly reduced
(x = 0.05) exchange coupling between grains exhibit the
two-step magnetization reversal. The first step—a large
jump on the hysteresis loop in small negative fields (see
the panel for x = 0.05 in Fig. 3)—represents the mag-
netization reversal of the soft phase, whose volume
fraction is relatively high. The second step—reversal
of hard grains in much higher fields—leads to the closure
of the loop. Reversal of the hard phase occurs in
fields around H"%™, where the anisotropy field is defined
as Hg =2K/M,=pM, (f=2K/M? denotes the
reduced anisotropy constant). The large magnitude of
the magnetization jump during the first reversal step is
due to the dominating contribution of the soft phase to
the system magnetization: mg; = CooreM ot/ (CharaM hard +
csoflMsofl) ~ 0.86.
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FIG. 3. Simulated hysteresis curves of the nanocomposite
SrFe,0,9/Fe with spherical hard grains for different exchange-
weakening constant.

For a detailed analysis of the magnetization reversal in a
magnetic composite, it is very useful to plot hysteresis loops
for the soft and hard phases separately. Such loops can be
easily obtained from simulated magnetization configura-
tions by summing up contributions from finite elements
belonging to either the soft or the hard phase and calculating
corresponding total magnetizations of these phases.

We begin our consideration from systems with an absent
or very low intergrain exchange coupling, where the
dominant interaction is the magnetodipolar one. To clarify
the effect of this interaction, the above-mentioned mag-
netization-reversal curves of hard and soft phases are
plotted in Fig. 4 for the composite without any intergrain
exchange coupling (k = 0).

In order to understand the hysteretic behavior of both
phases, it is useful to calculate the reduced anisotropy
constant = 2K/M?, whose magnitude gives (roughly
speaking) the relation of the magnetocrystalline-anisotropy
field to the magnetodipolar field from the nearest neighbor
in the system of spherical particles. Substitution of the
magnetic parameters of our materials (see Table I) results in
the values 8, = 50(> 1) for the hard phase (SrFe;,O9)
and ; = 0.34(~1) for the soft phase (Fe). We note that the
much higher value of f for the hard phase is due not only to
its large anisotropy constant K (which is “only” 8 times
larger than by Fe), but mainly due to the much higher value
of the soft-phase magnetization Mg,/ M gr.0 = 4.25, which
gives an additional factor approximately equal to 18.

Considering the magnetization reversal of the soft phase
first, we note that this phase would exhibit in the absence of
the magnetodipolar interaction the “ideal” hysteresis loop

-05 =025 O
H/H,

025 0.5

FIG. 4. Simulated hysteresis loops for SrFe;,O,q/Fe (with
spherical hard grains) without the intergrain exchange (x = 0)
presented for hard (solid blue line) and soft (solid red line)
phases separately. The dashed line represents the unsheared loop
of the SW model with particle parameters, as for SrFe;;Oo.
The solid green line represents the SW loop sheared according
the averaged internal field (see the text for details). The external
field is normalized by the anisotropy field of the hard
phase Hg = f,M; = 20 kOe.

for a system of noninteracting particles with the cubic
anisotropy constant K, > 0 (as is the case with Fe). Such

a loop has the remanence j;eo) ~ (.83 and the coercivity

HY ~033H, = 0.338M, ~ 195 Oe (see, e.g., Ref. [26]).
The relatively low value of the reduced anisotropy for our
soft phase f,(Fe) = 0.34 means that the magnetodipolar
interaction can considerably modify the corresponding
ideal hysteresis. This influence manifests itself primarily
in the smoothing of the ideal loop [26], as can be seen in
Fig. 4, where the loop for the soft phase of our system is
shown in red. The remanence jp = 0.836 is nearly the same
and the coercivity H, =260 Oe increases by approxi-
mately 30% compared to the noninteracting case.

Unfortunately, we are not aware of any systematic
theoretical studies of the magnetodipolar-interaction effects
in systems of “cubic” particles, except for Ref. [27], where
only simulation results for the Henkel plots are shown; any
quantitative comparison with a detailed study of these
effects for the “uniaxial” particles presented in Ref. [28] is
meaningless due to the very different energy landscapes for
these two anisotropy types. For this reason, we can only
suggest that the nearly unchanged remanence (compared to
the ideal system) is due to the interplay of the magneto-
dipolar interactions within the soft phase and between the
soft and hard phases. The increase of H,. is most probably
due to the “supporting” action of the magnetodipolar field
from the hard phase onto the soft grains. Magnetization of
the hard phase in our system is rather low, so the
corresponding effect is relatively small.

The noninteracting hard phase consisting of grains with
the uniaxial anisotropy (as for SrFe;,0,9) would reverse

014011-5



SERGEY EROKHIN and DMITRY BERKOV

PHYS. REV. APPLIED 7, 014011 (2017)

according to the ideal Stoner-Wohlfarth (SW) loop [29],
with jr = 0.5 and H,~0.48Hk =~ 10 kOe indicated in
Fig. 4 by a thin dashed green line. The very large value of
the reduced single-grain anisotropy f,(SrFeO) = 50 for
this phase indicates that intergrain correlations of hard-
phase magnetic moments are negligible. However, in our
composite material hard grains are “embedded” in the soft
phase. Hence, in order to properly compare (at least in the
mean-field approximation) the simulated hard-phase
loop—the blue solid line in Fig. 4—to the SW model,
we have to take into account the average magnetodipolar
field (Hynq.) = (47/3) (M%) acting on a spherical particle
inside a continuous medium with the average magnetiza-
tion of the soft phase (M™).

Correction of the SW loop using this internal field
[which depends on the external field via the correspond-
ing dependence (M.(H.))] leads to the loop shown
with the thick solid green line in Fig. 4. It can be seen
that this corrected SW loop is in good agreement with
the simulated hard-phase loop. The remaining discrep-
ancies are due to local internal field fluctuations (always
present in disordered magnetic systems), which are
especially pronounced in our composite due to the high
difference between the magnetizations of the soft and
hard phases.

This analysis reveals that the first jump on the hard-phase
loop in small negative fields is due to the abrupt change in
the internal averaged dipolar field due to the magnetization
reversal of the soft phase. The second jump—for
H./H; =~ —0.3—is the manifestation of the singular behav-
ior of the SW loop of the hard phase itself, which occurs
for the unsheared loop at H, = —H; /2 (near this field,
M.~ \/—(H,-H,) for H, < H, [30]).

In summary, despite a relatively high saturation mag-
netization, M, = 1180 G, the corresponding composite
without any intergrain exchange coupling would have only
arelatively small maximal energy product of approximately
15 kJ/m? [see Fig. 5(b)]. The reason is its very small
coercivity H, ~ 250 Oe, which is determined entirely by
the magnetization reversal of the soft phase in small
negative fields.

Before we proceed with an analysis of the effect of the
intergrain exchange coupling on the hysteretic properties of
a nanocomposite, an important methodical issue should be
clarified. Namely, we have to determine the maximal value
of the exchange coupling (the maximal value of «), for
which our simulations can produce meaningful results.

The problem is that, with an increase of the coupling
strength, the interaction between the grains increases, so
that grains start to form clusters, inside which magnetic
moments of constituting grains reverse nearly coherently.
The average size of such a cluster, (d), obviously grows
with an increasing «. In order to obtain statistically
significant results, we have to assure that (d) is signifi-
cantly less (ideally much less) than the maximal system size
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FIG.5. (a) Remanence, (b) coercivity, and (c) energy product of

a simulated nanocomposite SrFe;,0,9/Fe with spherical hard
grains as functions of exchange weakening on the grain bounda-
ries. The inset in (a) represents the maximal value of the
perpendicular (to the directions of the applied field) component
of magnetization during the remagnetization process. The dashed
lines are guides for the eye.

accessible for simulations. Otherwise, we might end up
with a case where we are simulating the magnetization
reversal of a system consisting of a single (or very few)
cluster(s), so that the corresponding results will be non-
representative for the analysis of real experiments.

The best quantitative method to determine (d,) is the
calculation of the spatial correlation function of magneti-
zation components perpendicular to the applied field (in our
case, M, and M,): the average value of these components
should be zero, and the decay length of their correlation
functions, C,(r) = (M,(0)M(r)) (the same for M,),
would provide the most reliable estimation of (d;).

However, taking into account a complex 3D character of
C,,(r), we adopt another criterion to determine the
approximate number of independent clusters contained
in our simulated system. Namely, as the figure of merit,
we have employed the maximal value of the perpendicular
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component of the total system magnetization m =

M? + M?/M during the magnetization reversal.

If the system contains only one (or very few) cluster(s),
then, for some field during the reversal process, this
component should be large (close to 1) because one cluster
reverses in nearly the same fashion as a single particle, i.e.,
its magnetization rotates as a whole without significantly
changing its magnitude. Hence, at a certain reversal stage,
m, would unavoidably become relatively large. In the
opposite case, where a system contains many nearly
independent clusters (N > 1), their components M, ;
and M, ; (i =1,...,N), being independent variables with
zero mean, would average themselves out, leading to small
values of m .

A simple statistical analysis based on the assumption of
the independence of different clusters shows that the number
of such clusters can be estimated as N > 1 /mzl. This
estimation means that we produce statistically significant
results up to m | =~ 0.3 because, in this case, N, > 10. The
corresponding analysis shows that, for our systems (con-
taining about 5 x 103 finite elements), statistically signifi-
cant results are produced up to x = 0.5, so below we show
results only in this range of exchange couplings.

The simulation results showing basic characteristics of
the hysteresis loop—remanence jr, coercivity H,. and
energy product E . = (BH),—for the SrFe;,09/Fe
composite as functions of the exchange weakening «x are
presented in Fig. 5. We remind the reader that, for these
simulations, approximately spherical hard grains are used.

From Fig. 5, it can be clearly seen that the remanence j
of this material depends relatively weak on the intergrain
exchange coupling. The reason is that jp is very high
already for the fully exchange-decoupled composite
[jr(k = 0) ~0.8]. Such a high value, in turn, is due to
the fact that the remanence is governed by the
soft phase consisting of cubical grains. The remanence
of the noninteracting (ideal) ensemble of such grains is

jgg) ~ 0.83. This high remanence cannot be significantly

increased by the exchange interaction within the soft phase
(as is the case for the system of uniaxial particles with
randomly distributed anisotropy axes, where jg?) = 0.5; see
also Ref. [31] for an analysis of a corresponding 2D
system). Neither can this remanence be substantially
decreased by the exchange coupling with hard grains
because their magnetization at H, = 0 is still nearly aligned
along the initial field direction due to the strong magnet-
izing field from the Fe soft phase (with its high magneti-
zation Mg, = 1700 G).

In contrast to jg, the coercivity H . exhibits a pronounced
maximum as the function of the exchange coupling «,
resulting in the corresponding maximum of the x depend-
ence of the maximal energy product (BH),,. (k). We
explain the reasons for the appearance of this maximum

below, analyzing the hysteretic behavior of our nano-
composite for various x’s.

For the smallest nonzero « studied here, the magnetiza-
tion-reversal process is depicted in Fig. 6, where hysteresis
loops for the soft and hard phases are shown separately and
the magnetization configuration is displayed for several
characteristic external fields. First, it can be clearly seen

structure
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FIG. 6. Magnetization-reversal process for the composite with
exchange weakening x = 0.05. (Top to bottom) (a) Two-
dimensional cut of the microstructure of the system (warm colors
represent soft grains; cold colors represent hard grains). (b),
(c) Hysteresis shown as separate curves for the soft (red lines) and
hard (blue lines) phases (note the different scales of the H axis).
(d),(e),(1),(g) Magnetization configurations shown as m, maps for
field values indicated on the hysteresis plots shown above.
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that the magnetizations of the soft and hard phases reverse
separately. An inspection of the magnetization configurations
shows that the reversal of magnetic moments starts within the
soft phase [see Fig. 6(d)] around the hard grains whose
anisotropy axes are directed “favorably” (i.e., they deviate
strongly from the initial field direction). Then the reversed
area expands, occupying even larger regions of the soft phase
[Fig. 6(e)] until nearly the entire soft phase is reversed
[Fig. 6(f)]. Note that, in the negative field corresponding to
this nearly complete reversal of the soft phase, the majority of
the hard phase is still magnetized approximately along
the initial direction. Only in much larger negative fields
[Fig. 6(c)], the hard-phase magnetization also starts to reverse
[Fig. 6(2)].

We emphasize here two important points: although the
exchange coupling between the soft and hard phases is very
weak (k = 0.05) and the concentration of the hard phase is
moderate (40%), the supporting action of the hard phase is
enough to nearly double the coercivity of the soft phase—
and hence of the whole system, when compared to the case
of k =0 (see Fig. 5). At the same time, because of this
low exchange coupling, hard grains reverse separately from
the soft phase and nearly separately from each other [see
Fig. 6(f)], leading to a high coercivity of the hard phase
[Fig. 6(c)].

For the larger exchange coupling k = 0.1 (see Fig. 7), the
supporting effect of the hard phase increases the coercivity
of the soft phase even further (compared to x = 0.05).
At the same time, this larger coupling also leads to the
much earlier reversal of the hard phase, significantly
decreasing its coercivity—see the hysteresis plots in
Fig. 7. Magnetization reversal for this coupling starts in
those system regions where the hard phase is nearly absent
(due to local structural fluctuations)—see Fig. 7(e)—and is
much more cooperative than for x = 0.05.

The resulting coercivity of the entire system is at its
maximum because the interphase coupling is, on the one
hand, large enough to prevent the soft phase from a reversal
in small fields, but, on another hand, small enough to
enable a reversal of the hard phase in much higher negative
fields than the soft phase.

When the intergrain exchange coupling is increased
further, magnetization reversal of the system becomes fully
cooperative, so the soft and hard phases reverse simulta-
neously (in the same negative fields)—see the hysteresis
loops shown in Fig. 8 for x = 0.2. Spatial correlations
between the microstructure and the nucleation regions for
the magnetization reversal become weak, as can be seen
from microstructural and magnetic maps presented in this
figure. It is also apparent that the correlation distance of the
magnetization configuration strongly increases, as is noted
in the discussion above.

The overall result is the decrease of the system coercivity
because the soft phase causes a much earlier reversal of the
hard phase, so the supporting effect of the high anisotropy

structure
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FIG. 7. Magnetization reversal for the composite with the
exchange weakening « = 0.10 presented in the same manner
as in Fig. 6.

of the hard phase becomes smaller. However, for this
relatively low value of k = 0.2, this supporting effect is still
present: H,(k = 0.2) is nearly twice as large as H.(k = 0).

When the exchange coupling increases even further, the
magnetization reversal becomes completely dominated by
the soft phase due to its larger magnetization and volume
fraction. Specifically, for k = 0.5, both the coercivity and
the energy product are nearly the same as for k = 0. We
note that hysteresis loops for these two cases (x = 0 and
k = 0.5) look qualitatively different, but this physically
important difference (two-step vs one-step magnetization
reversal) does not matter for the performance of the
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FIG. 8. Magnetization reversal for the composite with the
exchange weakening « = 0.20 presented in the same way as in
Fig. 6. Simultaneous reversal of the hard and soft phases is clearly
visible.

nanocomposite from the point of view of a material for
permanent magnets.

The nonmonotonic dependence of the maximal energy
product on the exchange coupling (BH),.(k) can be
easily deduced from the dependencies jp(x) and H,.(x).
When « increases from 0 to about 0.1, both the remanence
and the coercivity increase, resulting in the rapid growth of
(BH),ax- For k > 0.1, the small increase of the remanence
(up to k= 0.2) cannot compensate for the large drop of
coercivity, resulting in an overall decrease of the energy
product. We point out here that such a behavior occurs only
when the dependence of the coercivity on the correspond-
ing parameter (in our case, the exchange weakening ) is
really strong. The case where the coercivity depends
relatively weakly on the parameter of interest is analyzed
in detail in the next subsection.

In summary, we have shown that, in contrast to the
common belief, there exists an optimal value of the
interphase exchange coupling in a soft-hard nanocomposite
which provides the maximal energy product. This optimal

value obviously depends on the fractions of the soft and
hard phases, but it is very likely that the optimal coupling
should be significantly less than the perfect coupling
(x = 1) for all reasonable compositions in this class of
materials.

This important insight opens up an alternate route for the
optimization of the permanent-magnet materials.

B. Effect of the grain shape of the hard phase
in SrFe;0,9/Fe and SrFe;,0;9/Ni composites

One of the intensively discussed questions when opti-
mizing the nanocomposite materials for permanent mag-
nets is whether the materials containing the hard grains
with the nonspherical shape could provide an improvement
of the energy product for corresponding composites (see
the corresponding references in the Introduction).

The standard argument in favor of the possible improve-
ment of E_,, is the additional shape anisotropy of non-
spherical particles. For an elongated (prolate) ellipsoid of
revolution, this anisotropy could increase the already-
present magnetocrystalline anisotropy (MC anisotropy),
thus enhancing the coercivity of the hard phase—and hence
the energy product. Below, we will demonstrate that this
line of arguments is not really conclusive and that the grain-
shape effect may even be the opposite—the energy product
can be larger for a material containing oblate hard grains.

Before proceeding with the analysis of our results, we
emphasize that the relative contribution of the shape
anisotropy can be approximately the same for rare-earth
and ferrite-based materials. The former materials have a
much larger MC anisotropy, K, so that, at first glance,
shape effects for rare-earth hard grains should be much
smaller. However, the relation between the shape
anisotropy and the MC-anisotropy contributions is deter-
mined by not only the value of K. but also the reduced
anisotropy constant 8 = 2K /M?, which gives, roughly
speaking, the relation between the MC-anisotropy energy
and the self-demagnetizing energy of a particle.

The presence of the material magnetization in the
denominator of the expression for # makes the constants
for both material classes very similar. For example, the MC
anisotropy K, ~ 4.6 x 107 erg/cm? for Nd,Fe,,B is more
than one order of magnitude larger than its counterpart,
K. ~4 x 10° erg/cm? for SrFe;,0,y. However, the much
lower magnetization M = 400 G of SrFe;,0,9 compared
to M~ 1300 G of Nd,Fe ;B makes the difference
between the reduced anisotropies of these materials quite
small, fngreg = 60, whereas fgr.0 =~ 50.

In the language of the anisotropy field, we have to
compare the values of the MC-anisotropy field Hyx =
PM, = 2K /M, with the values of the magnetizing mag-
netodipolar field, which attains its maximal value Hg* =
2zM for a needlelike particle. The corresponding relation

HEX/Hy = aM; /K = 27/f3 is about 0.10 for Nd,Fe 4B
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and about 0.13 for SrFe;,O¢. This result indicates that, for
the best case, the effect of the shape anisotropy for both
material classes can achieve approximately 10%. We
emphasize that even this moderate value would mean a
non-negligible progress on a highly competing market of
modern permanent-magnet materials.

Unfortunately, several circumstances are expected to
strongly diminish the shape-anisotropy contribution.
First, the estimate above holds for a strongly elongated
particle; for ellipsoidal particles with a realistic aspect ratio,
a/b ~2-3 (where a is the length of the axis of revolution),
the shape anisotropy field is only about half of its maximal
value. Second, this estimation holds for a single-domain
particle, whereas strongly elongated or nearly flat particles
acquire a multidomain state much easier than the spherical
ones because the domain-wall energy for strongly non-
spherical particles is much smaller than for a sphere.
Finally, the relation derived above is true only for an
isolated particle, and hard grains in nanocomposites are
always embedded in a soft phase or are in close contact
with other hard grains.

For these reasons, we perform a detailed numerical study
of the dependence of hysteresis properties on the hard-
grain shape for nanocomposite SrFe;,O,q9/Fe and—for
comparison—for SrFe;,0;9/Ni. For this purpose, we sim-
ulate magnetization reversal in these composites with the
hard grains having the shape of ellipsoids of revolution
(spheroids) with the aspect ratio a/b = 0.33, 0.5, 1.0, 2.0,
3.0; aspect ratios a/b > 1 correspond, as usual, to prolate
spheroids. For all aspect ratios, the volume of a single hard
grain is kept the same (and equal to the volume of the
approximately spherical grains with D = 25 nm). Volume
concentration of the hard phase ¢}, = 40% is the same as
for the simulations reported in Sec. III A. The exchange-
weakening parameter k = 0.1 is chosen to be close to the
optimal value for spherical hard grains obtained above.

1. Grain-shape effect for SrFe;;09/Fe

First, we discuss the simulation results obtained for the
composite SrFe,09/Fe—see Figs. 9, 10, and 11. In
Fig. 9, magnetization-reversal curves for different aspect
ratios of a/b are shown; both the loops for the entire system
and for the soft and hard phases separately are presented.
The most interesting observation here is the pronounced
difference between the reversal curves of soft and hard
phases for a/b = 1 and the nearly synchronous magneti-
zation reversal of both phases for other aspect ratios shown
in the figure. This observation is a key for the under-
standing of the system behavior that is discussed in
detail now.

Overall dependencies of the basic hysteresis parameters
Jrs H., and (BH),,,, on the aspect ratio a/b are presented
in Fig. 10. Both main parameters of the hysteresis—the
remanence jr and the coercivity H,.—exhibit a highly

a/b=0.33 a/b=1.0
1 1
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FIG. 9. Simulated hysteresis curves of the nanocomposite
StFe,0,9/Fe for the exchange weakening x = 0.1 and for
different aspect ratios of hard crystallites, as indicated in the
panels. Black loops, the hysteresis of the total system; blue
curves, the upper part of the hysteresis loop for the hard phase;
red curve, the same for the soft phase.

nontrivial dependence on this aspect ratio, which should be
carefully analyzed.

The dependence jg(a/b) shown in Fig. 10 is clearly
counterintuitive because, normally, one would expect a
higher remanence for a system containing elongated
particles—in our case, for a/b > l—due to the positive
shape-anisotropy constant for such particles. The simulated
dependence shows the opposite trend—the remanence
increases with a decreasing aspect ratio a/b, i.e., jg
becomes larger for a composite with oblate hard grains.

This behavior can be explained by taking into account the
fact that hard ellipsoidal grains are mostly embedded in the
soft magnetic matrix (the soft phase), whose magnetiza-
tion is larger than that of the hard phase: Mg, >
Mge,,0,,- For this reason, hard grains represent magnetic
“holes” inside a soft matrix (i.e., inclusions whose mag-
netization is smaller than the matrix magnetization). This
observation means, in turn, that the total magnetodipolar
field acting on the magnetization of the hard grain is directed
(on average) towards the initially applied field. In other
words, this field acts as a magnetizing field; i.e., it increases
the remanence of the hard phase.

The magnitude of this magnetizing field is propor-
tional to the difference between magnetizations of the
soft and hard phases and is of the order Hy*
(Mge = Msipe ,0,,) = NaemAM. For our system parame-
ters, AM = 1300 G, so that, taking into account that
Ngem ~ 7, we obtain Hg * ~ 4 kOe. This value is compa-
rable to the MC-anisotropy field of the hard grain itself

NNdem'
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FIG. 10. (a) Simulated reduced remanence, (b) coercivity, and
(c) energy product of the nanocomposite SrFe;,0;9/Fe with
different aspect ratios (a/b) of hard grains. The inset in (a) shows
the demagnetizing factor, depending upon a/b. The dashed lines
are guides for the eye.

[H g (SrFe;,049) = 20 kOe], so the effect of this magneto-
dipolar field can be significant.

To explain the trend [jz(a/b)] seen in Fig. 10, it remains
to note only that this magnetizing field is larger for oblate
spheroids, for which it can achieve the magnitude of
4z AM (—the limiting case for a thin disk with the revo-
lution axes along the magnetizing direction of the system.
By contrast, for the prolate spheroid, H;* becomes weaker
when a/b increases (the spheroid becomes more prolate)
because the main contribution to this field comes from the
soft-phase regions near the ends of this prolate spheroid.

The result of this complicated interplay is better align-
ment of the magnetic moments of the hard phase consisting
of oblate particles. This improved alignment leads to higher
remanence of the whole system, for two reasons: (i) the
remanence of the hard phase itself is larger and (ii) the
supporting action of the hard phase on the soft phase—due
to the interphase exchange coupling—is more significant.

The explanation of the nontrivial dependence of the
coercivity on the aspect ratio H.(a/b)—with the maximum
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FIG. 11. (a) Coercivities of the hard, H'"¢ (blue circles), and

soft, H°" (red circles), phases and (b) the difference, AH,,
between these coercivities as functions of the aspect ratio a/b.
[Inset of (b)] Inverse of the surface area of an ellipsoid of
revolution, depending upon a/b. The dashed lines are guides for
the eye. See the text for a detailed explanation.

between a/b = 0.5 and a/b = 1.0—requires a detailed
understanding of the magnetization-reversal mechanism in
composites with partial interphase exchange coupling.

Namely, magnetization reversal of these nanocomposites
always occurs according to the following scenario: the soft
phase switches first and then exhibits a torque on the hard
grains due to the interphase exchange interaction. For a
non-negligible interphase exchange, this torque is the main
interaction mechanism between the phases and leads
(together with the applied field) to the magnetization
reversal of the hard phase in larger negative external fields.

In order to understand why the coercivity has its maximum
for particles with a weak shape anisotropy, we have to recall
that the interphase exchange interaction is a surface effect
and, as such, is proportional to the interphase surface area. In
our case, this interphase area is the surface area of hard grains,
which are mostly surrounded by the soft phase. For this
reason, the exchange torque which the soft phase exhibits on
the hard grains is proportional to the surface area of these
grains. Hence, this torque should be minimal for the hard
grains with the spherical shape because the surface area of an
ellipsoid of revolution with the given volume is minimal for
a/b =1 (a sphere).

For this reason, a hard phase with grains having a
shape close to spherical has the maximal coercivity, i.e.,
reverses in the largest negative field. Such grains are also
able to “support” a soft phase up to negative fields larger
than nonspherical hard grains can, leading to the largest
coercivity of the whole sample.
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To provide further proof of this hypothesis, we plot in
Fig. 11 the coercivities of the hard and soft phases separately
[see the curves for H'4 and H*" in Fig. 11(a)] and the
difference between them, AH ., in Fig. 11(b) as functions of
the aspect ratio a/b. The excellent qualitative agreement
between AH .(a/b) and the inverse of the surface area of an
ellipsoid of revolution 1/S;(a/b) [see the Fig. 11(b) inset]
as functions of a/b clearly shows that the observed effect is
due to the surface-mediated interaction, which, in our case,
clearly refers to the interphase exchange interaction.

We finish this subsection with an explanation for why the
dependence of the maximal energy product on the aspect
ratio E ., (a/b) [Fig. 10(c)] for our system closely follows
the corresponding trend of the remanence jr(a/b) [see
Fig. 10(a)], but it is not influenced by the dependence
H.(a/b) [Fig. 10(b)].

To understand this phenomenon, we recall that the
energy product is defined as the maximal value of the
product (BH) within the second quadrant of the hysteresis
loop, i.e., for external fields —H,. < H <0 (here and
below, we omit, for simplicity, the index z by H, B, and M):

Epnox = max [B(H)-H] = max{[H +4zM(H)]- H},

—-H.<H<0
(2)

where it is important that the energy product depends on
H—both explicitly and implicitly—via the dependence
M(H).

Let us now assume that, for some reference parameter
value (e.g., in our case, for a/b = 1) with the magnetiza-
tion vs field dependence given by the function M,;(H), the
product (2) reaches its maximum Eﬁ?gx for the field value
H,. Then the corresponding derivative of the energy
product dE/dH vanishes at this point, leading to the

condition

d
dH [H + 4”Mref(H)] : H}|H=HU
dM ¢
:H0+277" Mref(HO)+HO rel =0. (3)
dH |y_p,

If the parameter in question changes (i.e., if we take
another value of a/b), then the hysteresis loop also
changes, becoming M., (H) = M (H) + AM, and the
maximum of the energy product is achieved at another
field, H .., = Hy + AH. The new maximal energy product
then is

Erx = [Hnew + 47[Mnew(Hnew)] - Hyeo- (4)

Assuming that AM and AH are small, we can expand the
functions M,;(H) and AM(H) in the vicinity of the point
H,. Starting with Eq. (4) and retaining only terms that are
linear in AM and AH, we obtain for Ej5y the expression

Eey = EO) 4+ 4nHoAM(H,)

dM ¢
+ 2AH{H0 + 27[ |:Mref(H0) + Hod_Href

)

(5)

The coefficient in the curly braces after AH is precisely
the expression (3) at the point where the reference energy
product reaches its maximum and, as such, is equal to zero.
Hence, we are left with the following expression of the new
maximal energy product:

Eney = ESX) + 4nHoAM(H,). (6)

This expression shows that the change of the energy
product due to the variation of some external system
parameter is controlled mainly by the change of the
magnetization curve (the upper part of the M-H hysteresis
loop) at the external field H, where the reference energy
product reaches its maximum. Obviously, this magnetiza-
tion change is roughly proportional to the remanence
change, which explains the semiquantitative correspon-
dence between the dependencies jz(a/b) and E,,,(a/b).
We point out once more that this statement is true only if the
coercivity shift due to the variation of this parameter is
relatively small. If this shift is not small, then the position of
the vertical side of the rectangle [in the (B-H) plane] used
for the determination of (BH),,,, can strongly depend on
the coercivity value, making the derivation of Eq. (5)
invalid.

2. Grain-shape effect for SrFe;,019/Ni

The second composite which we have used to study
the grain-shape effect—SrFe;,0,9/Ni—is qualitatively
different from the previous material (SrFe;,0,9/Fe) due
to the much lower magnetization of the soft phase:
M (Ni) ~490 G. The idea behind the usage of a soft
phase with such a low magnetization is that the coercivity
of the resulting material should be much higher due to the
weaker response of the soft phase, with a smaller mag-
netization to the external field. This higher coercivity might
compensate for the decrease of the net magnetization,
resulting in a competitive energy product.

Simulation results for SrFe;,0,9/Ni with various grain
shapes are presented in Fig. 12 (the hysteresis loops) and
Fig. 13 (the basic characteristics of the hysteresis). As can
be clearly seen, the Ni-containing composite behaves
qualitatively differently than the Fe-containing material.

The main new feature is—as expected—the higher
coercivity of both the soft and hard phases. The consid-
erably larger coercivity of the Ni phase [H.(Ni) =~
1000 Oe—see Fig. 12, the red loops] compared to the
coercivity of the Fe phase in the previously studied
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FIG. 12. Simulated hysteresis curves of the composite
SrFe,019/Ni for k = 0.1 and different aspect ratios of hard
crystallites, as indicated in the panels. Black loops are total
hysteresis; blue curves represent upper part of the hysteresis loops
for the hard phase; red curves represent upper part of the
hysteresis loops for the soft phase.

composite [H,.(Fe) ~ 600 Oe—see Fig. 11(a)] is mainly
due to the lower magnetization of Ni, as mentioned above.

The much larger coercivity of the hard phase (we remind
the reader that this phase is the same for both of the studied
materials) for SrFe;,0,9/Ni can most probably be explained
by three reasons. First, due to the lower value of M (Ni), the
reversal of the soft phase starts for the Ni-containing
composite in higher negative fields, which in itself should
lead to a larger H" for the hard phase also. However,
this reason alone could not be responsible for the more
than fourfold increase of H"d [H"d(SrFe;,0,9/Ni) ~
4000 Oe vs H"4(SrFe;,0,9/Fe) < 1000 Oe].

The second reason is that the magnetodipolar field of
the soft phase acting on hard grains is much smaller for Ni-
than for Fe-containing composites (due to the same much
lower magnetization of Ni). After the reversal of the soft
phase, this magnetodipolar field is directed oppositely to
the initial material saturation and thus assists the reversal of
hard grains. The much smaller magnitude of this field thus
leads to a much higher external field required to reverse the
hard phase.

Finally, the considerably smaller exchange constant of
Ni compared to Fe (see Table I) results in the lower
exchange torque acting on hard grains after the reversal
of the soft phase, also decreasing the total torque acting on
the hard phase and increasing its coercivity.

This qualitatively new situation—the noncorrelated
magnetization reversals of the soft and hard phases—Ieads
to another type of coercivity dependence on the aspect ratio
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FIG. 13. (a) Remanence, (b) coercivity, and (c) energy product

of the nanocomposite SrFe;,0,o/Ni, depending upon the aspect
ratio a/b of the hard grains. The dashed lines are guides for
the eye.

a/b of hard grains: coercivity H.(a/b) decreases when this
ratio increases [see Fig. 13(b)], behaving in a manner very
similar to the remanence jz(a/b) [Fig. 13(a)].

The most likely explanation for this behavior is the
following: the degree of the magnetization alignment of
hard grains is nearly the same for various aspect ratios a/b.
Hence, the main effect on the soft-phase reversal is due to the
difference in the magnetodipolar-field distributions caused
by hard grains having various shapes. Prolate ellipsoids of
revolution produce a nonuniform magnetodipolar field
whose maximal value is higher than for oblate ellipsoids.
However, the field of prolate particles is strongly concen-
trated near their “sharp” ends, whereas the dipolar field of
oblate ellipsoids (magnetized, on average, along their axes
of revolution) occupies a much larger region near their “flat”
surfaces. For this reason, the dipolar field of oblate hard
grains supports the magnetization of the soft phase in larger
space regions, thus leading to an increase of the soft phase
(and total) coercivity with a decreasing a/b, i.e., when hard
grains become more oblate.

As the result of the decrease of both j, and H,, the
energy product also decreases with an increasing a/b, as
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shown in Fig. 13(c). We point out that, although the
resulting behavior is qualitatively somewhat similar to
the case of the Fe-containing material (compare to
Fig. 10)—the energy product decreases with an increasing
aspect ratio—the physical reasons for this behavior are
fundamentally different for these two composites. In the
two cases considered in this paper, the two mechanisms can
be clearly differentiated. For the Fe-based composite, the
coercivity change with a/b is relatively small (about 25%),
so the energy product follows the dependence jz(a/b)
see Eqgs. (2)—(6)—and the first mechanism (the effect of the
magnetizing field inside the hard grains) is at work. For the
Ni-based system, the coercivity decrease with an increasing
a/b is very large (more than 2 times), so the theory based
on Egs. (2)—(6) is not applicable. In this case, the energy
product essentially follows the coercivity dependence
H.(a/b), which is, as discussed above, most probably
due to the change of the supporting influence of hard grains
on the soft phase (the second mechanism).

It is also interesting to note that, despite the larger
coercivity of the Ni-containing composite, its energy
product remains smaller than for the Fe-containing material
due to its much lower net magnetization. This relation can
change for materials with different fractions of soft and
hard phases.

IV. CONCLUSION

In this paper, we present a detailed numerical study for
the dependence of magnetic properties of Sr-ferrite-based
nanocomposites on two very important material parame-
ters: (i) exchange coupling between various crystallites
(which includes the coupling between soft and hard grains)
and (ii) the shape of the hard grains.

First, we demonstrate—in contrast to the common para-
digm—that the maximal energy product E, ., = (BH ), 18
a nonmonotonic function of the intergrain exchange cou-
pling x and that the optimal « value (for which the energy
product reaches its highest value) is far below the perfect
coupling. This nonmonotonic character of the function
Emax (k) is due to the corresponding dependence of the
coercivity on the exchange coupling H (k).

Second, we studied the dependence of the hysteresis
properties and the maximal energy product on the shape of
hard grains for two very different nanocomposite materials
—SrFeuOlg/Fe [MS(FQ) ~ 1700 G] and SrFel2019/Ni
[M,(Ni) ~ 490 G]. Hard grains have been assumed to have
(approximately) a shape of ellipsoids of revolution, whose
aspect ratio is varied in the range 1/3 < a/b <3 (a/b > 1
corresponds to a prolate ellipsoid). We show that, for both
materials, the aspect-ratio dependence of the maximal
energy product E, . (a/b) essentially follows the corre-
sponding dependence of the hysteresis-loop remanence
jr(a/b) and support this observation with analytical
considerations. For both materials, the maximal value of
Jjr(a/b)—and hence of E,,,(a/b)—is obtained for the

oblate hard grains with the smallest aspect ratio, a/b = 1/3
(also, in contrast to common expectations). Physical
reasons for this behavior are revealed.

Finally, we also analyze the dependence of the coercivity
on the shape of the hard grains H.(a/b) and show that this
dependence for the two composites under study is quali-
tatively different. For SrFe;,0,9/Fe, the function H.(a/b)
has a pronounced maximum for approximately spherical
grains, whereas, for SrFe;,0,9/Ni, coercivity monotoni-
cally decreases with an increasing a/b. This difference is
explained by analyzing the dominating interaction mech-
anisms between the hard and soft phases in these materials.
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