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Relatively recent experiments on the scintillation response of CsI:Tl have found that there are three main
decay times of about 730 ns, 3 μs, and 16 μs, i.e., one more principal decay component than had been
previously reported; that the pulse shape depends on gamma-ray energy; and that the proportionality curves
of each decay component are different, with the energy-dependent light yield of the 16-μs component
appearing to be anticorrelated with that of the 0.73-μs component at room temperature. These observations
can be explained by the described model of carrier transport and recombination in a particle track. This
model takes into account processes of hot and thermalized carrier diffusion, electric-field transport,
trapping, nonlinear quenching, and radiative recombination. With one parameter set, the model reproduces
multiple observables of CsI:Tl scintillation response, including the pulse shape with rise and three decay
components, its energy dependence, the approximate proportionality, and the main trends in proportionality
of different decay components. The model offers insights on the spatial and temporal distributions of
carriers and their reactions in the track.
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I. INTRODUCTION

Ideally, spectroscopic scintillation detectors convert the
energy of a particle stopped in the host into luminescence
photons whose number is proportional to the energy of the
stopped particle, so that the integrated luminescence (the
detected pulse height) depends linearly on the particle energy.
In real scintillators, light emission fromnonlinear interactions
of carriers generated in the particle track and complexities
of transport and capture, along with the stochastic nature of
energy deposition, introduce an energy-dependent light yield,
i.e., nonproportionality. This intrinsic nonproportionality of
real materials contributes in quadrature with other factors,
including absolute detected photon number and homogeneity
of light collection, to determine the energy resolution [1–3].
Gamma-ray energy resolution is of practical importance for
element and isotope screening in security applications, well
logging, and certain medical applications as well as spec-
troscopy in physics experiments [4–6]. One hopes to discover
and/or engineer a scintillator with both a high absolute light
yield and a plot of light yield versus energy (proportionality
curve) that is as flat as possible.

Besides proportionality, scintillators are also character-
ized by measuring their pulse rise and decay times. The rise
time is important for event timing, with notable applica-
tions to time-of-flight positron-electron tomography [7]
in medicine and extracting data from multiple collisions
per bunch in the next-generation high-luminosity Large
Hadron Collider experiments [8], for example. The decay
time is important to the maximum event rate with respect to
the pulse pileup. The decay in different scintillators can be
described as single exponential, multiple exponential, or
nonexponential. In deference to the last two, one may more
properly speak of the decay curve rather than decay time,
including information on relative amplitudes of the decay
components. It is common to refer to the pulse shape
representing both rise and multicomponent decay. One
might suppose that a single short decay would be preferred,
but a multicomponent decay curve whose shape depends
on ionization density enables pulse-shape discrimination
between gamma-ray and massive (e.g., proton, alpha)
particle events and is especially valuable for neutron and
gamma discrimination in detectors. Extra information
about the ionization track coded in the pulse shape could
potentially improve energy resolution [9–11].*williams@wfu.edu
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Direct experimental evidence that proportionality and
pulse shape can be intertwined includes the gamma energy
dependence of decay times in CsI:Tl [12] and the recent
measurement of different proportionality curves for each
decay-time component in CsI:Tl [13]. This paper presents
computationalmodeling aimed at duplicating the pulse shape,
including its energy dependence and the corresponding
separate proportionalities of decay components. This model-
ing leads to insight on the scintillation processes involved.
The transport- and rate-equation model that we use to fit

and analyze these experiments was used earlier to calculate
the proportionality of the total light yield as well as time-
and radial-space-resolved distributions of the participating
carriers and trap populations in the system of undoped CsI at
two temperatures (295 and 100 K) and CsI with Tl dopant at
room temperature [14]. A brief review of the model and
enhancements made for the analysis in this work, primarily
the reporting of scintillation pulse shape, is given in Sec. II.
The seven-equation base model employed here is the same
as the one used in Ref. [14]. There are changes in some of
the material-specific rate coefficients, mainly the bimolecu-
lar recombination rate constants involving the Tl activator in
CsI:Tl (Bet and Btt) and the linear rate constant (S1h) for
self-trapped-hole capture on Tlþ.

II. OVERVIEW OF THE MODEL

Our computational model of scintillation was described
in Ref. [14]. Starting with a specified ionization density
deposited initially in a track of an assumed cylindrical
Gaussian profile, the recombination portion of the model
calculates the fraction of this ionization that produces photon
emission. The computation is performed using the coupled
rate and transport equations listed in Eqs. (1)–(7) below,
evaluated by a finite-element method. The seven equations
listed below are mathematically the same as those used in
Ref. [14], but we choose a different naming of factors

comprising the coefficients of the terms involving Tl-trapped
electrons that become temporarily mobile when thermally
ionized. For reasons of computational efficiency explained in
Ref. [14], we had constructed a diffusion coefficient, mobil-
ity, and defect-trapping rate constant for electrons trapped in
equilibrium on Tl as follows: Det ¼ ðUet=S1eÞDe, μet ¼
ðUet=S1eÞμe, andK1et ¼ ðUet=S1eÞK1e, where the subscript
et indicates a coefficient for Tl-trapped electrons and e alone
indicates corresponding coefficients for conduction electrons
that have not yet entered the cycle of trapping, release, and
retrapping on Tl. The trapping and recapture of electrons on
thallium is treated as if diffusion of Tl0 were taking place,
saving the need to continue executing femtosecond time steps
to deal with conduction electrons into themicrosecond range,
where essentially all carriers are in equilibrium with traps, as
will be seen in this study to be the case.Uet is the rate constant
for untrappingan electron fromTl0 andS1e is the rate constant
for trapping an electron on Tlþ to form Tl0. Thus, the ratio
(Uet=S1e) describes the fraction of time that an electron
bound in Tl0 at thermal equilibrium spends in the conduction
band, able to respond to electric fields andgradients aswell as
to participate as the mobile species in recombination with
Tl2þ-trapped holes or capture on other defects. In Ref. [14],
we introducedDet, μet, andK1et as newmaterial parameters,
even though they are scaled by the fixed ratio (Uet=S1e)
relative to the free-electron parameters De, μe, and K1e.
Writing the same equations now with an explicit display of
the ratio Uet=S1e ¼ fe (for “free-electron fraction”) avoids
the introductionof apparently newmaterial parameters for the
activator-doped material that are simply scaled from host
parameters that have already been used. For Btt, defined in
Ref. [14] as the bimolecular rate constant for electrons from
Tl0 combiningwith holes trapped as Tl2þ, we introduceB0

tt in
the new display format where Btt ¼ feB0

tt. The remaining
symbols and terms in the equations and relevant aspects of the
solution method are as described in Ref. [14]:

dne
dt

¼ Ge þDe∇2ne þ μe∇ · ne ~E − ðK1e þ S1eÞne − Bnenh − Bhtnenht − K3nenenh − K3nenenht ð1Þ

dnh
dt

¼ Gh þDh∇2nh − μh∇ · nh ~E − ðK1h þ S1hÞnh − Bnenh − Betnetð1 − feÞnh − K3nenenh − K3nenetnh ð2Þ

dN
dt

¼ GE þDE∇2N − ðS1E þ K1EÞN − R1EN þ Bnenh − K2EN2 ð3Þ

dnet
dt

¼ De∇2netfe þ μe∇ · netfe ~Eþ S1ene − K1enetfe − Betnetð1 − feÞnh − B0
ttnetfenht − K3nenetnh ð4Þ

dnht
dt

¼ Dht∇2nht − μht∇ · nht ~Eþ S1hnh − K1htnht − Bhtnenht − B0
ttnetfenht − K3nenenht ð5Þ

dNt

dt
¼ S1EN − R1EtNt þ Bhtnenht þ Betnetð1 − feÞnh þ B0

ttnetfenht − K2EtN2
t ð6Þ
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S1x ¼
nTlþ

n0Tlþ
S01x; ð7Þ

where nTlþ ¼ n0Tlþ − net − nht − Nt.
The radiative rates, R1EtNt from an excited Tlþ� and

R1EN from self-trapped excitons (STE), are evaluated froma
solution of the coupled equations for all populations as a
function of time starting from an initial on-axis excitation
density n0. The time-integrated radiative rate gives the
corresponding light output. Division of the total light output
by the total number of initial electron-hole pairs at the initial
excitation density being considered gives the light yield as a
function of the initial ionization density. We call this
intermediate result the local light yield, YLðn0). The calcu-
lation is repeated for a number of excitation densities.
In the energy-deposition part of the model calculation,

GEANT4 Monte Carlo simulations [15] are used to record
the energy and track length for each subevent making up
the total deposition by a monoenergetic electron of initial
energy Ei. From such simulations, the ionization density
(e-h=cm3) can be determined for every parcel of energy
deposited based on the dE=dx so calculated and the
assumed Gaussian radial profile of the track having an
initial radius r0, which is a parameter of the model. The
calculations of the local light yield are carried out for a
range of ionization densities that span the GEANT4 results.
Introduction of a radial profile of some kind is essential on

dimensional grounds to convert the rate of linear energy
deposition dE=dx (eV/nm) to units of deposited carrier
density (e-h=cm3) in terms of which the kinetic rate and
transport equations are defined. The conversion is written as

n0 ¼
dE=dx
πr20βEgap

; ð8Þ

where r0 is the 1=e radius of the track profile expressed as
expð−r2=r20Þ in Ref. [16] and βEgap is the average energy
invested per electron-hole pair created. Using this conversion
and the GEANT4 simulations yields a probability of occur-
rence of each excitation density n0 during the stopping of a
primary electron of initial energy Ei, written as Fðn0; EiÞ. In
the calculations of Ref. [14], an average probability function
Favðn0; EiÞ was constructed from 100 to 2000 GEANT4

simulations at each initial electron energy, whereas, in this
work, the single-simulation probability function Fðn0; EiÞ
is used to calculate and store 100 to 2000 light yields of
simulated single events, which can be averaged at the end.
Given the same set of simulated events, the averaged light-
yield results are the same for both methods. The approach
adopted here is well suited for the simulation and analysis of
pulse-height spectra in future work.
Having both Fðn0; EiÞ from GEANT4 simulations and the

local light yield YLðn0Þ from the solution of Eqs. (1)–(7),
the formal calculation of light yield as a function of
initial energy (i.e., electron response or proportionality)

is obtained by integrating the product Fðn0; EiÞYLðn0Þ over
n0. We have used an interpolation procedure in this step.
Fifteen or so local light-yield calculations, YLðn0Þ, are used
as a framework to interpolate the light response for each
parcel of excitation density, and the contributions from all
such parcels are summed to give the scintillator’s response
to that electron.
For the study of rise and decay times in this work, the

YLðn0Þ values are recorded for all excitation densities at
times of interest during the initial calculation. Subsequently,
the response at each time can be calculated. Repeating the
process at various times gives the signal as a function of
time for the initial electron energy under consideration.
Completing the calculation for all modeled energies gives
the pulse shape for each energy and proportionality as a
function of time.
In Eq. (6) above, the population of the excited activator,

Tlþ�, is denoted by Nt, meaning “exciton trapped on
activator.” Similarly, the density of self-trapped holes
[STH] is nh, and the density of thallium-bound electrons
[Tl0] is net. The term Betnetð1 − feÞnh (which approxi-
mately equals Betnetnh) governs the moderately fast
bimolecular formation of Tlþ� by the well-known reaction
STHþ Tl0 → Tlþ�. The B0

ttnetfenht term governs the
slower process involving trapped electron release from
Tl0, followed by capture of the electron on Tl2þ that had
been formed by prior hole capture (at the rate S1hnh), to
also produce an excited activator, Tlþ�. The following
sections will refer especially to the three parameters Bet,
B0
tt, and S1h, which have critical roles in determining the

pulse shape in CsI:Tl. Thus, fitting the pulse shape presents
an opportunity to refine their values before addressing
proportionality and total light yield.
The model of Ref. [14] was developed and tested for

electron proportionality (relative light yield versus electron
energy), and it is used in this work to compare with gamma-
ray proportionality data [12,13]. Swiderski et al. [17] have
compared electron response and gamma response of CsI:Tl
from about 30 keV to 1MeV.With a 12-μs shaping time, the
differences between gamma and electron response over this
energy range are modest, so we believe the comparisons
being made in this work are informative and support useful
conclusions about mechanisms of both electron and gamma
response. In a forthcoming work, we will model gamma
proportionality and the pulse-height spectrum directly.

III. PULSE SHAPE AND ITS ENERGY
DEPENDENCE

A. Experimental data

Syntfeld-Kazuch et al. [12] measured the pulse shape of
CsI:Tl (0.06%), excited at several gamma-ray energies
between 662 and 6 keV using a so-called slow-slow single-
photon method described in Refs. [18] and [19], tailored to
reduce the background of random coincidences. With this
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method, they were able to resolve a “tail” decay component
of about 16 μs in addition to the “fast” and “slow”
components of 730 ns and 3.1 μs reported in prior studies
of CsI:Tl scintillation decay [20,21]. The pulse shapes for
662- and 6-keV gamma excitation measured in Ref. [12]
are plotted in Fig. 1. The 16-μs tail accounts for about 22%
of the integrated pulse for 662-keVexcitation, compared to
48% and 30% for the fast and slow components, respec-
tively [12]. Decay curves of scintillation from 16.6-, 60-,
122-, and 320-keV gamma rays were also measured in
Ref. [12], reported in terms of fitted exponentials and their
amplitudes.
The decay times of 730� 30 ns, 3.1� 0.2 μs, and

16� 1 μs are determined by fitting the decay curve for
662-keV excitation [12]. The corresponding decay times
under 6-keV excitation are 670� 20 ns, 3.1� 0.3 μs, and
14� 3 μs, indicating that the fast and tail decay times
decrease slightly with decreasing gamma energy. Noting
that there is only a weak dependence of the fitted decay
times upon gamma-ray energy, the authors of Ref. [12]
presented data on how the relative amplitudes (the inte-
grated intensities) of the fast, slow, and tail decay compo-
nents changed in six gamma energy steps from 662 to
6 keV. A main conclusion of their study was that the fast-to-
tail ratio increases as gamma excitation energy is lowered.
Fitting the observed pulse shape as a function of energy and
understanding the physical origins of the decay compo-
nents are among our objectives in this work.
The data in Fig. 1 are a multichannel analyzer record

of times from start to single-photon stop events which
samples the scintillation lifetime and is adjusted with
delays to put the start time for the pulse on scale. This
adjustment ensures that the data records shown in Fig. 1
show a rising portion of the curve within the stated
20-ns experimental resolution in Ref. [12]. However, the

measurement method itself does not specify a time zero.
The rise to a peak and initial decay out to 2.5 μs are shown
on an expanded time scale in the inset of Fig. 1. Syntfeld-
Kazuch et al. [12] normalized their data at the peak for
display, and we will follow their lead in making compar-
isons to the model. The time zero in the model is definite,
corresponding to the initial energy deposition, and can be
read from the model curve matched to the experiment curve
at its peak. The curves in both the main figure and the inset
of Fig. 1 are normalized and presented, with the peak
intensities coinciding in time and amplitude. The red and
blue traces in the inset are for 662 and 6 keV excitations
measured by Syntfeld-Kazuch et al. in an experiment
optimized for weak signals at long times [12,18,19]. We
have also examined 511-keV excitation data measured by
Valentine et al. [20] in an experiment optimized for fast
response at the expense of resolving slow, weak signals.
Many previous studies [20–23] have associated the

approximately 700-ns fast decay mainly with the reaction
STHþ Tl0, and the approximately 3-μs slow decay with
electrons thermally released from Tl0 recombining with
Tl2þ that are formed by STH capture at Tlþ dopants. This
association of the two main physical recombination routes
involving STH and Tl2þ, respectively, with the decay
components seems complete when there are only two
decay components known experimentally (other than what
is considered afterglow). With three identifiable decay
components having roughly similar integrated strengths
that are now known [12], an assessment of the responsible
physical mechanisms seems in order.
Our underlying model accounts for the trapping of

both electrons and holes by Tlþ in the lattice. Carriers
created by high-energy radiation are initially hot, with
excess kinetic energy. As a result, electrons created in CsI
spread quickly to a mean radius of about 50 nm (extending
as far as 200 nm) [24], and they are trapped with a 1=e time
of approximately 3 ps [14,25] by Tlþ to form Tl0. Self-
trapping of the coproduced holes is commonly presumed to
localize them initially at the original track. The transport
and recombination kinetics of these STH with the
Tl-trapped electrons (denoted Tl0) initially governs the
formation of excited Tlþ�’s that are responsible for scin-
tillation light. Together with the Tlþ� photoluminescence
decay time of 575 ns, these transport and recombination
kinetics determine the finite rise time and the 730-ns fast
decay time of scintillation in CsI:Tl. In parallel, the STH
are competitively trapped on Tlþ, accumulating a popula-
tion of Tl-trapped holes (Tl2þ) until all STH are exhausted
by these two channels. With appropriate proximity and the
thermal untrapping of electrons from Tl0, this Tl2þ pop-
ulation, considered deeply trapped and immobile, recom-
bines with the electrons released from Tl0 to produce Tlþ�
at longer times. For these calculations, we adopt the
conventional assumption that it is the electron that is
untrapping from Tl0. An alternative suggestion that Tl0
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FIG. 1. Experimental pulse rise and decay over the full
measured range 0–40 μs in CsI:Tl from Ref. [12] is shown for
662-keV gamma excitation in the red trace and for 6-keV gamma
excitation in the lower blue trace.
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is a deep electron trap [26–28] and that holes instead untrap
thermally from Tl2þ to recombine with the static Tl0 has
been made [26].

B. Model results: Fitting rise and decay times

The 662-keV pulse-shape data reported in Ref. [12] are
reproduced by the red trace with noise in Figs. 2(a) and
2(b). The smooth curve superimposed shows the simulation
of Tlþ� emission calculated by the model described in
Sec. II with material input parameters to be tabulated and
discussed later in this paper.
The experimental data and model calculation for

a 662-keV excitation is shown on a log scale versus linear
time out to 5 μs in Fig. 2(a). Superimposed is a 575-ns
exponential representing the decay time measured for
UV-excited Tlþ� photoluminescence in CsI:Tl at room

temperature by Hamada et al. [21]. It has been shown
that Tl photoluminescence in CsI exhibits four bands, and
the dominant visible luminescence at room temperature
(2.25 eV) has been attributed to a STE perturbed by
substitutional Tlþ on an adjacent site [29]. In the present
modeling at room temperature, we approximate it simply as
one excited state with 575-ns photoluminescence decay
time, called by the short name Tlþ�. Future studies may
examine whether the complexity of the Tl emission center
itself further complicates the scintillation decay, such as
how the various energy minima of the excited state are
populated in the scintillation process. The observed scin-
tillation decay is slower than 575 ns, as can be seen in the
figure and as many others have observed. As discussed by
other authors [20–22,30], the main mechanism for the
formation of Tlþ� in the first 200 ns or so is the hopping
diffusion and capture of STH on Tl0 sites formed much
earlier by rapid electron capture on Tlþ. For the scintillation
decay to be longer than the 575-ns photoluminescence
decay time, the excited Tl population should be fed while it
also undergoes radiative decay. This formation process also
accounts for the initial rise characteristics.
In Fig. 2(b), the model calculation with the same

parameters is compared to the full range of the experi-
mental 662-keV scintillation decay out to 40 μs. In
Ref. [12], raw data with noise and the rise to a peak before
decay were shown only for the 662- and 6-keV gamma
energies. However, decay data for the six gamma energies
662, 350, 122, 60, 16.6, and 6 keV were reported as a set of
three fitted exponential decay times, and the amplitude of
each [12]. We reconstruct the decay curves shown in Fig. 3
from the experimentally determined decay constants and
amplitudes reported in Ref. [12]. The experimental curves
for 662, 350, and 122 keVoverlap, so what is seen in Fig. 3
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FIG. 2. Experimental scintillation decay curve from Ref. [12]
for 662-keV gamma excitation shown by red traces with noise on
(a) ð0–5Þ-μs time scale and (b) ð0–40Þ-μs scale. In both cases, the
superimposed smooth black line is the modeled light output for a
662-keVexcitation. The model is normalized to the experiment at
the peak.
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FIG. 3. Reconstructions of measured scintillation decay curves
for six gamma-ray energies in CsI:Tl (0.06%) based on the time
constants and integrated amplitudes reported in Ref. [12]. Only
the decay curves are represented. The curves for 122, 320, and
662 keV overlap in the top curve.
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is a single curve labeled 122–662 keVat the top, with three
curves below it corresponding to 60, 16.6, and 6 keV,
respectively. There is no representation of the early rise to a
peak. These reconstructed decay curves are normalized to a
value 105 at t ¼ 150 ns, which corresponds to the peak of
the intensity curve in the model results.
The modeled light output curves are shown in Fig. 4 for

gamma energies of 662, 350, 122, 60, 16.6, and 6 keV. The
curves are normalized to 105 at 150 ns, the peak of light
output. We do not display all of the experimental and
modeled curves in a single figure because it would be hard
to distinguish them. Except for the 6-keV curve, the pulse
shape is similar in the model and the experiment. As we
discuss in Sec. VII, we do not try to make an exact fit with
many free parameters, but we revise as few material input
parameters as possible relative to Ref. [14]. As a result,
some of the remaining differences between Figs. 3 and 4
are probably attributable to input parameter values that are
not yet fully correct, though deficiencies in the model itself
cannot be ruled out. For example, the experimental curves
in Fig. 3 are more rounded in the range of 3–5 μs than are
the simulated curves of Fig. 4. The common trend of an
increasing peak-to-tail ratio with a decreasing energy is
displayed in both the simulation and the experiment.
There is disagreement in the amount of tail amplitude

change (relative to the peak of the fast component ampli-
tude) between the model and the experiment at the lowest
excitation energy, 6 keV. In the model, the depression of the
relative tail amplitude continues at a rate consistent with
the trend at higher energies, but the tail amplitude in the
experiment drops a great deal more between 16.6 and 6 keV
than at any other energy interval, and it thus differs from the
model. One possible reason for the disagreement between
the experiment and the model at very low gamma energy is
a known difficulty of light-yield and decay-time studies
when the excitation occurs near the surface. A 6-keV

gamma or x ray has an attenuation length of about 3.6 μm
in CsI. This value is within the range of the surface in which
quenching effects have often been reported [31,32]. Such
effects could be expected to affect the long tail of excitation
decay more severely than the fast component because a
longer time interval allows more diffusion toward the
surface and allows quenching to occur. The amplitude of
the tail could be decreased and its apparent decay time
shortened because of the competing channel for deexcita-
tion presented by quenching centers near the surface.
The model curves shown in Fig. 2 reach a peak at about

200 ns, matching the measurements in Ref. [33], which
used methods chosen to reduce random coincidences [19]
at some sacrifice of rise-time resolution. Rise and peaking
data for CsI:Tl were reported by Valentine et al. with better
time resolution [20]. Their data include an ultrafast com-
ponent that can be aligned with the rise of the calculated
STE emission in the model curve. Comparison on that basis
indicates that the experiment reaches its peak 50–100 ns
sooner than the results fitted to the Syntfeld-Kazuch et al.
measurement [12]. Hamada et al. [21] report decay data for
samples with Tl content from 10−2 to 10−6 and their rise
time ranges from 100 to 185 ns, respectively. As com-
mented earlier, these alternate fast-time data sets do not
include decay data to long times (20–40 μs), so we
concentrate on fitting the full set of data from Syntfeld-
Kazuch et al. [12]. The contribution of STE luminescence
is not plotted in Fig 2. The STE contribution to lumines-
cence at room temperature is very small compared to the
Tlþ� emission except for the details of the initial rise that
occur within the 20-ns resolution of the experimental data
now being compared. It is known from experiment that the
STE in CsI at room temperature is thermally quenched to
about 2% yield coming as a 15-ns emission from an
equilibrated type-I–type-II STE configuration [32].

IV. NONPROPORTIONALITY OF EACH
DECAY COMPONENT: EXPERIMENTAL

DATA AND MODEL RESULTS

The proportionality curves for the fast, tail, and total
decay components in CsI:Tl (0.06%) were reported by
Syntfeld-Kazuch et al. [13] in 2014, following the method
developed in Ref. [34], and are replotted below in Fig. 5(a).
The experimental proportionality curves for decay compo-
nents in Fig. 5(a) are determined by fitting the measured
decay curve at each gamma energy to 730-ns, 3-μs, and
16-μs components and plotting the integrated light yield in
each component versus the gamma energy, normalized at
662 keV.
Figure 5(b) plots the calculated proportionality curves

for the fast (730 ns) and tail (16 μs) components, as well as
the total pulse proportionality in CsI:Tl (0.06%), using the
model of Eqs. (1)–(7) [14] and the same parameters that
produced the preceding fits of the pulse-shape data. We
emphasize that the calculated proportionality curves in
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FIG. 4. Decay curves calculated from the model for six electron
energies of the same values as the gamma energies of the
reconstructed experimental decay curves in Fig. 3.
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Fig. 5(b) come directly out of the model, with its parameter
set refined to give good fits to the rise and decay data,
without any further fitting to reproduce the proportionality
curves of separate decay components.
The approximate proportionality curves for specified

decay times in Fig. 5(b) were calculated from the model
output in the following way. The integrated light emission
from 0 to 750 ns is plotted as the fast light yield versus
electron energy; from 750 ns to 3 μs as the slow light yield
versus energy; from 3 to 40 μs as the tail light yield versus

electron energy; and from 0 to 40 μs as the total light yield
versus energy. We are comparing proportionalities of decay
components calculated by a simulated gating time method
with experimental proportionalities of decay components
analyzed as integrated strengths of three fitted exponential
components. There should be qualitative and reasonable
quantitative correspondence between the two methods.
Qualitative correspondence is what we are pointing out
in Fig. 5. The modeled proportionality curves are normal-
ized at 200 keV for reasons discussed in Ref. [14]. It is a
consequence of the approximate energy range over which
the cylinder approximation of the track is valid.

V. ORIGIN OF THREE DECAY COMPONENTS
OF SCINTILLATION IN CSI:TL

Two particularly intriguing questions are posed by the
experimental observations reviewed in Secs. III A and IV.
(a) To what can the three main decay components of 0.73,
3.1, and 16 μs in CsI:Tl be attributed? (b) To what can the
different proportionality curves for the three decay com-
ponents, particularly the anticorrelation of fast and tail
components, be attributed? We address the origin of the
three decay times first.

A. Recombination reactions resulting
in Tlþ� light emission in CsI:Tl

Beginning with Dietrich et al. [22] and in many works
since [20,23], four main recombination processes have
been considered as contributors to CsI:Tl scintillation.
Reaction 1 comprises direct Tlþ excitation and/or prompt
electron- and free-hole capture on Tlþ to contribute a
promptly rising signal that should decay at the 575-ns
photoluminescence decay time of Tlþ�. However, this pure
575-ns decay is rarely distinguishable from the stronger
730-ns “fast component” of CsI:Tl scintillation commonly
attributed to reaction 2—self-trapped holes recombining
with electrons on Tl0, STHþ Tl0 → Tlþ�. Reactions 1 and
2 together should contribute to the observed fast scintilla-
tion decay, with reaction 2 (R2) dominant, because the self-
trapping of holes is very fast, and hot electrons disperse and
form Tl0 that is mostly separated from the STH in the
track core.
As reviewed in the Introduction and elsewhere

[14,20–23,35], the generally accepted reaction 3 in CsI:
Tl is the thermal release of electrons trapped early in the
track formation as Tl0, followed by diffusion through
repeated release and recapture until recombination with a
hole trapped as Tl2þ. For a shorthand label, we refer to
Tl0 þ Tl2þ → Tlþ� as reaction 3. This reaction has been
considered responsible for the single observed slow com-
ponent of roughly 3 μs seen in works prior to Ref. [12],
e.g., as reviewed by Valentine et al. [20]. Kerisit et al. noted
that the 3-μs time range brackets the decay time of Tl0 due
to electron release at room temperature, approximately

10 100 1000
0.6

0.8

1.0

1.2

1.4

Fast (τ
1

= 730 ns)

Total
Tail (τ

3
= 16 μs)

N
or

m
al

iz
ed

lig
ht

 y
ie

ld

Energy (keV)

(a)

10 100 1000
0.6

0.8

1.0

1.2

1.4

Fast (0 - 750 ns)
Total (0 - 40 μs)
Tail (3 - 40 μs)

N
or

m
al

iz
ed

 li
gh

t y
ie

ld

Energy (keV)

(b)

FIG. 5. (a) Experimental proportionality curves for the fast
(0.73 μs) and tail (16 μs) decay components, as well as the
proportionality of the total emission [Fastþ Slow (τ2 ¼ 3 μs) þ
Tail] in CsI:Tl are plotted versus the gamma-ray energy. Repro-
duced from Ref. [13]. (b) Simulated proportionality curves for
fast, total, and tail decay components in CsI:Tl calculated with
the same model and parameter set used in Figs. 2 and 4. The
integration gate intervals for the three decay components are
given in the legend. The model curves are normalized at 200 keV
for reasons discussed in Ref. [14].
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1.8 μs [36], and associated the single time constant τe (for
electron release from Tl0) with the scintillation decay time
of approximately 3 μs [23].
Reaction 4 involving Tl in alkali halide scintillators is

STEþ Tlþ → Tlþ�, i.e., self-trapped excitons migrating to
encounter substitutional Tlþ and transferring their excita-
tion to create Tlþ�. Murray and Meyer [35] suggested this
STE reaction channel as having the main responsibility for
scintillation in NaI:Tl. However, following subsequent
time-resolved kinetic studies on KI:Tl with a partial
extension to NaI:Tl, Dietrich et al. later concluded that
“… nearly all (approximately 95%) of the energy transport
takes place by electron-hole diffusion” [22]. The computa-
tional model used herein takes into account very rapid
spatial separation of hot electrons relative to self-trapped
holes [24] and the effect of rapid electron trapping on Tlþ
directly measured by picosecond spectroscopy [25]. These
effects hinder the formation of STEs in Tl-doped CsI
relative to undoped CsI, where the line of holes draws free
conduction electrons back to the track after they thermalize
[14]. STEs that form in CsI:Tl despite the fast competing
channels of carrier capture on Tl must then survive thermal
quenching at room temperature [32] in order to finally
excite Tlþ. The model calculations indicate that in CsI:Tl
(0.06 mole %) at room temperature, STE formation
amounts to ≤ 10% of all electron-hole pairs created in a
662-keV electron track. It shows, furthermore, that the
fraction of all initial excitations in the track that eventually
result in STE capture at Tlþ to form excited Tlþ� is ≤ 5%.
This model result supports an extension to CsI:Tl at room
temperature of the conclusion of Dietrich et al. [22] noted
above, namely, that about 95% of the energy transfer to Tl
is by binary electron and hole transfer, with STE transfer
(reaction 4) only a small contributor (at perhaps 5%).
In summary, the detailed model results that we present

below show that the two main factors favoring binary
electron-hole energy transfer over STE transfer in Tl-doped
alkali halides are the rapid spatial separation of hot
electrons from self-trapped holes [24], combined with
the very large capture rate of conduction electrons on
Tlþ [14,25]. The capture rate of electrons on Tlþ (0.08%) is
shown by picosecond absorption spectroscopy [25] to be
even larger than the capture rate of electrons on self-trapped
holes, so that doping CsI with approximately 0.08-mole %
Tl (approximately equal to 0.3 wt % in melt) strongly
inhibits STE formation. As a result of these findings, we
will not consider reaction 4 involving STE energy transfer
when seeking an explanation of the three main scintillation
decay times in CsI:Tl.
A particular puzzle that we seek to answer in the rest of

this section can be phrased as follows: Experiments have
revealed three distinct decay components in CsI:Tl—
730 ns, 3.1 μs, and 16 μs—but only reactions 2 and 3
are apparently available to account for them. Therefore, it
seems that at least one of the two main reactions (2 or 3)

must be contributing two distinct decay components of the
scintillation pulse. How can that be? We look to plots of the
time-dependent radial population and reaction rate from
the model for insight.

B. Time-dependent radial population
and reaction-rate plots

A good way to visualize the progress of various parts of
the recombination process in the modeled track is to plot
populations or reaction rates as a function of radius at a
sequence of times for a given on-axis excitation density.
Figures 6(a) and 6(b) plot the initial hole distribution along
with Tl-trapped electron distributions (Tl0) in the critical
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FIG. 6. The initial hole concentration profile, ½STH� ¼ nh, is
plotted, together with the thallium-trapped electron concentra-
tion, ½Tl0� ¼ net, at early times up to the completion of electron
trapping on Tl shortly after 5 ps. The on-axis excitation density is
1020 cm−3. Two formats are presented. In (a), the population
concentrations are multiplied by the radius to convey the number
of carriers versus the radius. In (b), the concentrations are
reported directly.
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first 10 ps, when hot-electron diffusion drives the radial
dispersal of electrons [24,37] that are trapped in picoseconds
as Tl0 (with a measured rate constant of 3 × 1011 s−1

for a 0.08-mole % Tl doping level [14,25]). This dispersal
and trapping freezes in a charge-separated starting distribu-
tion of trapped electrons at larger radii of 40 nm or more and
self-trapped holes close to the core in a radius of about 3 nm.
As mentioned above, this electron-hole separation, together
with electron trapping as Tl0, discourages self-trapped
exciton formation and is probably the main reason for the
finding by Dietrich et al. [22] cited earlier that energy
transport in Tl-activated KI and NaI occurs dominantly by
binary electron and hole transport rather than STE transport.
On longer time scales, as we see below, the STH diffuses
outward and, ultimately, electrons thermally released from
Tl0 diffuse inward. In both cases, the carrier diffusion is
assisted by the strong internal electric field set up by the
early charge separation seen in Fig. 6, particularly at high
excitation density.
In Fig. 6(a), the population concentration is multiplied

by the radius to produce a result proportional to the number
of carriers present at each radius. Because of hot-electron
dispersal, the number of trapped electrons peaks at about
25 nm when thermalization and electron trapping on the Tl
activator have ended. As described in Ref. [14], we set the
hot-electron diffusion coefficient of the undoped CsI host in
our model to reproduce the same radial distribution of
electrons thermalized after 4 ps in CsI as were calculated
by Wang et al. [24], a mean radius of about 50 nm, with
some electrons dispersed as far as 200 nm. Upon including
0.08-mole % Tl in the modeled CsI with its measured
electron-capture rate constant of about 3 × 1011 s−1 [25],
the 25-nm mean radius of the Tl0 population in Fig. 6(a) is
found. Appreciable numbers of trapped electrons extend as
far as 100 nm and beyond. The radially weighted plotting
format of Fig. 6(a) was used in Ref. [14] with mixed units
of nm=cm3, chosen so that division by the radius in
nanometers recovers the local population density at that
radius in cm−3. Figure 6(b) simply plots the carrier
concentrations versus radius. The reaction rates depend
directly on the concentrations. We use both plotting formats
as appropriate in the analysis and the discussions that
follow. The narrow peaks at small radius in both frames of
Fig. 6 are labeled as the initial hole population but represent
the electron population equally well at t ¼ 0. Their values
are divided by the factors 10 and 20 in Figs. 6(a) and 6(b),
respectively, to bring them on scale.
An immediate and striking conclusion to be drawn from

Fig. 6(a) is that a great majority of the electrons are trapped
within a few picoseconds on the Tl activator ions in CsI:Tl
at radial locations that have little overlap with the self-
trapped holes. The overlapped STH and Tl0 populations
inside a radius of about 6 nm are immediately subject to
recombination, producing Tlþ� excited activators at a rate
given by the term Betnetð1 − feÞnh in Eq. (6). Following

the terminology introduced in earlier studies [20,22,23,35],
we call this process reaction 2. In the finite-element
solution of our rate model, the local rate of R2 is nonzero
only when there are overlapping populations of Tl0 (local
concentration net) and STH (concentration nh) in the same
cell. Thus, a significant portion of Tl0-trapped electrons
that do not spatially overlap the STH distribution in
Fig. 6(a) cannot immediately contribute to the reaction-2
rate term. They become eligible if diffusion brings them
into overlap. Such a diffusion is assisted by the internal
electric field set up between the separated trapped charges.
To illustrate, Fig. 7 plots the time-dependent radial dis-

tributions of reaction 2 itself. The rate term that is responsible
for reaction2 isBetnetð1 − feÞnh ≈ Betnetnh,wherenet is the
local density ofTl0 (electrons trappedon theTlþ activator),nh
is the local density of the STH, and Bet is the bimolecular
rate constant for this recombination of electrons and holes.
The displayed results are calculated for an initial excitation
density of 1020 e-h=cm3 on axis of the track.
Figure 7(a) shows that, for roughly the first 200 ps,

reaction 2 occurs only within a radius of about 6 nm where
the STH and some of the Tl0 overlap from the beginning.
Starting around 1 ns, outward movement of the reaction
zone tracking the diffusion of the STH to overlap additional
Tl0’s at a longer radius can first be seen. The occurrence of
significantly slower STH diffusion rates evaluated at lower
excitation densities of 1019 and 1018 e-h=cm3 (not plotted)
demonstrates that Coulomb repulsion of the positive self-
trapped holes in the track core significantly assists the STH
transport outward. From about 4 ns onward, the outwardly
advancing reaction zone leaves no significant activity in its
wake because the Tl0 population (at density net) is fully
depleted by reaction with the dense advancing front of STH
present at this excitation density and time range. Integrating
the curve radially, we obtain the total R2 rate at each
considered time. The quantity netnh proportional to the rate
of R2 is plotted in Fig. 8 on a semilog scale. This curve
is not a light decay one, but a plot proportional to the
reaction-2 rate for creating Tlþ� excited states for an initial
excitation density of 1020 cm−3 on axis of the track. The
1=e time for decay of the main R2 rate is about 110 ns,
corresponding to the straight line overlaid. Reaction 2 is
itself a bimolecular recombination process. If the bimo-
lecular rate term were the controlling factor in the decay at
times longer than about 50 ns, we should expect a t−1 decay
at long time periods rather than the exponential decay
evident in Fig. 8. We regard the finding of first-order
exponential-decay kinetics for this reaction at long time
periods as partial evidence of transport-limited reactions of
spatially separated populations at longer time periods.
The curve in Fig. 8 begins with a fast spike of about 1 ns

duration. Considering the initial stationary reaction zone
seen in Fig. 7, we conclude that the fast spike represents
reaction 2 in the initially overlapping STH and Tl0

populations, while the 110-ns decay component of the
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main part of reaction 2 represents the transport-limited
reaction rate of STH moving to encounter a new Tl0

population. At the end of Fig. 7, reaction 2 can be seen
taking place out to 80 nm, far beyond the initial zone of
creation of STH, so STH diffusion out into the surrounding
field of less mobile Tl0’s has obviously been important. The
decay time of approximately 1 ns of the spike of reactions
consuming the initial overlapped populations and the 110-ns
decay of the STH transport-limited reaction rate are two
different manifestations of a single reaction which we and
previouswriters have termed reaction2 betweenSTHandTl0.
Both the 1- and 110-ns decays for reaction 2 to form Tlþ�

excited states are faster than the photoluminescence decay
time of the excited Tlþ� state itself (575 ns), so the two
components do not lead to observably different decay times
of light emission, but rather contribute different rise-time
components to the so-called fast scintillation component
decaying with an approximately 730-ns time constant. The
full-model calculation demonstrates in Fig. 2 that the
formation rate of Tlþ� excited states with a time constant
of about 110 ns, together with the 575-ns photolumines-
cence decay time of Tlþ�, provides a good match for the

observed 730-ns decay time of the scintillation light. The
prevailing view that reaction 2 is the main contributor to the
730-ns component is confirmed in this model, although we
see later that reaction 3 also contributes a decay component

0 20 40 60 80 100
0

1

2

5 ps
20 ps
50 ps
100 ps
400 ps
1000 ps

R
ad

ia
lly

 w
ei

gh
te

d

R
2

ra
te

(1
013

nm
s–1

cm
–3

)

Radius (nm)
0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

0

1

2

3

4

20 ns
40 ns
60 ns
80 ns
100 ns

R
ad

ia
lly

 w
ei

gh
te

d

R
2

ra
te

(1
011

nm
s–1

cm
–

3
)

Radius (nm)

(a) (c)

0

1

2

3

2 ns
4 ns
6 ns
8 ns
10 ns

R
ad

ia
lly

 w
ei

gh
te

d

R
2

ra
te

(1
012

nm
s–1

cm
–3

)

Radius (nm)

0

1

2

3

300 ns
350 ns
400 ns
450 ns
500 ns
600 ns
800 ns

R
ad

ia
lly

 w
ei

gh
te

d

R
2

ra
te

(1
010

nm
s–1

cm
–3

)

Radius (nm)

(d)(b)

FIG. 7. The local rate of reaction 2 versus radius is plotted at evaluation times shown in the left two frames (a,b) from 5 ps up to 10 ns
and continuing in the right two frames (c,d) from 20 to 800 ns. Reaction 2 ceases by 800 ns when the supply of STH is consumed by this
reaction and by the competing process of STH capture on Tlþ activator sites to create Tl2þ.

0 200 400 600 800
10

12

10
14

10
16

rB
et

n
h
n

et

Exponential,τ = 110 ns

R
ad

ia
lly

 w
ei

gh
te

d

R
2

ra
te

(n
m

s–1
cm

–3
)

Time (ns)

FIG. 8. Semilogarithmic plot of spatially integrated rate of
reaction 2 versus time, for an on-axis excitation density of
1020 e-h=cm3.

X. LU et al. PHYS. REV. APPLIED 7, 014007 (2017)

014007-10



on the order of 800 ns. The model results in Figs. 7–9
confirm, furthermore, that reaction 2 expires too early
(because of STH depletion) to be a contributor to either the
3- or the 16-μs scintillation decay component at the
excitation density of 1020 e-h=cm3 on axis that is illus-
trated here.
Figure 9 shows the radial population distributions of

STH (rnh), Tl0 (rnet), Tl2þ (rnht), and excited Tlþ� (rNt) at

six successive times, from 10 ns to 10 μs. The first
population to take note of is STH. It can be seen on the
radial axis that the STH population diffuses outward
noticeably at times longer than about 10 ns. On the vertical
axis, the number of STH can be seen decreasing rapidly
with time in this early range as they encounter and combine
with Tl0 to produce Tlþ� excited states (reaction 2) and with
Tlþ to produce Tl2þ-trapped holes (setting up reaction 3).

0 20 40 60 80 100
0

1

2

3 r n
h

r n
et

r n
ht

r N
t

R
ad

ia
lly

 w
ei

gh
te

d

R
ad

ia
lly

 w
ei

gh
te

d

co
nc

en
tr

at
io

n
(1

016
cm

–3
)

R
ad

ia
lly

 w
ei

gh
te

d

co
nc

en
tr

at
io

n
(1

015
cm

–3
)

R
ad

ia
lly

 w
ei

gh
te

d

co
nc

en
tr

at
io

n
(1

015
cm

–3
)

Radius (nm)

10 ns

0 20 40 60 80 100
0

1

2

3

4

5 1 μs
r n

h

r n
et

r n
ht

r N
t

Radius (nm)

co
nc

en
tr

at
io

n
(1

015
cm

–3
)

R
ad

ia
lly

 w
ei

gh
te

d

co
nc

en
tr

at
io

n
(1

015
cm

–3
)

R
ad

ia
lly

 w
ei

gh
te

d

co
nc

en
tr

at
io

n
(1

015
cm

–3
)

(a)

(b)

(c)

(d)

(e)

(f)

0 20 40 60 80 100
0

1

2

3

4

5

6 100 ns
r n

h

r n
et

r n
ht

r N
t

Radius (nm)
0 20 40 60 80 100

0

1

2

3

4 r n
h

r n
et

r n
ht

r N
t

5 μs

Radius (nm)

0 20 40 60 80 100
0

1

2

3

4

5 r n
h

r n
et

r n
ht

r N
t

500 ns

Radius (nm)
0 20 40 60 80 100

0

1

2

3

4
10 μs

r n
h

r n
et

r n
ht

r N
t

Radius (nm)

FIG. 9. Plots proportional to azimuthally integrated local density of STH (rnh), Tl0-trapped electrons (rnet), Tl2þ-trapped holes (rnht),
and Tlþ�-trapped excitons rNt are displayed as a function of the radius at six indicated times between 10 ns to 500 ns in the left column
(a-c), continuing from 1 μs to 10 μs in the right column (d-f). The plots correspond to an on-axis excitation density of 1020 e-h=cm3.

ENERGY-DEPENDENT SCINTILLATION PULSE SHAPE … PHYS. REV. APPLIED 7, 014007 (2017)

014007-11



At 800 ns, virtually all STH have been consumed mainly by
these two channels (i.e., nh is written to zero when below
0.1% of its initial value shortly after 700 ns). At that point,
R2 has effectively stopped.
As seen in the 500-ns frame of Fig. 9, most of the STH

are exhausted by this time, but a population of Tlþ� excited
activators (Nt) produced by R2 remain and are available for
continued radiative decay. In addition, the partly over-
lapped, partly separated distributions of Tl2þ and Tl0 that
will produce subsequent additions to Tlþ� are evident. The
overlapped Tl2þ and Tl0 are immediately subject to
recombination, producing Tlþ� at a rate given by the term
Bttnetfenht in Eq. (6), which we have termed reaction 3. A
significant portion of Tl0 trapped electrons that are not
spatially overlapping the Tl2þ distribution in Fig. 9 cannot
immediately contribute to this rate term for R3, but they
become eligible if diffusion of electrons released from Tl0

and recaptured elsewhere as another Tl0 (assisted by the
internal electric field of the separated charges that are
clearly seen in Figs. 6 and 9) brings them into overlap. We
have paraphrased the preceding two sentences from the
discussion of R2 illustrated in Fig. 7 because the phenom-
ena relating to reaction-rate- and transport-limited compo-
nents apply in very analogous ways to both R2 and R3. In
the case of R3, the rate- and transport-limited rates of
creating excited Tlþ�’s are both slower than the Tlþ�
radiative decay time, so it can be expected that both
reaction rates of R3 may be observed as separate decay
components of light emission.
Note that, particularly in the 0.5- and 1-μs frames of

Fig. 9, the Tl2þ trapped-hole distribution develops a tail on
its large-radius side extending unusually far into the Tl0-
trapped electron population. In fact, the Tl2þ tail extends all
the way to the peak of the Tl0 radial population distribution
at about 65 nm. In the 5- and 10-μs frames of Fig. 9, the
extended tail of Tl2þ has disappeared. This behavior
suggests qualitatively that, in the time leading up to roughly
0.5 μs, STH diffusion and capture on Tlþ creates a Tl2þ

population overlapping Tl0 population at a faster rate than
reaction 3 could consume them. This oversupply results in
storage of spatially overlapped reactant populations. The
tail of Tl2þ population extending into the region with a high
Tl0 population seems to be one manifestation of that. After
about 0.8 μs when STH are effectively exhausted, the
overlapped populations of Tl2þ and Tl0 should be the first
consumed by R3 in the few-microsecond time range. We
suggest that this explanation accounts for the 3-μs decay
component of R3. When the main part of the stored-up
overlapped reactant population is exhausted, as we might
judge from the disappearance of the Tl2þ tail in the 5-μs
frame, the subsequent decay of R3 is governed by the
transport of released and recaptured Tl0 electrons from their
main population at large radius toward the reservoir of Tl2þ
at a small radius. This transport-limited portion of R3 is

suggested to be responsible for the 16-μs decay component.
R3 is itself bimolecular, yet the 16-μs decay component is
found experimentally (and in this model calculation as
well) to be approximately exponential, signifying first-
order kinetics. This result is consistent with its being a
transport-limited reaction between spatially separated reac-
tants. Notice the parallel reasoning between this discussion
of the origin of the 3- and 16-μs decay components of R3
and the origin of the 1- and 100-ns rise components of R2.
The difference is that R3 is slower than the 575-ns photo-
luminescence decay time of excited Tlþ�, while R2 is faster
than that radiative time.
Recall that we ruled out reaction 4 (STE energy trans-

port) as the source of any of the three main decay
components because of the implications of extreme charge
separation and electron trapping in Fig. 6. By elimination of
the alternatives, attention is now focused on reaction 3 to
understand from additional model perspectives how both
the medium and tail decay components can arise from it.
Figures 10(a)–10(d) plot the radial dependence of the

concentration of Tlþ� excited states resulting from all
reactions calculated for on-axis excitation density of
1020 cm−3, sampled at times from 5 ps to 10 μs, as labeled
in the legends. The time sequence increases going down the
left column and then going down the right column, ending at
20 μs. Notice that the radial-scale range and the vertical-axis
range both change as time goes on. For the first 100 ps, the
Tlþ� excited states are formed at an increasing rate “in place”
defined by the initial STH distribution overlapping that part
of the Tl0 population formed near the axis. The total number
of excited states (integrated azimuthally and radially) is
small in this stage. At times longer than about 200 ps, a
shoulder progressing out to a larger radius indicates the onset
of significant STH diffusion, resulting in overlap with
additional Tl0’s to sustain reaction 2. This diffusion con-
tinues out to 800 ns in Fig. 10(c), at which time the supply of
STH is exhausted, as we see in Figs. 7 and 9. By this time, an
underlying contribution from reaction 3 has developed, so
Tlþ� formation is maintained going forward beyond 800 ns.
These plots of Tlþ� at various times give additional clues

to the origin of the two distinct decay times found in a range
longer than 730 ns, where reaction 3 is the only substantial
recombination reaction still taking place. Indeed, the last
frame in Fig. 10 showing times from 1.5 to 20 μs displays a
distinct change in height, width, and shift of radial position
versus time for the peak in the Tl-trapped exciton pop-
ulation, starting after 3 μs.
The dominant radial distribution for times from 1.5 to

3 μs is a peak in Tlþ� fixed at about 36 nm, overlying a
background that slopes downward with an increasing
radius. The background falls away due to Tlþ� radiative
decay over the interval from 0.8 to 1.5 μs, revealing the
stationary peak at 36 nm quite clearly as a main contributor
to the rate of Tl excited-state production during this few-
microsecond range. Considering the 575-ns decay time of
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Tlþ�, the time interval of dominance of this 36-nm peak in
the radial distribution of the reaction-3 production of Tlþ�
lines up with the experimental 3-μs decay component of
light emission. Recall that, in Fig. 9, we can see a tail of the
Tl2þ distribution penetrating deep into the Tl0 population
during the few-microsecond period, suggesting that over-
lapped reactants are being stored in the radial range from 30
to 60 nm during the first 0.5 μs, and that afterward they are
being consumed by R3. We may conclude that the peak of
the radial reaction zone producing Tlþ� in Fig. 10 from
roughly 1 to 3 μs remains stationary because it is running
mainly on the overlapped populations that were stored
previously. When those stored overlapped populations are
exhausted, the R3 reaction zone begins to shift inward
toward a small radius, as the continued R3 depends on
diffusion of the electrons untrapped from Tl0 to find Tl2þ at
smaller radius.
Starting at about 3 μs in Fig. 10(d), the formerly

stationary radial peak in the Tlþ� population shifts toward
a smaller radius, as just noted. It assumes a smaller width

and a gradually decreasing height out to 20 μs. Empirically,
it seems natural to associate this radially shifting and slowly
decreasing zone of R3 with the 16-μs decay component.
This deduction strongly suggests that the 3- and 16-μs
decay components both come from R3 (thermally ionized
Tl0 electrons reacting with stored Tl2þ trapped holes), with
the distinct decay times rooted in different spatial distri-
butions of the reactants, calling into temporary dominance
different rate terms in Eqs. (4)–(6).
When the transport arrival rate of carriers increases the

product of reactants faster than the bimolecular reaction
rate governed by B0

ttnhtnetfe can decrease it, the R3 rate
producing Tlþ� is not transport limited. Also, if the product
of local reactant densities built up from previous trapping
added to the transport into that location supports a
bimolecular recombination rate faster than the arrival of
new overlapped populations, once again, the R3 rate
producing Tlþ� is not transport limited. The rate in these
cases will be set by the bimolecular rate constant B0

tt
multiplying the local product of densities in place. As time
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FIG. 10. The Tlþ� excited state (Nt) concentration distribution resulting from all reactions at an on-axis excitation density of
1020 cm−3 is plotted versus radius at times sampled from 5 ps to 100 ns down the left column (a,b) and 150 ns to 20 μs down the right
column (c,d). Notice that the radial-scale range and the vertical-axis range both change as time goes on.
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goes on, the bimolecular rate of in-place reactions will
consume the stored excess population of the overlapped
carriers. We propose that such an in-place reaction com-
bined with radiative decay is happening in Fig. 10(d)
between about 1.5 and 3 μs. The bimolecular rate falls until
it equals the rate of increase of the reactant density product
due to the transport processes (1) and (2) listed above.
When the reaction rate becomes equal to the transport rate,
the rate of the bimolecular reaction is transport limited and
should be determined partly by the concentration gradient
and the electric field that drive directional transport. By
contrast, the rate term B0

ttnhtnetfe for bimolecular recom-
bination does not depend directly on concentration gra-
dients or electric fields. In this way, two distinct decay
components of R3 can arise.
Figure 2, showing calculated light emission as a function

of time, confirms that the rates of Tlþ� production which
are dissected in Fig. 10 do indeed produce scintillation
decay times corresponding to the observed values of
730 ns, 3.1 μs, and 16 μs. We conclude again that the
latter two are due, respectively, to the non-transport-limited
and the transport-limited bimolecular reaction 3 between
Tl2þ and Tl0.
Figures 11–13 below provide further support for this

conclusion. Figure 11 illustrates the transition from an in-
place consumption of local stored densities of reactants to a
transport-limited reaction at a slower rate. The radially
weighted rate of change of local density of Tl0 due only

to transport is plotted with solid curves, while the radially
weighted rate of change of local density of Tl2þ at
corresponding times is plotted with dashed curves. The
latter are fully negative because production of any new
Tl2þ’s ceases shortly after 700 ns, the first curve shown in
this figure. Tl2þ are assumed not to diffuse on time scales of
interest in scintillation, so the reason for their population to
decrease in this model is R3, in which a Tl2þ and a Tl0 are
annihilated as a pair with production of Tlþ�. Thus, the
dashed curves also represent an identical loss of Tl0 by R3
recombination. In these terms, Fig. 11 may be considered to
compare radially weighted profiles of rate of change of [Tl0]
due to reaction 3 occurring in place (recombination, dashed
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to reaction 3 occurring in place (recombination, dashed curves) and
due only to transport by diffusion and electric current (transport,
solid curves) are compared at the indicated times. After about 3 μs,
the rate of loss of [Tl0] due to recombinationwith [Tl2þ] approaches
equality with the positive gain of [Tl0] due to transport. This
approach to equalitymarks the onset of the transport-limited regime.
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FIG. 12. Radially weighted profiles of the R3 reaction rate are
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Mixed units of 109 nm s−1 cm−3 are used as in Ref. [14], so
division by the radius in nanometers recovers the local reaction
rate at that radius in units of s−1 cm−3.

X. LU et al. PHYS. REV. APPLIED 7, 014007 (2017)

014007-14



curves) and due only to transport by diffusion and electric
current (transport, solid curves) at the indicated times.
When the transport-limited regime is attained, every Tl0

arriving in the reaction zone by diffusion and electric-
current transport of the thermally released electron should
correspond pairwise to the loss of a Tl2þ from the reaction
zone. The positive peak of the Tl0 transport curve should
come to have the same height, width, and radial position as
the inverted peak of the Tl0 and Tl2þ pairwise consumption
curve. It can be seen in Fig. 11 that this consequence occurs
for times of approximately 3 μs and greater. At earlier
times, the dashed curve exceeds the transport peak of Tl0

arrivals in height and width, consistent with the consump-
tion of locally stored Tl2þ and Tl0 populations to feed part
of the bimolecular recombination via reaction 3 during the
ð1–3Þ-μs interval of the middle decay component.
Figure 12 presents a time sequence from 100 ps through

30 μs for the R3 rate term B0
ttnhtnetfe, where nht is the Tl2þ

density, netfe is the local density of Tl0 ’s that are thermally
ionized in equilibrium, and B0

tt is the bimolecular rate
constant for reaction 3.
Figure 12 confirms much of what was seen in earlier

radial representations of different data, particularly Fig. 10.
The rate of R3 increases rapidly at a small radius over
approximately the first 1000 ps. In the overview of the
earlier times in Fig. 12(a), we can see that the reaction rate
for R3 initially grows versus time, inside a 10-nm radius,
for about the first 1000 ps. Since the density profile for Tl0-
trapped electrons, net, is established in the first 10 ps, the
growth in height of this B0

ttnhtnetfe reaction peak is due to
an increase of nht, the density of Tl2þ, by capture of STH
from the intense peak at the small radius seen in Fig. 6(a).
This process is governed by the rate term S1hnh appearing
in Eq. (2) as a loss and in Eq. (5) as a source term. The
evolution from about 10 ns to 0.5 μs is mainly that of a
radially translating reaction zone tracking the STH
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diffusion front as it creates a new Tl2þ population over-
lapping an existing Tl0 population.
From 0.5 to about 3 μs, the width of the zone decreases

rapidly as its peak shifts inward toward a smaller radius.
This narrowing coincides in time with the previously noted
evidence for consumption of the stored overlapping Tl2þ

and Tl0 populations around a (40–60)-nm radius that are
accumulated faster than the R3 reaction could occur in the
preceding 0.5 μs. Thereafter, until the last plot at 30 μs, a
narrow reaction zone moves inward as a transport-limited
reaction fueled by the arrival of Tl0 (diffusion by electron
release and recapture) from the reservoir at larger radius.
This sequence is the same one that is evident in Fig. 10, told
this time from the perspective of the R3 rate term.
The profile of R3 represented in Fig. 12 is integrated over

the radial coordinate to obtain the total reaction-3 rate as a
function of time. The resulting time dependence of the R3
rate is plotted in Fig. 13(d) for the excitation density
1020 e-h=cm3 on axis, the same value used for the
illustrations in Figs. 6–12. In Fig. 13, we also show results
for 1017, 1018, and 1019 e-h=cm3 on axis and, in all of the
frames, we have attempted to reconstruct the decay curve in
terms of the three exponential-decay times, 730 ns, 3.1 μs,
and 16 μs, found to fit the experimental scintillation decay
data (662 keV) [12]. As shown earlier, reaction 2
(STHþ Tl0 → Tlþ�) is mainly responsible for the 730-ns
scintillation decay, and that reaction is not represented in
Fig. 13. Nevertheless, R3 turns out to exhibit a fast
component of the reaction-rate decay in the range of
700 ns as well, so the 730-ns decay time is included in
the analysis. The main interest driving this analysis is in the
3.1- and 16-μs components of R3. We have seen that R2
goes to completion within 800 ns at 1020 e-h=cm3 and
1.4 μs at 1017 e-h=cm3, so the two longer decay compo-
nents of scintillation should arise mainly from R3.
Furthermore, since these longer decay times significantly
exceed the 575-ns photoluminescence decay time of Tlþ�,
the longer components of scintillation decay can be
expected to track the decay of the total R3 reaction rate
producing Tlþ�.
The three-component analysis in Fig. 13 shows

reasonably good fits at 1017, 1018, and 1019 e-h=cm3,
but a substantial under-representation at 1020 e-h=cm3

from about 5 to 30 μs. This analysis serves as a reminder
that the scintillation is a weighted sum over many
contributing local excitation densities. Furthermore, the
analysis indicates a reduction of the 730-ns component as
the excitation density is lowered, trending toward a mostly
two-component sum of 3.1- and 16-μs decay for the R3
curve at 1017 e-h=cm3.
The collective effect of all of the excitation densities to

R3 can be calculated by weighting each according to its
frequency of occurrence in a 662-keV electron deposition
usingGEANT4. This procedure is analogous to themethod for

weighting the local light yield in our full scintillation model.
The result for the weighted R3 is shown in Fig. 14. The
model-calculated R3 decay curve in blue is matched fairly
well by the sum of 730-ns, 3.1-μs, and 16-μs components in
orange. Two small discrepancies around 4 and 16 μs remain
and are similar to the full-model fits of scintillation decay in
Fig. 2. If the 3.1-μs decay time is replaced by a 4-μs decay
time, a nearly exact match with the calculated R3 curve is
obtained, but we will stay with the set of fixed decay times
from the experimental study [12].
We regard Fig. 14 as confirmation that the R3 reaction

rate for the weighted sum of excitation densities in a 662-
keV track can be well represented by the three decay-time
components of scintillation [12], even though that repre-
sentation fails, to some degree, at high excitation densities
around 1020 e-h=cm3. Two notable features emerge at
1020 e-h=cm3 in Fig. 13(d). The 3.1-μs component has
yielded strength to a 730-ns component in the fitting at high
density. Effectively, what is the faster (approximately 3 μs)
of the two main slow components of R3 at lower excitation
densities becomes faster still at high density and contributes
light in the same general time range as the main, 730-ns
fast component of scintillation due to R2. In experimental
observations of scintillation pulse shape versus gamma
energy, this contribution appears as an increase in the ratio
of fast compared to slow and tail components at low gamma
energy, i.e., high excitation density. This appearance is the
observed experimental trend. Part of the reason is identified
with an increasing contribution of R3 in the same time
range as the fast component of mainly R2 light emission.
Other reasons for this energy dependence of pulse shape
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can be found in the kinetics and spatial dependence of R2
itself, as already discussed.
In addition, Fig. 13 shows that the tail decay time trends

to a shorter value than 16 μs at the higher excitation
densities, especially 1020 e-h=cm3. The experimental trend
found in Ref. [12] was that, at low gamma energy, the tail
decay time becomes slightly faster, e.g., 14� 3 μs at 6 keV.
Figure 13 shows that the empirical “3-μs decay time” is

not a single identified process with that decay time, but
rather the weighted sum of multiple decay times dependent
on excitation density that vary through the roughly
ð10 − 0.7Þ-μs range, as excitation density encountered in
a track spans the corresponding densities. This observation
leads us, finally, to reconsider whether the characterization
of the scintillation decay by three exponential components
need imply that the light is coming from rigorous “expo-
nential-decay processes,” i.e., pure first-order decay. It does
not. The fast and slow components are demonstrably not
rigorous exponential functions. Although this model pro-
vides justification for why the transport-limited tail com-
ponent would obey an approximately first-order decay law,
exact first-order decay would not result given the complex-
ity of the tracks, and the data themselves are, frankly, too
noisy to assert exact exponential decay in the tail. Whether
multiexponential or nonexponential with identified fast,
slow, and tail components near 0.73, 3.1, and 16 μs, these
data are the ones modeled.

VI. ORIGIN OF ANTICORRELATED FAST
AND TAIL PROPORTIONALITY TRENDS

AT ROOM TEMPERATURE

As can be seen in Fig. 5, the model predicts proportion-
ality curves of the fast and tail components of scintillation
showing the same remarkable anticorrelation of trends for
these two components as was found in an experiment [12].
The measured fast component falls as energy increases
from 16 to 662 keV, while the tail component rises over the
same increasing energy interval. To get at the physical
mechanisms behind this anticorrelated behavior of fast and
tail proportionality curves, we make use of the results in the
previous section confirming that the fast decay component
(730 ns) is mainly due to reaction 2, and the tail component
(16 μs) is due to the transport-limited part of reaction 3.
As has been discussed, the rate term in Eq. (6) that is
responsible for reaction 2 is Betnetð1 − feÞnh, and the rate
term responsible for reaction 3 is B0

ttnetfenht. These rate
terms are not light outputs, but they both feed the Tlþ�
population from which light is emitted.
In Fig. 15, the excitation-density dependences of the

yields of R2 and R3 producing Tlþ� excited states are
plotted in blue and red, respectively. We could call this plot
the “local yield of reactions 2 and 3” in analogy to what we
have previously called local light yield as a function of
excitation density. The dashed black curve and the gray
horizontal line labeled “Murray-Meyer” are discussed later.

Look first at the blue solid curve for the yield of reaction 2.
It starts near zero at a very low excitation density and rises
with a concave upward curvature, consistent with the fact
that reaction 2 is bimolecular in populations whose initial
values scale roughly with excitation density. We say
“roughly” because it should be apparent from the above
discussion and radial plots that the product of overlapping
STH and Tl0 densities varies dramatically in time and space
as a result of hot-electron diffusion in the beginning
followed by electric-field-driven diffusion reuniting free
carriers and trapped carriers over time. In sweeping terms,
however, the supply of reactant populations that can par-
ticipate in transport and recombination is roughly propor-
tional to the initial excitation density, so we should not be
surprised that theR2 yield (i.e., the blue curve) looks similar
to the dashed curve (discussed below), which is a bimo-
lecular yield competing with a linear loss in a limited
population. Above about 7 × 1019 e-h=cm3, the blue curve
starts to bend over and eventually turns downward. This
trend is understandable, first because the supply of reacting
carriers is limited, so it must be a saturating yield that finally
bends toward a finite value if there are no losses. The limit of
the saturating yield is lowered by second-order quenching
and the sharp turndown above 4 × 1020 e-h=cm3 can be
attributed to third-order Auger quenching.
Bearing in mind that Fig. 15 plots the local reaction yield

as a function of excitation density, not the light yield as a
function of gamma energy, one nevertheless can see that
the fast reaction-2 curve has a shape consistent with the
proportionality curve of the fast 730-ns scintillation com-
ponent shown in the experimental results of Fig. 5(a). In
making this comparison, we qualitatively associate high
gamma energy with predominantly low excitation density
and low gamma energy with predominantly high excitation
density.
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Now focus on the solid red curve plotting the local yield
of the slower R3. For excitation densities above
1018 e-h=cm3 that comprise most of the energy deposition
in high-energy electron tracks, the curve of the R3 yield is
flat or turns downward with increasing excitation density.
This trend is anticorrelated with the increasing yield of R2
versus excitation density, just as seen in the experimental
fast and tail proportionality versus gamma energy [Fig. 5(a)].
The essential reason for this anticorrelation is quite
basic; namely, the two processes compete for the same
STH supply in two different kinetic orders. Reaction 2
(STHþ Tl0 → Tlþ�) is bimolecular in excitation products
and, therefore, wins at high excitation density over the first-
order process of Tl2þ formation (STHþ Tlþ → Tl2þ). The
latter process obeys first-order kinetics because Tlþ is
a crystal dopant, not an excitation product. Since Tl2þ is a
reactant for R3, we see the result of the competition as a
decrease in R3 at high density in Fig. 15. The reaction-3 rate
term is proportional to the product of two trapped-carrier
populations, both ofwhich are essentially the “leftovers” after
completion of the faster reaction 2. By about 3 μs, when we
can first clearly identify the tail component, R2 has run to
completion and has consumed 54% of the starting STH and
Tl0’s at 1020 e-h=cm3, versus 9.5% of the starting STH and
Tl0’s at 1018 e-h=cm3, according to the model results. Most
of the STH not used in R2 are converted by capture into Tl2þ

and serve as one reactant forR3. Most of the Tl0’s not used in
R2 will be used as the other reactant in R3. The yield of
reaction 3 scales approximately as the product of two nearly
equal populations that are both leftovers after the completion
of reaction 2. In those general terms, the yield of R3 in this
system must be anticorrelated with the yield of R2 versus the
excitation density and, therefore, versus gamma or electron
energy in the reversed sense of how particle energy and
effective excitation density are approximately related. The
anticorrelation displayed in the experimental measurements
of Fig. 5(a) is a direct consequence. The ratio of carriers being
used in R2 or left over for R3 is influenced by the electric-
field-assisted transport of STH in the first phase, which is
dependent on the excitation density.
Reaction 3 is itself bimolecular since the Tl2þ and Tl0

reactants [in the sense of the corresponding rate term in
Eq. (6)] are both excitation products. This characteristic
accounts for the rising slope of R3 with excitation density
at low densities in Fig. 15, i.e., before R2 begins to deplete
the STH supply in second order faster than the first-order
STHþ Tlþ capture can use them. The fact that R3 starts out
larger than R2 at low carrier densities is also understandable
because a large fraction of STH are converted to Tl2þ’s at low
excitation density, where first-order capture on numerous
activators competes well with bimolecular recombination.
Proceeding from reaction yields versus excitation density

to reaction yields versus electron energy, Fig. 16 plots the
result of weighting the reaction yields at various densities in
Fig. 15 by the probability of each density occurring in the

GEANT4 simulations for a given initial electron energy.
Repeating the procedure for various electron energies
produces the curves in Fig. 16, giving the reaction yield
(R2 or R3) for that initial energy. Note that the energy
dependences of the yields for R2 and R3 have the same
general form as the proportionality curves of fast and tail
decay components in Fig. 5.
Before leaving this topic, it is worthwhile to try to

connect the results with the approximate treatment by
Murray and Meyer of competing bimolecular exciton
formation and defect trapping in a line track [35]. They
postulated a system in which the free electrons and holes
are created pairwise in linear number density n ¼ nh ¼ ne
along a line of deposition. They considered “… that the
electron can suffer two events, either recombining with a
hole in the wake of the incident particle, or trapping at an
unspecified site in the lattice,” the latter according to a first-
order trapping rate Kn. The productive bimolecular rate of
electron-hole recombination to form the excitons that they
suggested are responsible for Tlþ� emission can be written
as the second-order term Bn2. The productive rate divided
by the sum of all rates defines a yield written as

Y ¼ Bn2

Knþ Bn2
¼ αn

1þ αn
; ð9Þ

where α ¼ B=K. The expression on the right-hand side
of this equation is the Murray-Meyer statement of the
expected radiative yield in this system. This expression
describes a yield decreasing as the excitation number n
decreases (in an assumed line deposition). The expression
starts from near zero at a small n, rises quadratically at
first, and approaches a saturating constant value of unity
at a large n. It does not turn down at large n’s, but it
saturates at unity because Murray and Meyer did not
include either second-order (dipole-dipole) or third-order
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FIG. 16. The yields of reactions 2 and 3 evaluated after 40 μs
are plotted versus the initial electron energy.
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(Auger) nonlinear quenching. Equation (9) is plotted in
Fig. 15 with the dashed black curve, and its saturation
asymptote with a solid gray line.
As noted above (and also by Murray and Meyer [35]),

this simple formula can give only a qualitative illustration
of what goes on in a real particle track. As we see in Fig. 6
and the surrounding discussion, roughly 90% of the
electrons and holes are separated by hot electron diffusion
and are trapped or self-trapped in different radial zones
early in the pulse evolution [14,37]. There are important
electric-field effects and trapping at play in their eventual
recombination. As we have already noted, there are also
nonlinear quenching terms not included in the Murray-
Meyer formula. A solution of the full-model description of
transport, trapping, and recombination is necessary to make
quantitative predictions of the light yield versus the particle
energy, i.e., results such as those shown in Fig. 5(b).
Nevertheless, a comparison of the Murray-Meyer curve
and the reaction-2 curve in Fig. 15 reveals considerable
similarity. This similarity confirms that, fundamentally,
reaction 2 is bimolecular in excitation density when
sufficient time is allowed for transport and recombination
of dispersed trapped-carrier populations. The main linear
trapping channel that competes with R2 in the Murray-
Meyer sense is actually STH capture on Tlþ to make Tl2þ.
Although this trapped-hole species will later produce light
in R3, it is a dark defect trap with respect to the fast
scintillation of R2. Electron trapping on deep defects in this
model is also a competitor with R2, but on a smaller scale
than linear hole trapping to form Tl2þ, simply because the
concentration of the Tlþ dopant exceeds the defect con-
centration in most cases.

VII. THE MATERIAL INPUT PARAMETERS

As described in Ref. [14], the model of scintillation that
we have constructed tries to take into account the important
physical processes of carrier generation, transport, recom-
bination, nonlinear quenching, and capture on dopants and
defects that seem logically required for a physical descrip-
tion of the events in a particle track from which light yield
and proportionality are determined. The number of material
parameters necessary to specify those terms in a system of
equations for free and trapped electrons, holes, and excitons
is large, as was enumerated in Tables I and III of Ref. [14]
for undoped and Tl-doped CsI. The good news about this
circumstance is that for a model to yield information about
effects caused by variation of material composition (con-
centration and species of doping, codoping, defects, etc.),
the coefficients and rate constants of all of those compo-
nents should be in the model, or no specific information on
material engineering by their variation can be obtained. The
bad news is that good values for all of the parameters must
be supplied whenever a new material system is modeled.
Thus, there is a time investment for each new material.
Over time, a library of tested parameter sets for important

scintillator systems of interest should be built up. We
believe that the material input parameters for CsI and CsI:Tl
are approaching a reasonably well-tested status by virtue of
the fitting and predictions of pulse shapes, energy depend-
ence, absolute light yield, and proportionality (both in total
and by decay component) in this work, evolving from the
initial set in Ref. [14]. Undoubtedly, there will be some
further refinement of the material parameter values follow-
ing direct experimental measurements and theoretical work
in the future. Over time, however, validated parameter sets
for a number of important scintillator systems should
emerge from continuing work on CsI:Tl, and then on other
materials as well.
Table I lists the parameters of CsI, all of which except

for the deep defect-trapping rate constant K1e remain
unchanged in this work relative to the values used for
the calculation of proportionality and light yield in undoped
CsI at 295 K in Ref. [14]. Note that the material parameters
of undoped CsI are also used to describe the host when
modeling CsI:Tl.
Table II lists the additional parameters needed to model

CsI:Tl (0.06%–0.08%), some of which did change in the
process of fitting the wider array of data (i.e., the pulse
shape) in this paper. The modeling in this study is done with
the rate constant S1e (for the electron-capture rate to form
Tl0) at the value measured for the nominal 0.08-mole % Tl
in CsI [25], the same as the CsI:Tl fitted in Ref. [14].
Although the sample measured by Syntfeld-Kazuch and co-
workers [12,13] contained 0.06-mole % Tl, we are not sure
whether that falls outside the uncertainty of the nominal
0.08-wt % Tl estimate in the melt for the sample used in the
picosecond measurements of S1e [25].
When listing Eqs. (1)–(7) in this paper, we introduce

the free-electron fraction, fe ¼ Uet=S1e, of Tl0 ’s that are
ionized in equilibrium, so that the free-electron values of
De, μe, and K1e can be used in Eqs. (4)–(6) rather than
defining the new parametersDet, μet, andK1et scaled by the
same factor, as was done in Ref. [14]. The defect-trapping
rate constant K1e is proportional to the concentration of the
responsible deep defects, which is sample dependent. Thus,
a determination of K1e is made in this work from fitting the
decay curve of the CsI:Tl (0.06%) sample studied by
Syntfeld-Kazuch et al. [12].
All of the changes in parameter values relative to

Ref. [14] can be considered small or modest except for
the two bimolecular rate constants involving thallium: Bet

for the capture of STH on Tl0 and Btt (¼ B0
ttfe) for the

capture of an electron released from Tl0 on Tl2þ, including
the effect of release and recapture. The first-order-capture
rate constants that had not been directly measured were
estimated in Ref. [14] as the product of a cross section, the
concentration of the capturing defect, and the mean velocity
of approach of the mobile carrier. When the approaching
mobile carrier is a self-trapped hole, the velocity of
approach is quite low, governed by the STH hopping rate.
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For capture on neutral traps (including substitutional Tlþ in
the CsI lattice), a geometrical cross section can usually be
assumed without a large error. In this way, the value for S1h,
the first-order rate constant for the capture of STH on Tlþ, is

estimated. For the second-order capture of STH on Tl0’s
governed by Bet, the cross section is assumed to be the same
as that found in picosecond absorption measurements of
STHþ e → STE. During fitting of the pulse shape in this
work, the STH population is found to be vanishing too
quickly to support the observed rise time to peak. The need
for a reduced value of Bet becomes clear, and there is a
recognition that the estimated value should take into account
the low velocity of the approaching carrier (STH) in the case
of STHþ Tl0 → Tlþ�. This correction is the largest one in
Table II. Because the Betnetnh rate term and the S1hnh rate
term divide the available STH population, as discussed
earlier, reduction in the value of Bet requires a balancing
decrease in the value of S1h, returning it close to the value of
S1h originally estimated inRef. [14].Mainly as a result of the
decrease in S1h, the self-trapped holes diffuse to a larger
radius before being nearly immobilized as a cylindrical
positive charge of Tl2þ. One can compare the approximately
18-nmpeak of the rnht distribution at 1 μs in Fig. 9(d) of this
work to the approximately 4-nm peak of rnht at 1 μs in
Fig. 10(b) of Ref. [14]. This comparison is not perfect
because the plot in Ref. [14] was for a 10 times lower
excitation density. In a similar comparison of rnet at 1 μs in
Fig. 9(d) of this work with Fig. 9(b) of Ref. [14], the 4-nm
peak of rnet in the earlier work is no longer seen in the
corresponding 1-μs distribution of this work. This absence
can be attributed mainly to the revised smaller S1h hole-
capture parameter causing a more diffuse distribution of
Tl2þ (nht), which is less effective in attracting electrons to
trap nearby than Tl0 (net).
The fitting of the pulse shape in this work requires a

significant increase in the value of Btt relative to the
estimate of this second-order rate constant made in
Ref. [14]. This necessity underscores a conclusion we
reach in this study, that fitting the proportionality alone
can be fairly forgiving on some of the parameter choices.
Fitting additional data with more structure, such as multiple
rise and decay components of the pulse shape, can be used
to refine parameters before undertaking a calculation of
proportionality, as is done in this study.

VIII. CONCLUSIONS

Recent experiments on the scintillation response of CsI:
Tl [12,13] have shown that (1) there are three main decay
times of about 730 ns, 3 μs, and 16 μs, i.e., one more
principal decay component than had been previously
reported; (2) for the sample studied, the 16-μs component
appears to exhibit exponential decay, whereas the recombi-
nation kinetics widely regarded to be responsible for much
of the CsI:Tl scintillation comes from second-order elec-
tron-hole recombination on the activator; (3) the pulse
shape depends on gamma-ray energy; and (4) the propor-
tionality curves of each decay component are different,
with the energy-dependent light yield of the 16-μs compo-
nent appearing to be anticorrelated with that of the 0.73-μs

TABLE I. Parameters used for the host parameters in the CsI:Tl
model of this work. Except for the deep defect-trapping rate
constant K1e discussed in the text, all parameters on this list are
the same as those used for the calculation of proportionality and
light yield in undoped CsI at 295 K in Ref. [14]. In Table I of
Ref. [14], literature references for the values are listed where
available; otherwise, comments on the estimation methods are
listed and explained in Ref. [14]. See Ref. [14] for definitions of
the parameters.

Parameter Value Units

rtrack 3 nm
βEgap 8.9 ðeV=e-hÞav
ϵ0 5.65
μe 8 cm2=Vs
De 0.2 cm2=s
μh 10−4 cm2=Vs
Dh 2.6 × 10−6 cm2=s
DE 2.6 × 10−6 cm2=s
Bðt > τhotÞ 2.5 × 10−7 cm3=s
K3 4.5 × 10−29 cm6=s
K2E 0.8 × 10−15 t−1=2 cm3 s−1=2

R1E 6.7 × 106 s−1

K1E 6 × 107 s−1

τhot 4 ps
rhot (peak) 50 nm
Deðt < τhotÞ 3.1 cm2=s
S1e 0 s−1

S1h 0 s−1

S1E 0 s−1

GEðr ¼ 0Þ 0 cm−3

K1e 2.7 × 1010 s−1

K1h 10−5K1e s−1

EiðnormÞ 200 keV

TABLE II. Additional rate constants and transport parameters
used in Eqs. (4)–(6) when modeling CsI:Tl (0.06%) at 295 K in
this work. S1e is the value measured on CsI:Tl (nominally 0.08
mole %) [25]. See Ref. [14] for definitions of the parameters.

Parameter Value Units

S1e 3.3 × 1011 s−1

S1h 5.0 × 106 s−1

S1E 5.0 × 106 s−1

½Tl� 0.06 mole % in sample
R1Et 1.7 × 106 s−1

UEt 5.4 × 105 s−1

Btt 2.5 × 10−7 cm3=s
Bet 1.3 × 10−10 cm3=s
Bht 2.5 × 10−7 cm3=s
K2Et 1.7 × 10−15 t−1=2 cm3 s−1=2
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component. These observations have been reasonably
explained based on the model results presented.
This model of carrier transport and recombination takes

into account the most important processes of hot and
thermalized carrier diffusion, electric-field transport, trap-
ping, nonlinear quenching, and radiative recombination
that can be expected to occur in particle tracks. Specifying
the rates of such processes in a specific scintillator like CsI:
Tl requires the assembly of a significant number of material
parameter values—measured in experiments independent
of scintillation when possible, calculated theoretically in
some cases, and refined by fitting to properties such as
scintillation decay times in a few others. The assembled
parameter set, along with the equations in which the
parameters appear, comprises an evolving model of scin-
tillator response (in this study, CsI:Tl).
The following conclusions are drawn:
(1) By examining population overlaps and reaction rates

within the radial profile of the track, the 3- and 16-μs
components are identified as the rate- and transport-
limited phases of the same basic Tl0 þ Tl2þ recom-
bination.

(2) When a recombination process (e.g., second order,
in this case) becomes transport limited, depending
on the electric field and the concentration gradient
between two separated reservoirs of carriers, the
decay kinetics become first order, consistent with
the apparent exponential decay of the 16-μs tail
component.

(3) The apparent exponential decay of the 730-ns fast
component can be attributed mainly to the 575-ns
first-order radiative decay of Tlþ�, but also perhaps
to the finding that the 110-ns decay of the R2 rate
feeding the Tlþ� is itself transport limited—and thus
exponentially decaying.

(4) Results of the full model reproduce the main trend of
an energy-dependent pulse shape seen in the experi-
ment. Of the three major decay times, the 730-ns one
is mainly due to (STHþ Tl0) R2, in partial agree-
ment with this attribution in the literature, but, in
addition, the (Tl0 þ Tl2þ) R3 reaction at a small
radius near the core contributes significantly in the
time range at high excitation density (corresponding
to low electron energy) and accounts for part of the
energy dependence of the pulse shape.

(5) Energy transport by STE to a thallium activator can
be no more than a minor contributor to any of the
three main decay components at ordinary levels of Tl
doping for scintillators.

(6) By analyzing the model results in terms of
consumption of electrons and holes by two com-
peting recombination reactions, second-order R2
and first-order Tl2þ formation preparatory for R3,
we can explain why the anticorrelation of the tail and
fast decay components is to be expected at room

temperature. The full model that fits the three decay
components of scintillation also reproduces the main
features of proportionality for each of the separate
decay components and is a reasonable match of the
total light yield at 662 keV.

(7) When integrating the light yield to 40 μs, the calcu-
lated light output at 662 keV is 63 photons=keV,
slightly higher than the reported value of
54 photons=keV [38]. However, integration for such
a long time is uncommon. In the more likely
measurement conditions of 12- and 4-μs integrations,
the calculated yields are 57 and 48 photons=keV,
which bracket the reported value.

Work is under way to model similar experimental data
sets on CsI at temperatures below and above room temper-
ature, and to model the effects of changing concentration
of activators and defects. As the collection of experimental
data being compared to the model expands, we anti-
cipate further refinement of parameter values for CsI:Tl.
The model and its parameters for CsI and CsI:Tl should
become more comprehensive and, at the same time, more
tightly specified. Important applications of such a material-
validated model will be to dissect the contributing processes
in space and time, as we demonstrate in this work, to gain
insight on what controls various properties of the response,
or to vary the concentration and the properties of activators,
defects, and codopants while analyzing their contributions
in ways that may not be open to direct experimental
observation. Application of this basic model to other
scintillator systems is under way [39–41]. A similar pro-
cedure for assembling material parameters from the liter-
ature, as well as making estimates, followed by refining
against pulse shape and other data, is being employed for
each scintillator system.
The present model makes certain assumptions in order to

achieve relative computational simplicity. An important one
is the assumption of cylindrical symmetry of track segments,
rendering the problem effectively one dimensional in the
radial coordinate. Kinetic Monte Carlo methods used by
Kerisit et al. [23,24,42,43] address the local randomness of
carrier distributions by simulating the individual diffusion
and interactions of every electron and hole in the track
starting with carrier-creation distributions simulated by
the NWEGRIM code [44,45]. This approach avoids an
assumption of local track symmetry but is also computa-
tionally demanding. A comparison of modeled scintillation
response at energies of 400 keV and below currently
addressed by both the Pacific Northwest National
Laboratory (PNNL) kinetic Monte Carlo method and the
Wake Forest University (WFU) transport and rate-equation
method could answer questions on the effect of approx-
imations such as cylindrical track that have enabled rela-
tively fast simulations of scintillation response in the present
work. Collaborative work of the WFU and PNNL groups
is ongoing.
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