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Through the theoretical study of electron spin lifetime in the two-dimensional electron gas (2DEG)
confined near the surface of doped Si, we highlight a dominant spin-relaxation mechanism induced by
the impurity central-cell potential near an interface via intervalley electron scattering. At low
temperatures and with modest doping, this Yafet spin-flip mechanism can become more important
than the D’yakonov-Perel’ spin relaxation arising from the structural Rashba or Dresselhaus spin-orbit-
coupling field. As the leading-order impurity-induced spin flip happens only between two nonopposing
valleys in Si, 2DEG systems in Si MOSFETs or SiGe heterostructures are a natural platform to test and
utilize this spin-relaxation mechanism due to the valley splitting near the interface and the tunability
by electrical gating or applied stress. Our proposed alternative spin-relaxation mechanism may explain
part of the spin-relaxation contribution to Si-based 2DEG systems, and it should have spintronic
applications in Si-based devices.
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I. INTRODUCTION

Silicon takes the unique position in both the conven-
tional mainstream electronic industry (i.e., CMOS) and the
emerging fields of quantum-information science and tech-
nology such as spintronics [1–3] and quantum computation
[4,5]. Its strength derives from the matured capacity of
extremely high-purity and low-cost material growth and,
perhaps more crucially, the orders of magnitude tunability
in electrical conductivity enabled by doping and gating.
Silicon (Si) has continued to reveal another crucial prop-
erty, that is, its long spin lifetime due to the relatively small
atomic spin-orbit coupling (SOC), bulk inversion sym-
metry, and zero nuclear spin in the abundant isotope 28Si.
Two-dimensional electron gas (2DEG) occupying the few
lowest quantized 2D subbands of various Si surfaces and
quantum wells has long been an important playground for
fundamental science [6,7] and, more recently, quantum-
computing qubit platforms through gate-defined or donor-
defined quantum dots [5]. In particular, the long spin
lifetime and the ability to control the confined electrons
through externally applied electrical voltage (i.e., fast
gates) near the Si surface are the main drivers of the great
interest and activity in Si-based spintronics and quantum-
computing architectures.
With respect to spin relaxation, there are some

key differences between 3D and 2D Si systems that
are worth emphasizing at the outset. The confining

potential at the interface, where the 2DEG resides,
may break the inversion symmetry of the Si crystal.
This broken symmetry generally results in spin splitting
in the band structure and induces an effective momen-
tum-dependent magnetic field for conduction electrons
[8], often referred to as the Rashba field arising
purely from the structural asymmetry in real space.
In addition, quantum wells with an odd number of Si
layers or broken rotoinversion symmetry at the Si-Ge
interface [9–12] induce a generalized Dresselhaus field
[13,14].
Such structural SOC effects obviously are not present

inside the 3D bulk Si and can exist only in the 2DEG.When
electrons undergo momentum scattering (e.g., by impurities
or phonons) in the presence of Rashba-Dresselhaus effect,
their spins precess randomly over time and relax [15]. This
D’yakonov-Perel’ (DP) process has been the only main
spin-relaxation mechanism studied to date in Si 2DEG
[16–20]. This limited study has led to the general belief,
questioned in this work, that the DP mechanism is the only
spin-relaxing mechanism in Si 2DEG that needs to be
considered theoretically.
In this work, we bring in a fundamentally different spin-

relaxation mechanism which may gradually dominate over
the DP mechanism with increasing impurity densities or
doping. This alternative impurity-induced spin-relaxation
mechanism does not rely on the effective Rashba-
Dresselhaus magnetic field between scattering events,
but rather flip spins right at the scattering events, through
the contact spin-orbit interaction at the impurity core.*ysong128@umd.edu
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Therefore, our present mechanism can be termed a Yafet
process [21].
While the scattering is driven by impurities in both

mechanisms at low temperatures, the difference is that
scattering serves to interrupt the spin precession in the
DP process, whereas it facilitates spin flip in the Yafet
process. As a result, instead of weakening with a higher
impurity density or lower mobility as in the DP spin
relaxation, our mechanism grows stronger with an
increasing (decreasing) impurity density (mobility),
and it therefore can be distinguished experimentally from
the DP process.
We believe that some contributions of this alternative

impurity-induced Yafet process to Si 2D spin relaxation
may have already been detected experimentally, as we
discuss later in this article. We note that in 3D Si, our
process is already known to be the experimentally dom-
inant electronic spin-relaxation mechanism in high-doping
situations [22].
The other aspect we highlight is the tunability of the

spin lifetime. While the charge transistor builds on the
tunable conductivity (i.e., the tunable-carrier momentum-
relaxation time), it is desirable that the spin-relaxation
time can be controlled as well for spintronic applica-
tions. As we show in detail, the leading-order spin flip
occurs only during intervalley scattering and between
two nonopposing valleys among the six Si conduction
valleys (the so-called f process [23]), whereas it van-
ishes during intravalley scattering or intervalley scatter-
ing between two opposing valleys (“g process”). For
various 2DEG plane orientations relative to the Si
crystallographic direction (e.g., 100, 110, 111, or arbi-
trary orientation), it is well known that the resulting 2D
electronic ground states have different valley configura-
tions, with the ground-state valley degeneracy varying
from 1 to 6 depending on surface orientations and details
[6,24]. As such, the spin lifetime determined by this
mechanism in 2DEG will be distinguishable owing
solely to different plane orientations of the 2D system,
producing substantial anisotropy in the 2D spin relax-
ation. Moreover, the tunability of the relative valley
energies by stress and, especially, by gate voltage in Si
MOSFETs, can enable fast on-chip spin-lifetime control.
Spin-orientation dependence of the spin relaxation,
absent for the charge mobility, can also be similarly
controlled. Since valleys do not play a central role in the
DP process, which is governed entirely by the structural
asymmetry, such orientation or gate-voltage dependence
of spin relaxation is qualitatively different in the DP
mechanism [17,18]. This difference can also distinguish
our proposed mechanism from the DP mechanism with
respect to Si 2D spin relaxation.
In 3D bulk Si, as we mentioned, this alternative Yafet

process has been shown to be the dominant spin-relaxation
mechanism when the scattering is caused by donor

impurities [22]. It is caused by the spin-dependent inter-
action with the impurity core, and it is far more important
than the spin flip during intravalley scattering by the long-
range Coulomb interaction, or during intervalley scattering
by the spin-independent part of the impurity-core potential,
neither of which exhibits the empirically strong donor
dependence [25–29]. Our goal here is to introduce this
important mechanism into the Si 2DEG, build up its
primary trend qualitatively and quantitatively, and discuss
its experimental relevance and applications. Since the DP
process and our process are completely independent spin-
relaxation mechanisms, generically, both should be present
in Si 2DEG, and their relative quantitative importance will
depend on all the details of the specific system and the
samples being studied.
We briefly discuss the scenarios where our proposed

mechanism can be of importance and can be utilized.
The first apparent criterion is low temperature and
moderate-to-high impurity density, so phonon-driven
spin relaxation is relatively weak. Conversely, our
mechanism is most likely overshadowed by the DP
spin-relaxation process in intrinsic to low-doped
2DEG systems, typical for Si/SiGe quantum wells and
other modulation-doped heterostructures where interface
impurity scattering is relatively weak [16,30], except for
symmetrically designed wells [9,31] where the structural
asymmetry can be reduced. It can be easily shown that
DP spin relaxation alone leads to a rapidly diverging spin
lifetime once the mobility μ is lowered to a few m2=V s
[18]. Also, as the present mechanism relies on the
SOC between the free electron and the impurity core,
for a given impurity density, its quantitative effect is
ranked according to the sign of impurity charges:
positively charge impurities > neutral impurities ≫
negatively charged impurities, the last of which repel
the electrons and render little central-cell correction
[32–34]. As such, both an n-type SiGe quantum well
and the accumulation layer in an n-type MOSFET are
good candidates for study with our mechanism. In low-
mobility Si MOSFET samples, however, inversion and
accumulation layers can both be relevant due to the
dominant interface oxide charges [6,35], which could
scatter carriers strongly leading to a strengthening of
our mechanism. Noticeably, this mechanism is more
effective in 2D than in 3D Si, as the former retains ionized
donors under most relevant experimental conditions [36].
In Sec. II, we develop our basic theory of 2D spin

relaxation, obtaining detailed results for the relaxation time
for different surface orientations and applied external stress
in Sec. III. Section IV is devoted to a discussion of our
results in the context of experimental implications and the
existing 2D spin-relaxation experiments. We conclude in
Sec. V with a summary and our outlook. The intervalley-
scattering physics and its relevant symmetry analysis is
reviewed in the Appendix.
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II. THEORETICAL FORMULATION

Our spin-relaxation mechanism arises directly from the
impurity SOC, in contrast to the structural SOC effects that
emerge from a combination of atomic SOC and broken
structural symmetry. The electron spins flip upon scatter-
ing. Moreover, the spin flip is governed not by the spin
mixing in the conduction electron states but by the SOC of
the scattering potential. Our approach to formulating the
scattering of electron states in the 2DEG subbands by an
impurity potential is to take a doubly applied effective-mass
approximation (EMA) [37–39]. One of the EMAs is
conventionally applied with the envelope functions of
subband states confined in a quantum well or near the
surface [6,40] (as discussed in more detail below, we do not
consider opposite-valley coupling due to the interface in
our leading-order theory). Assuming that the scattering-
matrix element for conduction states in a 3D bulk Si of
volume V is U3D

v1;s;v2;−s between valley v1, spin s and valley
v2, spin −s, the EMA connects it to that of the 2DEG with
an area S,

U2D
v1;n1;v2;n2ðz; sÞ ¼

ξv1;n1ðzÞξv2;n2ðzÞ
S

VU3D
v1;s;v2;−s; ð1Þ

for a given impurity located at z along the width direction
of the 2DEG, where ξv;nðzÞ is the envelope function in
the valley v and the quantized 2D subband n, and the
normalized

R
dzξv;nξv;m ¼ δn;m. In the following, we first

elaborate on the physics of the spin-flip matrix element
U3D

v1;s;v2;−s, where another use of the EMA is crucial to relate
a scattering problem with a donor-state problem. Then we
study in detail the different specific confinements and the
resulting subbands.
The bulk spin-flip scattering is treated rigorously in

terms of the general symmetry of the impurity potential
[22]. Since the initial and final conduction states are the
eigenstates of the bulk Si (one-body) Hamiltonian V0, the
scattering potential is the difference between the substitu-
tional impurity and the original Si atom, U ¼ V imp − VSi,
and breaks the O7

h space symmetry of the diamond-lattice
structure. Without going into the details about U (including
the screened Coulomb potential and short-range central-
cell correction), U obeys the tetrahedral Td point-group
symmetry [41] and one can derive the matrix-element form
(U3D

v1;s;v2;−s ¼ hψv2;−sjUjψv1;si) with the correct dependence
on valleys and spin orientation of the involved conduction
states [22]. We summarize the relevant intervalley scatter-
ing in bulk Si and its symmetry analysis in the Appendix.
Between conduction states at the valley centers, it turns out
that spin flip survives only in intervalley f-process scatter-
ing. Its counterparts in intravalley and intervalley g-process
scattering are forbidden by the C2 rotation symmetry of
the Td group and the time-reversal symmetry, respectively.
We denote the bare spin angular dependence of U3D

v1;s;v2;−s

without the quantitative prefactor as Ûv1;s;v2;−s, and the

expression between the þx and þy valleys for the arbitrary
spin orientation s ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ≡
ðsx; sy; szÞ reads [22]

Ûþx;s;þy;−s ¼
i
6
sin θeiϕ

þ ηð1 − iÞ
2

ffiffiffi
3

p
�
cos2

θ

2
− isin2

θ

2
e2iϕ

�

≡ isx − sy
6

þ ηð1 − iÞ
4

ffiffiffi
3

p

×

�
1þ sz −

iðsx þ isyÞ2
1þ sz

�
; ð2Þ

where the dimensionless constant η is the ratio between the
two symmetry-allowed terms (that is, from the F-symmetry
states of the Td group; see the Appendix for details). This
expression leads to the anisotropic dependence of spin
relaxation on spin orientation.
In order to determine the magnitude of the prefactor in

U3D, we make an important connection between it and the
spin-split spectrum of the localized impurity states using
the essence of EMAs. By comparing the scattering problem
and the localized eigenenergy problem of the same impu-
rity, one can realize that the potential is exactly the same for
the two problems and that the only difference between the
localized state and the conduction state comes from the
envelope function in the former due to the Coulomb
confinement. As a result, the prefactor in U3D can be
related to the spin splitting Δso of the bound impurity states
such that U3D

v1;s;v2;−s ¼ ðπa3B=VÞΔsoÛv1;s;v2;−s, where aB is
the impurity Bohr radius and V the bulk volume, an EMA
effect not too different from that of Eq. (1) applied for the
2DEG confinement. When the experimental spectrum is
available for Δso, such as those in group-V donors [42,43],
this method is most efficient and also likely more accurate
than numerical calculations that may miss part of the
microscopic contributions. The ratio constant η is estimated
to be about 2 from the spin-relaxation data in highly doped
n-type Si [22]. For other types of substitutional impurities,
η is expected to have a value on the order of unity. In
principle, an estimate of η can be obtained by first-
principles calculations which are beyond the scope of this
work. Again, it is highly preferable to make an empirical
comparison with the experiments since a precise quantita-
tive calculation of η is essentially impossible theoretically,
particularly in the context of spin relaxation in the 2DEG.
As discussed in the Introduction, in general, the SOC
scattering strength depends on the type of impurities being
considered and would, in general, be smaller for neutral and
negatively charged impurities.
Ûþx;s;þy;−s in Eq. (2) describes the leading-order-in-wave-

vector spin-flip matrix element in one of all 24 paths
of the f-process scattering among six Si conduction valleys.
In this work, we group Ûv1;s;v2;−s into 12 time-reversal (TR)
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related pairs, and then connect them to Ûþx;s;þy;−s by specific
spatial-symmetry operations in the Td group:

jÛv1;s;v2;−sj ¼
TR jÛ−v2;s;−v1;−sj;

jÛx;s;−y;−sj ¼C2x jÛx;s0¼ðsx;−sy;−szÞ;y;−s0 j;
jÛy;s;x;−sj ¼σx−y jÛx;s0¼ð−sy;−sx;−szÞ;y;−s0 j;
jÛ−y;s;x;−sj ¼S4 jÛx;s0¼ðsy;−sx;szÞ;y;−s0 j;
jÛx;s;z;−sj ¼σy−z jÛx;s0¼ð−sx;−sz;−syÞ;y;−s0 j;
jÛx;s;−z;−sj ¼σyþz jÛx;s0¼ð−sx;sz;syÞ;y;−s0 j;
jÛz;s;x;−sj ¼C3 jÛx;s0¼ðsz;sx;syÞ;y;−s0 j;
jÛ−z;s;x;−sj ¼C3 jÛx;s0¼ð−sz;sx;−syÞ;y;−s0 j:
jÛz;s;y;−sj ¼σx−z jÛx;s0¼ð−sz;−sy;−sxÞ;y;−s0 j;
jÛ−z;s;y;−sj ¼σxþz jÛx;s0¼ðsz;−sy;sxÞ;y;−s0 j;
jÛy;s;z;−sj ¼C3 jÛx;s0¼ðsy;sz;sxÞ;y;−s0 j;
jÛy;s;−z;−sj ¼C3 jÛx;s0¼ðsy;−sz;−sxÞ;y;−s0 j; ð3Þ

where the vector subscript of the reflection operator (σ)
marks the normal direction of the reflection plane, and C
and S denote the usual proper and improper rotations,
respectively, with the given axes (the unspecified axis of
the C3 rotation is along one of the cubic body diagonals).
These individual Uv1;s;v2;−s expressions are important in
evaluating spin relaxation in Si 2DEG, where valleys
are not all equally occupied and can be subsequently
summed together. More specifically, the anisotropy of
the effective mass and strain may split the energy
degeneracy of the six valleys in different ways, but it
always keeps the energy the same for the two opposing
valleys. This statement is true without including the
small effects from SOC and short-wavelength perturba-
tion beyond the EMA, which could induce splitting on
the order of 1 meV or less [5,6,44–47]. This splitting
effect is negligible compared to the typical Fermi levels
and in the context of the leading-order calculation of the
spin-relaxation time. We therefore do not include such
small interface coupling between opposing valleys in
this work. All in all, we are always allowed to group
the 24 f-process paths into three parts, (I) �x ↔ �y,
(II) �x ↔ �z, and (III) �y ↔ �z, and we sum
jUv1;s;v2;−sj2 over each group which shares the same
electron statistical distribution factor. Utilizing Eqs. (2)
and (3), we have

X
8∈I

jÛv1;s;v2;−sj2 ¼
2

9
½1 − s2z þ 3η2ð1þ s2zÞ�≡ SðszÞ; ð4Þ

X
8∈II

jÛv1;s;v2;−sj2 ¼ SðsyÞ; ð5Þ

X
8∈III

jÛv1;s;v2;−sj2 ¼ SðsxÞ: ð6Þ

We will see that Eqs. (4)–(6) directly lead to the strong
spin angular dependence of the spin relaxation in the
(110)- and (001)-oriented 2DEGs, as well as in the (111)
2DEG under external stress in the next section.
Next, we address the specific confinements and subband

envelope functions in Eq. (1). Before doing that, we
combine Eq. (1) and U3D

v1;s;v2;−s ¼ ðπa3B=VÞΔsoÛv1;s;v2;−s
to give

U2D
v1;n1;v2;n2ðz; sÞ ¼

ξv1;n1ðzÞξv2;n2ðzÞ
S

πa3BΔsoÛv1;s;v2;−s: ð7Þ

We stress that the EMA suits our problem especially well,
even for the relatively narrow 2DEG. As we showed in
Ref. [22], the relevant intervalley-spin-scattering potential
comes from the core region of the impurities, evidenced by
the strong dependence of the spin-relaxation times on the
donor species. The overall 2D confinement is much
smoother than the impurity-core potential, whose linear
dimension is much less than a lattice constant, and Eq. (7)
can be safely used for most of the randomly or uniformly
distributed impurities in the 2DEG. The 2DEG system is
essentially of a 3D nature with respect to the short-range
scattering in the immediate impurity-core region since the
2D confinement length scale (approximately 10 nm or
larger) is much larger than the atomic core size (about
0.1 nm). In other words, the weak (as to the influence on
impurity cores) symmetry-breaking potential from the 2D
confinement is taken into account by the mostly slowly
varying envelope ξv;nðzÞ; otherwise, the scattering inter-
action and the conduction Bloch functions ψv;s near the
impurity-core region are unchanged to this order of
perturbation. Thus, the spin-flip selection rules are still
dictated by the bulk symmetry, well retained near the
impurity-core region. Under this level of approximation,
we also neglect any small change in Δso and η, and in
Ûv1;s;v2;−s, in going from the 3D bulk to the 2DEG.
We define an effective width dv1;n1;v2;n2 for the scattering

between the v1, n1 and v2, n2 states, in terms of the
envelope functions in Eq. (7),

1

dv1;n1;v2;n2
≡

Z
dzjξv1;n1ðzÞξv2;n2ðzÞj2; ð8Þ

which, together with the 2DEG area S, yields an effective
volume of the 2DEG Sdv1;n1;v2;n2 (taking the role of V in 3D
bulk) for a given subband transition. Specifically, we
choose two representative confinements for the 2DEG.
The first one is a square well, corresponding to the typical
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2D-heterostructure quantum well (such as SiGe/Si/SiGe).
Focusing on the lowest few levels, we approximate the well
potential as an infinite barrier for 0 < z < d (where d here
is the physical well width) and obtain simple analytical
solutions,

ξsqv;nðzÞ ¼
ffiffiffi
2

d

r
sin

ðnþ 1Þπz
d

; ð9Þ

where n ¼ 0; 1; 2;… denotes various 2D confined sub-
bands. The corresponding energies at the subband bottoms
are

Ev;n ¼
½πℏðnþ 1Þ�2
2mz;vd2

; ð10Þ

where the effective massmz;v along the z direction depends
on the valley v and the 2DEG plane orientation, as we
describe in detail below. Note that Ev;n is measured here
from the bottom of the vth valley, Ev, in the 3D bulk, as
opposed to the lowest subband bottom. Different valley
bottoms may shift relative to each other upon various stress
configurations (either deliberately applied from the outside
or present because of intrinsic interface strain). Following
these ξv;nðzÞ’s, we can obtain the effective width [Eq. (8)]
for square wells as

dsqn1;n2 ¼
d

1þ δn1;n2=2
; ð11Þ

which is independent of the involved valleys.
The second representative confinement we use for

producing numerical results is a triangular-well potential
at the interface VðzÞ ¼ eFz for z > 0 and∞ for z < 0 (F is
the electric field including a built-in potential gradient). It
corresponds approximately to the inversion (accumulation)
layer of a hole- (electron-) doped Si MOSFET, when the
2DEG density is smaller than the saturated charge density
of depletion layer per area, Ndepl [6]. We take the inversion
layer as an example in Sec. III, while both types of 2DEG
layers are treated in Sec. IV with the variational approach.
The envelope function in this model is analytically
solved [48],

ξtrv;nðzÞ ¼ αv;nAi

��
2mz;veF

ℏ2

�
1=3

�
z −

Ev;n

eF

��
θðzÞ; ð12Þ

Ev;n ≈
�

ℏ2

2mz;v

�
1=3

�
3

2
πeF

�
nþ 3

4

��
2=3

; ð13Þ

where Ai denotes the Airy function, and αv;n is the
normalization factor [y ¼ AiðxÞ satisfies the original
Airy equation y00 − xy ¼ 0]. Ev;n are the asymptotic values
for large n’s but fall within 1% of the exact value, even for
n ¼ 0. The Airy function depicts the oscillation of state

envelopes within the classical turning point (zt ¼ Ev;n=eF)
and the decay beyond it. The step function θðzÞ [¼ 1ð0Þ, for
z > ð<Þ0] arises from the one-sided infinite barrier in the
model. For the triangular well, dv1;n1;v2;n2 does not have a
simple analytical form. In Fig. 1, we plot dv1;n1;v2;n2ðFÞ in
the typical range of electrical field F (103–105 V=cm)
numerically in the quantum limit, n1 ¼ n2 ¼ 0, for all
representative surfaces and valley configurations. We find
that, for all of these cases, dv1;0;v2;0 can be well approxi-
mated by

dtrv1;0;v2;0 ≈max

�
Ev1;0

eF
;
Ev2;0

eF

�
: ð14Þ

The results in both Eq. (11) and Eq. (14), derived from
the general definition of the effective width in Eq. (8), can
be physically interpreted as follows. First, the volume
normalization of the initial and final states scales the
scattering matrix element U2D inversely withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dv1;n1dv2;n2

p
, where dv;n is the effective spread of the

given subband state in the z direction. Second, the
relaxation rate scales with the number of impurities in
the overlapping region of the two states, ∝
min½dv1;n1 ; dv2;n2 �. Combining these two factors, the spin
relaxation should be roughly proportional to
1=max½dv1;n1 ; dv2;n2 � [which is, effectively, Eq. (8)]. This
deduction is a generic prediction of our theory for impurity-
induced 2DEG spin relaxation in Si, which could be
directly tested experimentally. Finally, dv;n is basically d
for the square well and around the classical turning point
Ev;n=eF for the triangular well with slope eF.
With the core factors Uv1;s;v2;−s and dv1;n1;v2;n2 elaborated

on, in the following section, we present our calculated
spin-relaxation results in all typical Si 2DEG orientations

(a) (b)

(d) (e)

(c)

][

FIG. 1. dv1;0;v2;0 defined in Eq. (8) (the blue curves) as a
function of the effective electrical field F for five representative
cases of the triangle-shaped wells: f-process scattering (a) near
the [111] surface, (b) between the four- and two-valley groups
near the [001] surface, (c) within the four-valley groups near the
[001] surface, (d) between the four- and two-valley groups near
the [110] surface, and (e) within the four-valley groups near the
[110] surface. For comparison, we also plot max½Ev1;0; Ev2;0�=eF
alongside (the yellow curves).
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and stress configurations. By standard time-dependent
perturbation theory, one integrates out the periodic time
factors of the states resulting in the effective energy
conservation in the large time limit, i.e., Fermi’s golden
rule [49,50], a standard application for relaxation rates,

1

τ2Ds ðsÞ ¼
4π

ℏ

�X
v2;n2

Z
d2k2
4π2=S

NiS
Z

dzjU2D
v1;n1;v2;n2ðz; sÞj2

× δ½εv1;n1ðk1Þ − εv2;n2ðk2Þ�
�

k1

; ð15Þ

wherek1 and k2 are the 2D wave vectors for initial and final
states, Ni is the impurity density per volume, and hAik1

≡P
v1;n1

R
d2k1A½∂F=∂εv1;n1ðk1Þ�=

P
v1;n1

R
d2k1½∂F=∂εv1;n1

ðk1Þ� denotes the shortcut for the normalized integration over
k1, with F being the Fermi-Dirac distribution (see, e.g.,
Ref. [21], p. 73). In our calculation, we neglect the depend-
ence of U2D

v1;n1;v2;n2 on the small wave vector measured from
its respective valley center (k0) [51], which only renders a
higher-order relative error [roughly, jk − k0j=ð2π=aÞ ≪ 1,
with a being the Si lattice constant], and thus U2D depends
only on the valleys and subbands of the involved states. Our
leading-order-in-wave-vector theory establishes the first
quantitative analysis for impurity-induced 2D spin relaxation
beyond those arising from the DP mechanism.

III. NUMERICAL RESULTS FOR DIFFERENT
2DEG ORIENTATIONS AND

APPLIED STRESS

A. Without external stress

In the limit of large well width, the number of occupied
subbands for a given Fermi level is proportional to the
width d, and 1=τ2Ds reduces to the 3D limit independent of d
[22], which we have explicitly verified numerically. In this
section, we give concrete quantitative results for the
opposite 2D limit of only one (the “quantum limit”) or
the few lowest subbands being populated, in the low-
temperature limit of our interest. As we stressed, the EMA
is well applied in this limit for our problem where the
interaction occurs within the impurity core regions. For
more details on the general justification of applying EMA
to tightly confined quantum structures, the reader can refer
to Ref. [40]. We also note that this theory treats on equal
footing the “weak-field” and “strong-field” limits that arise
from the study of structural SOC and the oscillation of
valley splitting [11,12]. For a square quantum well under a
strong electric field, the 2DEG may be modeled in a
triangular confinement (or some specific variations) for our
mechanism, as exemplified in Sec. II. We remark that, since
our spin-flip mechanism draws on f-process intervalley
scattering, it is more easily seen for the (111)- and (110)-
oriented 2DEGs, where nonopposing valleys coexist in the
ground states, than for the (001) one. For the latter case,

multisubband occupation is required in order for our
leading-order spin relaxation to play a key role.
The situations with potential confinement but no stress

are studied first. τ2Ds as a function of 2DEG electron density
N2D for a given well potential VðzÞ, as well as τ2Ds versus
VðzÞ for a given N2D, are computed. Depending on N2D
and the subband splitting (or the corresponding well width),
different subbands may be populated. Unlike the 3D bulk
case, in 2DEG the electron density and the Fermi level are
decoupled from the impurity density Ni, as the former can
be controlled by the gate voltage. The general relation
between N2D and the Fermi level εF reads

N2D ¼ 1

2πℏ2

X
v

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1;vm2;v

p ðεF − Ev;nÞθðεF − Ev;nÞ;

ð16Þ
wherem1;v andm2;v are the in-plane effective masses in the
vth valley (the effective mass is anisotropic in Si due to the
ellipsoidal forms of the bulk conduction-band minima), and
θðxÞ ¼ 0 or 1 for x < 0 or x > 0.
We start with 2DEG of the (111) well orientation. mz ¼

3mtml=ðmt þ 2mlÞ is the same in every valley, so the six
energy “ladders” of subbands remain degenerate among
different valleys (neglecting any small valley-splitting
correction beyond the effective-mass approximation).
The spin-relaxation rate, Eq. (15), then becomes

1

τð111Þs ðsÞ
¼ π2a6BΔ2

soNi

ℏ3
Gð111Þ; ð17Þ

with the orientation-specific factor assuming the low-
temperature limit,

Gð111Þ ¼
P

n1;n2
4ð1þ6η2Þ ffiffiffiffiffiffiffiffiffi

m1m2
p

9dn1 ;n2
θðεF − En1ÞθðεF − En2Þ

3
P

nθðεF − EnÞ
;

ð18Þ
where m1 ¼ mt and m2 ¼ ðmt þ 2mlÞ=3. As in the 3D

case, τð111Þs ðsÞ is isotropic in spin orientation.
We quantify the spin-relaxation time τs for the two basic

well types introduced in Sec. II, (1) the infinite square well
and (2) the triangular well. For a square well with width d,
En and dn1;n2 follow Eqs. (10) and (11), and Eq. (18)
reduces to

Gð111Þ
sq ¼ 4ð1þ 6η2Þ ffiffiffiffiffiffiffiffiffiffiffiffi

m1m2

p
27d

�
N
� ffiffiffiffiffiffi

εF
E0

r �
þ 1

2

�
θðεF − E0Þ;

ð19Þ
where N ðxÞ returns the integer part of x. We plot τs as a
function of εF and relate it to the corresponding N2D in
Fig. 2 for three different representative well widths,
(a) 15 nm, (b) 30 nm, and (c) 45 nm. We also plot τs as
a function of d for three fixed Fermi levels, εF ¼ 10, 20,
and 30 meV in Fig. 2(d). Since one can simply scale τs with
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Δ−2
so and N−1

i , as shown in Eq. (17), we choose the typical
parameters Δso ¼ 0.1 meV and the doping concentration
Ni ¼ 1016 cm−3. The clear kinks in N2D versus εF and the
jumps in τs versus εF or d reflect the onset of (de)
populating more subbands. τs decreases as εF or N2D
increases for a fixed d since more subbands are available
for states at the Fermi level to be scattered into. As d
increases towards the bulk limit, denser subbands gradually
evolve towards the density of state for the 3D bulk at a
given εF [see the inset of Fig. 2(d)]. On the other hand, at a
small d, τs decreases continuously with a decreasing d
within the window of a fixed number of occupied subbands,
nocc. This general trend is dominated by the volume
normalization of the involved state captured in Eq. (8).
When nocc reduces by one, the number of available final
states decreases and τs increases again.
For the triangular well VðzÞ ¼ eFz, with its slope

controllable by the gate voltage in an inversion layer, the
solution of ξnðzÞ becomes the Airy functions given in
Eq. (12), and dtrn1;n2 , for n1 ¼ n2 ¼ 0, can be estimated by
Eq. (14). The general changes from the square well are
(1) dn1;n2 in Eq. (17), becoming n1;2 dependent, and (2) the
different dependence of En on n. However, we emphasize
that the triangular model is more valid as N2D=Ndepl

decreases (and N2D < Ndepl) [6]. A realistic acceptor
density we choose is NA ¼ 1016 cm−3. As a result, this
situation usually corresponds to one where only the lowest
subbands in the inversion layer are occupied. Therefore, the
numerical results in Fig. 3 are given in this practical energy
window. In this case, τs becomes independent of εF or N2D
due to the constant 2D density of states per subband, and
we only need to show the dependence of τs on F. For a
higher N2D, VðzÞ is not independent of but is largely
determined by N2D.

Next, we study the (001) well orientation, where, addi-
tionally, we have the relative shift between different
subbands belonging to the two-valley group (�z valleys
in the 3D limit) and the four-valley group (�x and �y
valleys in the 3D limit). The subband edges in these two
groups are determined by the different mz’s, mz ¼ mlðmtÞ
for the two- (four-) valley group. This symmetry breaking
between the six otherwise equivalent ladders of subbands
results in spin-orientation dependence, absent in the (111)
well case. In the quantum limit, only the two-valley group
is occupied and the spin relaxation due to impurities
vanishes in the leading order. The general spin-relaxation
rate follows Eq. (17), with Gð111Þ replaced by

Gð001ÞðsÞ ¼
X
n1;n2

θðεF − Ex;n2Þ
	
SðszÞ ffiffiffiffiffiffiffiffiffiffiffi

mtml
p

θðεF − Ex;n1Þ
dx;n1;y;n2

þ ½4
9
ð1þ 6η2Þ − SðszÞ�mtθðεF − Ez;n1Þ

dx;n1;z;n2




=
X
n

� ffiffiffiffiffiffi
mt

ml

r
θðεF − Ez;nÞ þ 2θðεF − Ex;nÞ

�

ð20Þ

after utilizing the spin-orientation form factors in
Eqs. (4)–(6). We use the anisotropic in-plane effective
masses: m1 ¼ m2 ¼ mt for the two-valley group, and
m1 ¼ mt, m2 ¼ ml for the four-valley group. For a square
well with a width d, we have

Gð001Þ
sq ðsÞ ¼ θðεF − Ex;0Þ

d

�
N
� ffiffiffiffiffiffiffiffi

εF
Ex;0

r �
þ 1

2

�

×

	
SðszÞ

ffiffiffiffiffiffiffiffiffiffiffi
mtml

p
N
� ffiffiffiffiffiffiffiffi

εF
Ex;0

r �

þ
�
4

9
ð1þ 6η2Þ − SðszÞ

�
mtN

� ffiffiffiffiffiffiffiffi
εF
Ez;0

r �


=

� ffiffiffiffiffiffi
mt

ml

r
N
� ffiffiffiffiffiffiffiffi

εF
Ez;0

r �
þ 2N

� ffiffiffiffiffiffiffiffi
εF
Ex;0

r ��
: ð21Þ

(a) (b)

(d)(c)

FIG. 2. τs in the (111) square well. We plot τs as a function of
εF and the correspondingN2D for three representative well widths
d, (a) 15 nm, (b) 30 nm, and (c) 45 nm, and τs as a function of d
for three fixed Fermi levels, εF ¼ 10, 20, and 30 meV, in (d). The
inset of (d) shows the large-d behavior approaching the bulk
limit. Note that the energy of the lowest subband bottom is
E0 ¼ π2ℏ2=2mzd2 relative to the zero reference energy. Δso ¼
0.1 meV and Ni ¼ 1016 cm−3 are chosen here and for all of
the following figures.

FIG. 3. τs in the triangular well VðzÞ ¼ eFz to the (111) surface
for F ≤ 105 V=cm. This value is at the quantum limit where only
the lowest subbands are occupied. In this limit, τs is independent of
εF and N2D. We choose the realistic acceptor density in the
depletion as well as in the inversion layer,Ni ¼ NA ¼ 1016 cm−3.
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Plots of τsðsÞ with Gð001Þ
sq ðsÞ in Eq. (21) as functions of d

and εF (and the corresponding N2D) are given in Fig. 4. An
apparently new feature is the generally smaller steps in
comparison with the (111) well results, resulting from the
consecutive fillings of the two-valley subbands which have
smaller interband splitting. As previously mentioned, the
important consequence of the inequivalency between the
two- and four-valley groups is the spin-orientation depend-
ence of the spin lifetime. The anisotropy is the strongest
when the occupied states in the two groups differ the most,
which happens right before one more four-valley subband
begins to be filled. We must note that nocc;z > nocc;x is not
sufficient on its own to guarantee spin anisotropy; rather, it
is necessary that nocc;z=nocc;x >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1;xm2;x=m1;zm2;z

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ml=mt

p
, based on Eq. (21). This value is most appreciable

preceding the filing of the second subband in the four-
valley group, nocc;z=nocc;x ¼ 4∶1. In the large εF (or large
d) limit, on the other hand, nocc;z=nocc;x →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mz;z=mz;x

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ml=mt

p
≈ 2.27. We see that this ratio exactly cancels out

the effective-mass difference in the 2D (x-y) plane, owing
to the fact that m1m2mz ≡mlm2

t is orientation independent
for a given ellipsoid.
For the triangular well, Eqs. (8), (12), and (13) are

substituted into Eq. (20), and τsðsÞ is shown in Fig. 5. After
the onset of f-process scattering (εF > Ex;0) follows the
second subband of the two-valley group, as shown clearly
in Figs. 5(c) and 5(d). ðEz;1 − Ex;0Þ=Ex;0 is a small fixed

ratio for any electric field F, according to Eq. (13). Since
we work in the regime where the triangular-well model is
valid and multiple subbands are occupied, εF and F should
not be too large. As a result, we focus on two energy
intervals, Ex;0 < εF < Ez;1 and Ez;1 < εF < Ez;2, below
F ¼ 104 V=cm (in practice, our mechanism works well
under a higher electrical field, as long as the Fermi level can
reach the x and y valleys and the triangular-well approxi-
mation is relaxed).
For scattering involving subband n ¼ 1, we obtain

dz;1;x;0 ≈ 1.15Ez;1=eF using Eqs. (8) and (12). An interest-
ing behavior is the large anisotropy (approximately 20%)
of τsðsÞ right at the onset of the f-process scattering
[Figs. 5(a), 5(c), and 5(d)], which drops (approximately
5%) at the second energy window [cf. Fig. 5(b)]. In the first
energy window, Ex;0 < εF < Ez;1, the number of occupied
subbands in each valley is one for both the two- and four-
valley groups. The large anisotropy here is the sole
consequence of effective-mass anisotropy in the 2D plane
and is opposite in sign to that in the square well before
filling Ex;1.
The change of anisotropy may be sharply tuned by the

gate voltage in the Si inversion layer. Since Ez;1 − Ex;0 and
εF − Ex;0 depend on the electric field F, by simply tuning
F, the chemical potential (i.e., the Fermi energy) can cross
Ez;1 and, therefore, induce a switch between Figs. 5(a)
and 5(b). An even more important application of our results
may be the sharply gate-voltage-modulated spin lifetime in

(a)

(b)

(c) (f)

(e)

(d)

FIG. 4. τsðsÞ in the (001) square well, anisotropic in spin
orientation s. τs depends on the polar angle of s, θz, with respect
to the well normal, z. In (a)–(c), we vary the well width d from 15
to 45 nm for three Fermi levels, εF ¼ (a) 10, (b) 20, and
(c) 30 meV. In (d)–(f), we plot τsðsÞ as a function of εF, Ex;0 <
εF < 30 meV (and also a function of N2D by relating εF to N2D),
for three different well widths, d ¼ (d) 15, (e) 30 and (f) 45 nm. In
each subplot, we detail four spin polar angles: θz ¼ 0, π=6, π=3,
and π=2.

(a)

(b) (d)

(c)

FIG. 5. τsðsÞ in the triangular well VðzÞ ¼ eFz to the (001)
surface. In (a) and (b), τsðsÞ is plotted as a function of the electric
field F < 104 V=cm for the Fermi level εF (a) just above the
onset of f-process scattering (Ex;0 < εF < Ez;1) and (b) in the
next energy window (Ez;1 < εF < Ez;2), where τsðsÞ is indepen-
dent of εF. In (c) and (d), τsðsÞ is plotted as a function of εF and
N2D for a range Ex;0 < εF < Ez;2, at the electric field F ¼ (c) 104

and (d) 5 × 103 V=cm. At F ¼ 104 V=cm, the onset of f-process
scattering already requires N2D ≈ 5 × 1011 cm−2, a value com-
parable to the typical depletion-layer impurity density Ndepl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EGκNA=e2
p

[6], where EG and κ are the Si band gap and
permittivity (Ndepl ∼ 4 × 1011 cm−2 at NA ¼ 1016 cm−3).
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the Si inversion layer following similar reasoning: the
crossover of the chemical potential to Ex;0, which is the
threshold of finite leading-order spin relaxation, could be
achieved solely by the top gate voltage. This gate voltage is
the on-chip real-time electrical switch for a substantial
change of the spin lifetime. We emphasize that both gate-
voltage modulations envisioned above should be very
robust in general Si inversion layers, not relying on the
triangular-well approximation we used in producing Fig. 5.
Last, we study the case of the (110) well. The difference of

the (110) well from the (001) one lies in the effective masses,
which result in a quantitative difference in thevalley splitting,
the subband splitting, and the density of states, all playing
roles in determining τs. For the two-valley group, mz ¼ mt,
m1 ¼ mt, and m2 ¼ ml; for the four-valley group, mz ¼
2mtml=ðmt þmlÞ, m1 ¼ mt, and m2 ¼ ðmt þmlÞ=2. The
most important distinction is in the quantum limit, where the
lowest subbands in the (110) case are from the four-valley
group, rather than from the two-valley group in the (001)
case. Consequently, the spin lifetime due to the leading-order
spin relaxation is finite even for the lowest electron density in
the (110) well.
We show the key results for the (110) square well in

Fig. 6 and the triangular well in Fig. 7. We use similar
parameters (Fermi level εF, well width d, electric field F)
as those in the (001) case, so that we can focus on the
differences between the (110) and (001) wells. First, τs
is finite in the (110) 2DEG, even for the lowest εF in
Figs. 6(d)–6(f) and Figs. 7(c) and 7(d), as mentioned above.
Owing to the smaller number of available f-process paths

(two as opposed to four for each state), though, τs is larger
in the (110) case than the longest finite τs in the (001) case.
This finding is a clearly verifiable sharp prediction of our
theory. Note that here the plane normal (z) is along the
crystallographic direction [110] (not [001]). To avoid
ambiguity, we use the scripts 001 and 100 rather than z
and x to denote directions.
The most significant feature in this quantum limit for the

(110) wells is the nearly 50% variation of τsðsÞ on spin
orientation (more specifically, on the projection of s along
the [001] crystallographic direction). This extreme case
represents only one type of f-process scattering [Eq. (4)],
with zero weight from the other two. This feature is clearly
seen on the left-hand sides of Figs. 6(d)–6(f) and Figs. 7(c)
and 7(d), as well as the entire range in Fig. 7(a). Therefore,
the idea of the gate-tuned anisotropic τsðsÞ, discussed in the
context of (001) wells, is even more prominent in (110)
wells. Note that this dependence on the polar angle around
the [001] direction, θ½001�, is opposite in sign to that of the
(001) square well when the anisotropy is the strongest and
is the same as that in the (001) triangular well. The
anisotropy and the orientation dependence of 2D Si spin
relaxation arising in the impurity-induced spin flip is an
important prediction of our theory.

B. With external stress

When external stress is applied, different ladders of
subbands may undergo relative shift with each other [52].
On the other hand, no leading-order effect comes from the
slight variation of interband splitting within each ladder, as
the effective masses are fixed under stress to the leading

(a)

(b)

(c) (f)

(e)

(d)

FIG. 6. τsðsÞ in the (110) square well, anisotropic in spin
orientation s. τs depends on the polar angle of s, θ½001�, with
respect to the [001] crystallographic direction. In (a)–(c), we vary
the well width d from 15 to 45 nm for three Fermi levels, εF ¼
(a) 10, (b) 20, and (c) 30 meV. In (d)–(f), we plot τsðsÞ as a
function of εF < 30 meV and N2D, for three different well
widths, d ¼ (d) 15, (e) 30, and (f) 45 nm.

(a)

(b) (d)

(c)

FIG. 7. τsðsÞ in the triangular well VðzÞ ¼ eFz to the (110)
surface. In (a) and (b), τs is plotted as a function of the electric
field F for the Fermi level εF (a) in the lowest energy interval
(E100;0 < εF < E001;0) with F < 105 V=cm, and (b) in the next
energy window (E001;0 < εF < E100;1), with F < 104 V=cm,
where τsðsÞ is independent of εF. We work in a smaller field
in (b) for the same reason in Figs. 5(a) and 5(b). In (c) and (d), τs
is plotted as a function of εF and N2D for a range where
εF < E100;1, at an electric field F ¼ (c) 104 and (d) 5×
103 V=cm.
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order [52]. We study τs individually for all three well
orientations under uniaxial stress, as described below.
(111) well.—Out-of-plane [111] stress does not induce

additional symmetry breaking or shift subband ladders,
while the in-plane stress in the ½110� (1≡ −1) or
½1 − ffiffiffi

3
p

; 1þ ffiffiffi
3

p
;−2� direction does. These latter two

stress directions are in the plane of the 2D well and are
realizable experimentally [24]. The ½110� (or ½112�) stress
results in a relative shift ΔV ¼ E001 − E100 between the
two- and four-valley groups, and the ½1 − ffiffiffi

3
p

; 1þ ffiffiffi
3

p
;−2�

one separates the valleys into three groups, such that ΔV ¼
E010 − E001 ¼ E001 − E100.
Under the ½110� stress, the form factor G changes from

Eq. (18) for the unstrained (111) well to

Gð111Þ
110

ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mtðmt þ 2mlÞ

3

r

×
X
n1;n2

θðεF − E100;n2Þ
dn1;n2

	
SðszÞθðεF − E100;n1Þ

þ
�
4

9
ð1þ 6η2Þ − SðszÞ

�
θðεF − E100;n1 − ΔVÞ




=
X
n

½θðεF − E100;n − ΔVÞ þ 2θðεF − E100;nÞ�:

ð22Þ

Focusing on the near quantum limit with only the n ¼ 0
subbands occupied, d0;0 ¼ 2d=3 for the square well and
about ð9πℏÞ2=3=½4ð2m111eFÞ1=3� for the triangular well,
from Eqs. (11) and (14), respectively. Equation (22) has
only a few discrete outcomes for a given well width or
electric field: (1) when εF > fE100;0; E100;0 þ ΔVg, lines
2–4 of Eq. (22) reduce to 4ð1þ 6η2Þ=27d0;0, and τs
recovers the no-strain result (Figs. 2 and 3); (2) when
E100;0 < εF < ΔV þ E100;0, the same factor decreases to
½1 − s2z þ 3η2ð1þ s2zÞ�=9d0;0, with a strong sz dependence;
and (3) when ΔV þ E100;0 < εF < E100;0, 1=τs ¼ 0.
Under the ½1 − ffiffiffi

3
p

; 1þ ffiffiffi
3

p
;−2�ð≡γÞ stress, the three

groups of f-process scattering vary independently.

Utilizing Eqs. (4)–(6), the form factor Gð111Þ
γ reads

Gð111Þ
γ ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mtðmt þ 2mlÞ

3

r

×

P
n1;n2;i

SðsiÞ
dn1;n2

θðεF − Eiþ1;n1ÞθðεF − Eiþ2;n2ÞP
n;iθðεF − Ei;nÞ

;

ð23Þ

where i denotes the three cyclic directions 100, 010,
and 001, E010;n ¼ E001;n þ ΔV , and E100;n ¼ E001;n − ΔV .
Although the three f-process groups depend on
spin projection along different directions, shown in

Eqs. (4)–(6), τsðsÞ can be associated with a fixed projection
direction in each energywindow of εF, thanks to the constant
density of state per subband. Focusing on then ¼ 0 limit, the
second line in Eq. (23) has several possible outcomes:
(1) 4ð1þ 6η2Þ=27d0;0 when εF > fE100;0; E010;0; E001;0g,
recovering the no-strain result; (2) Sðs100Þ=2d0;0
when fE010;0; E001;0g < εF < E100;0; (3) Sðs010Þ=2d0;0
when fE100;0; E001;0g < εF < E010;0; and, finally, (4) 0
when E100;0 < εF < fE010;0; E001;0g or E010;0 < εF <
fE100;0; E001;0g.
(001) well.—Out-of-plane [001] stress keeps the two-

and four-valley degeneracies and tunes the energy distance
Ez − Ex between them. In-plane [100] (or [010]) stress
breaks the four-valley degeneracy into two groups and
tunes Ex − Ey, while keeping the splitting EyðxÞ − Ez > 0

unchanged.
Under the ½001� stress, the spin relaxation keeps the

unstrained form in Eq. (20) with Ez − Ex tunable. In the
n ¼ 0 limit, dv1;0;v2;0 ¼ 2d=3 for the square well, and about
ð9πℏÞ2=3=f4ð2min½m001;v1 ; m001;v2 �eFÞ1=3g for the triangu-
lar well. In this limit, we have the additional possibility that
Ex;0 < εF < Ez;0, which results in a strong s-anisotropic
spin lifetime.
Under the ½100� (or ½010�) stress, one may have f-process

scattering available between the n ¼ 0 subbands by push-
ing xðyÞ valleys lower towards z valleys and yðxÞ valleys
farther away. This action may require a relatively large
compressive stress for narrow wells. In this situation, the

form factor goes to Gð001Þ
100 ðsÞ ¼ SðsyÞmt=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mt=ml

p Þ
and sy ↔ sx for Gð001Þ

010 ðsÞ.
(110) well.—The unique feature for a (110) well under

stress is that the two- and four-valley groups remain
degenerate for, respectively, the out-of-plane [110] stress
and all of the in-plane stress directions, including [001] and
½110�. Therefore, the spin-relaxation rate expression fol-
lows the unstrained one, except with the energy distance
between Ez and Ex being tunable by stress.
The stress dependence of 2D spin relaxation, arising

entirely from the valley-dependent subband structure of the
2DEG, is a characteristic feature of the Yafet impurity
process being considered in this work, which is completely
absent in the Rashba-Dresselhaus-based DP-relaxation
mechanism.

IV. EXPERIMENTAL IMPLICATIONS

In this section, we discuss the potential experimental
implications of the impurity-driven spin-relaxation mecha-
nism. Variational calculations for the 2DEG subband
structure are carried out which are valid for a broader
range of MOSFET parameters, including both inversion
and accumulation layers, and they use variables that are
convenient to compare with experiments. Possible exper-
imental proposals are discussed to differentiate major
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contributions to the spin relaxation in Si 2DEG. The few
existing 2D Si spin-relaxation measurements available in
the literature (see our discussion below), in particular, have
all been interpreted using the DP relaxation mechanism,
although the quantitative agreement between theory and
experiment is, in general, not satisfactory.
Far fewer spin-relaxation measurements have been made

on the Si 2DEG than on the bulk Si. In n-type bulk Si, with
the inversion-symmetric lattice structure, Elliott-Yafet (EY)
spin relaxation is the dominant mechanism for conduction
electrons. It is established that the scattering is caused
mainly by the electron-phonon interaction at elevated
temperatures [21,53–57], or by various processes involving
impurities under high impurity density and low temperatures
(see, e.g., the review in Ref. [1] and Fig. 2 in Ref. [57]).
Despite theweakSOC inSi, the spin lifetime τs is only on the
order of 10 ns at room temperature without high impurity
density, and 0.1–100 ns at low temperatures and high donor
concentrations, depending on the specific donor type
[22,25–29,58]. By comparison, in 2DEG, several additional
features emerge with respect to spin relaxation. Aside from
the tunability of spin lifetime and anisotropy showed in
Sec. III, the DP spin relaxation becomes relevant, caused by
the inversion-breaking structure and interfaces and the
associated Rashba-Dresselhaus field. A third feature is
the large amount of interface disorder, especially in
MOSFETs, which may produce valley-spin-flip scattering.
As the 2DEG quantum limit is typically studied at low
temperatures, the spin relaxation is determined by scattering
with impurities, where EY and DP mechanisms happen,
respectively, during and between the scattering events. In the
following, we quantify the spin lifetime in the quantum limit
based on our studied Yafet mechanism, taking into account
the experimentallymeasured parameters and the uncertainty
in the interface disorder.
To make a comparison with the experiments, we take the

acceptor concentration NA and the 2D electron density N2D
as two independent variables. Furthermore, we take the
effective impurity density Ni in the 2DEG as a separate
variable, as it can be significantly different from that in the
bulk. To be applicable to a wide range of parameter values
and to both inversion and accumulation layers, we relax the
triangular approximation and adopt the variational subband
wave function [48,59,60]

ξðzÞ ¼
ffiffiffiffiffi
b3

2

r
z exp

�
−
bz
2

�
; ð24Þ

with a variational variable b. After the numerical energy
minimization to find b, taking into account both the
depletion- and 2DEG-layer potentials (the band bending
takes 1.1 eV and 45 meV for inversion and accumulation,
respectively), simple expressions for the effective width
dv1;0;v2;0 [see Eq. (8)] can be obtained in terms of b:

dv1;0;v2;0 ¼
ðb1 þ b2Þ5
6b31b

3
2

; ð25Þ

where b1 and b2 are from valleys v1 and v2, respectively,
which may have different mz masses. Substituting the
obtained effective widths into Eqs. (4), (17), (18), and
(20), one can obtain τs for three 2DEG orientations,
(111), (001), and (110), for any arbitrary spin orientation,
as a function ofNA,N2D, andNi. We collect all of the useful
information in Fig. 8. For visual clarity, we leave out the
reciprocal linear dependence on Ni and plot ~τs ¼
ðNi=1016 cm−3Þτs. For the inversion- (accumulation-) layer
case, we choose the majority (minority) acceptor densityNA

as 1014, 1016, and 1018 cm−3 (1010, 1012, and 1014 cm−3),
and 1010 < N2D < 1013 cm−2, covering typical experimen-
tal choices. As expected, ~τs decreases slightly with an
increasing N2D due to the steeper confinement. Similar
trends occur with NA. More importantly, of course, the
absolute time τs ∝ ~τs=Ni decreasesmuch faster withNi. For
clean interfaces, Ni ≈ NAðNDÞ for the inversion (accumu-
lation) layer. However, for some highly disordered Si=SiO2

interfaces, including oxide charges on the SiO2 side,Ni may
be much larger than the majority dopant density. In the high

(a)

(c) (d)

(f)(e)

(b)

FIG. 8. Normalized spin-relaxation time independent of impu-
rity density, ~τs ¼ ðNi=1016 cm−3Þτs, for an inversion [(a), (c),
and (e)] or an accumulation [(b), (d), and (f)] layer in the Si
MOSFET setup. All three 2DEG plane orientations are shown:
(111) in (a) and (b), (001) in (c) and (d), and (110) in (e) and (f).
Only the lowest subbands are occupied [for the (001) case, the
lowest subbands in the four higher valleys are also occupied].
They are plotted as functions of 2D electron density, N2D, and for
acceptor density (related to potential from the depletion layer),
NA ¼ 1014, 1016, 1018 for the inversion-layer and 1010, 1012, 1014

for the accumulation-layer case. As previous calculations, we also
give spin-orientation dependence for the (001) and (110) cases.
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N2D limit, the potential confinement is dominated by N2D

over Ndepl ∝
ffiffiffiffiffiffiffi
NA

p
[6] and, as a result, ~τs converges for

different NA’s.
Finally, we should note that the SOC parameter Δso used

here is 0.1 meV, the value for As dopants. It is 0.03 or
0.3 meV for P or Sb [43]. For interface disorder or majority
acceptors, Δso and η [see Eq. (2)] must be studied
separately. This future study can be important, and we
come back to this issue at the end. In fact, the effective SOC
parameters of the interface impurities are an important
unknown in the theory, which can be adjusted to get
agreement between our theory and all existing experimental
data. We refrain from doing so, however, emphasizing that
if the measured 2D spin-relaxation time shows a positive
correlation with the quality of the interface (i.e., improving
interface quality leads to a longer spin-relaxation time),
then it is likely that the impurity-induced Yafet mechanism
discussed in this paper is playing a dominant role, in
contrast to the DP mechanism, which mostly leads to a
lower spin-relaxation time with higher mobility.
Now we briefly discuss some available experimentally

measured T1’s (≡τs in our notation) in Si 2DEG. We stress
that these samples are not particularly highly doped and,
therefore, our mechanism is not expected to be dominant
unless the extrinsic disorder associated with interface impu-
rities plays a crucial role. Reference [30] measured T1 in Si/
SiGe (001) quantum wells with a relatively high-quality
interface and mobility μ. Their device I, with μ ¼ 9 m2=V s,
2D electron density N2D ¼ 3 × 1011 cm−2, and well thick-
ness d ¼ 20 nm, yields a T1 ¼ 2.0 μs. Their device II, with
μ ¼ 19 m2=V s, N2D ¼ 1.7 × 1011 cm−2, and d ¼ 15 nm,
yields a T1 ¼ 0.95 μs. These N2D and d combinations
indicate that only the ground subbands in the �z valley
are likely occupied.
We show in the following that our mechanism cannot

quantitatively account for the measured T1, even if we
assume that the lowest subbands in the �x and �y valleys
are occupied. Using our calculation that leads to Fig. 4, one
needs a 3D impurity density Ni ≈ 3.3 × 1016 cm−3 or an
effective 2D impurity density ni ≈ Nid ≈ 6.6 × 1010 cm−2

for device I, and Ni ≈ 5 × 1016 cm−3 or ni ≈ Nid ≈ 7.5 ×
1010 cm−2 for device II. The precise ni depends weakly on
the detailed impurity distribution in the 2DEG. To estimate
the experimental impurity density residing in the quantum
well, we use the theoretical result of Ref. [61] which relates
mobility with the charged impurity. From Fig. 1 of that
paper, for the (001) well orientation with two ground
valleys, one needs ni ≈ 1010 cm−2 for device I and ni ≈
4 × 109 cm−2 for device II. These ni’s make our spin-
relaxation mechanism too weak to yield the measured T1

time. The spin anisotropy in our calculation has the same
sign as in the measurement but is not as large in magnitude
[T1ðθ ¼ π=2Þ=T1ðθ ¼ 0Þ ¼ 1.1 versus the measured 1.5].
We do, however, mention that our mechanism using

these estimated experimental impurity densities gives T1

values within an order of magnitude of the measured T1

values. Given the uncertainties associated with the impurity
SOC parameters, the possibility that the Yafet mechanism
is perhaps playing a (minor) role in the experiment cannot
be ruled out, although it does appear that the main spin-
relaxation mechanism in these high-mobility Si/SiGe
quantum wells is likely to be the DP mechanism.
Reference [62] measured T1 time for 2DEG in a Si=SiO2

(001) accumulation layer doped with 1014 P donors. At a
gate voltage of 2 V, T1 ¼ 0.33 μs, while μ ¼ 1 m2=V s and
N2D ¼ 4 × 1011 cm−2 [63]. Once again, we check the
effect of our mechanism by assuming for a moment that
the �x and �y valleys are reached. From Fig. 8, one needs
about Ni ≈ 3 × 1017 cm−3, or ni ≈ 4 × 1011 cm−2. Note
that the unknown NA value affects the result only slightly
(a factor less than 2). From the measured mobility at 5 K,
we can deduce ni ≈ 1011 cm−2 [61]. As a result, the
impurity density is again too small to induce the measured
T1 time by our mechanism, even if the finite mobility is
entirely caused by impurities in the 2DEG region and
Δso ¼ 0.1 meV. However, our mechanism now gives a T1

which is within a factor of 4 of the measured value,
indicating that, for the spin relaxation in disordered Si
MOSFETs, our impurity-driven mechanism is perhaps
playing a more important quantitative role. This finding
is not unexpected since Si MOSFETs typically have larger
impurity densities than Si/SiGe quantum wells, leading to
possibly stronger spin relaxation due to the Yafet mecha-
nism. Note that the DP mechanism does not find agreement
with the experimental data either, which can be verified by
the calculation in Ref. [18] in combination with the
experimental parameters. It is possible that, in Si
MOSFETs, both the DP and Yafet mechanisms are opera-
tional in producing the observed low value of T1 in the
experiment. Obviously, more experimental measurements
are essential in understanding this important puzzle.
We propose several experimental ways to properly

investigate the nature of spin relaxation in Si 2DEG. To
begin with, (111) and (110) orientations are better suited for
our intervalley spin-flip mechanism to make an important
contribution, as we mentioned earlier. Moreover, a low-
ering of the x and y valleys in the (001) 2DEG may also
show a sudden jump of the spin-relaxation rate, which
serves as a turn-on signal of our mechanism. This valley
tuning can be achieved by external stress or gating, as
emphasized in Sec. III. A similarly sudden change in τs
anisotropy can also occur for the (110) 2DEG due to our
mechanism.
Apart from the 2DEG plane orientation, a number of

aspects are important in the experimental verification of our
proposed spin-relaxation mechanism. First, it is crucial
(and we urge future experiments) to measure a series of
samples with different mobilities (μ) at the same carrier
densities (and all other parameters). The (anti)correlation of
τs with μ is a characteristic signature for the Yafet (DP)
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spin-relaxation mechanism [1]. The crossover occurs at
modest doping levels, as the spin lifetime from the DP
mechanism rises rapidly past tens of microseconds already
around the mobility 5 × 104 cm2=V s [18]. Specifically, our
mechanism should become dominant when the 2DEG
region is heavily doped.
Second, there is a positive correlation between conduc-

tion electron density and spin relaxation in the DP
mechanism. The Rashba or generalized Dresselhaus field
scales linearly with the wave vector (k) measured from the
valley bottom, yet our spin-flip matrix elements depend
little on k. Third, for the MOSFET setup, it is useful to
measure τs separately for both the bulk Si and the 2DEG to
deduce the contribution of the interface disorder to the
2DEG spin relaxation.
It is also possible to deduce the distribution of 2DEG

impurities from the gate-voltage dependence of τs: from
Eqs. (15) and (7), τs ∝ d for a uniformly distributed NiðzÞ,
while τs ∝ d2 if all impurities are concentrated at the interface
[NiðzÞ ∝ δðzÞ]. For the Si/SiGe setup, making two-sided
symmetric confinement may separate out the contribution
from the DP spin relaxation, as the change of the interfacial
symmetry property greatly affects theDPmechanism through
the envelope functions but leaves the Yafet one the same. In
addition, as our calculated spin-orientation dependence
[rooted in Eqs. (4)–(6)] is distinct from that of the DP
mechanism due to the Rashba or Dresselhaus field, the τs
anisotropy measurement can also help to disentangle the two
contributions (for the large magnetic-field limit, we note that
the DPmechanism is partially suppressed, which is similar to
the bulk case [1,17,64]).
Parenthetically, while this work does not focus on the DP

mechanism, we point out the existing studies concerning its
various contributions [65]. Different views have emerged to
account for the same experimental measurement in a Si/
SiGe quantum well [16], whether it be dominated by the
Rashba field [16–18] or the Dresselhaus one [11,12]. They
lead to different SOC anisotropy but a similar overall spin-
relaxation rate, as both SOC fields scale linearly in a wave
vector in the 2DEGs. DP spin relaxation and its anisotropy
has also been studied in Si/SiGe quantum dots [66]. To
date, the relative magnitude of Rashba- and Dresselhuas-
like SOC has yet to be verified experimentally [67].
Finally, our mechanism relies on the short-range inter-

action with the impurity core and directly measures the
SOC strength of the impurity atoms. The spin-relaxation
rate scales quadratically with Δso [see Eqs. (7) and (15)],
and it increases significantly by switching from low- to
high-atomic-number dopants for the same density.
Therefore, different types of impurities that lead to a
similar mobility may yield very different τs times according
to their SOC strengths, a unique signature of this spin-
relaxation process.
We suggest conducting future spin-relaxation measure-

ments in 2D Si systems as a systematic function of

mobility, carrier density, impurity type, surface and spin
orientation, and applied stress in order to develop a
complete understanding of the mechanisms controlling
the spin relaxation of free carriers near Si surfaces. The
few existing measurements simply do not provide enough
information for a definitive conclusion.
Last, in order to establish the relative strength of our

spin-relaxation rate in comparison to the momentum-
relaxation rate, which determines the device charge mobil-
ity, we calculate their relative ratio (ν) for a few represen-
tative cases where impurities are the dominant source of
scattering (i.e., at low temperatures, where phonons are
unimportant). We take a simplified uniform distribution of
the highly doped 2DEG. Define ν ¼ τ2Dm =τ2Ds , where τ2Ds
follows from Eq. (15) and the momentum-relaxation time
τ2Dm takes the form appropriate for mobility calculations in
2D transport studies [36,61].
The momentum scattering matrix elements are governed

by the well-known screened Coulomb interaction in the
intravalley scattering, as appropriate for scattering by the
random charged impurities. For this interaction, the impu-
rity-distribution profile can be approximated as a δ function
normal to the 2DEG plane. Under the 2D RPA screening,
the momentum-relaxation rate in the quantum limit is given
as [36,61]

1

τ2Dm
¼ 4πe4meffni

ℏ3κ2k2F

Z
1

0

dxx2

ðxþ qTF=2kFÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ; ð26Þ

where meff is the conductivity effective mass different for
each specific 2DEG orientation [6,61], ni is the 2D
impurity density, permittivity κ is the Si permittivity, kF
is the 2D Fermi wave number, qTF ¼ meffe2g=ℏ2κ is the 2D
Thomas-Fermi wave number, and g ¼ gvgs is the number
of populated valleys including the spin degree of freedom
(with v and s denoting valley and spin, respectively).
The dependence on the Fermi level (similarly, on kF or

N2D) is very slow for both τ2Ds and τ2Dm within a given
Fermi-energy window between 2D subbands [36]. This
slow dependence can be clearly seen in Fig. 8 for τ2Ds over
many orders of magnitude of N2D. For τ2Dm , we plot its
explicit dependence on kF in Fig. 9 for (111) and (110)
2DEG orientations for which both leading-order momen-
tum and spin-relaxation rates are nonvanishing in the
quantum limit. They are both nearly constant over the
large region kF ≤ 0.1 Å−1, i.e., about 10% of the length of
the Brillouin zone.
This near independence of the Fermi level allows us to

obtain a simple estimation for ν for each specific 2DEG
orientation. To get the leading-order estimate, it is sufficient

to replace τð111Þs and τð110Þs with the square-well results
through Eqs. (17) and (19), as well as a variation of
Eq. (21). We get the following results:
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ν111 ¼
400a6BΔ2

so

ℏ4d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mtðmt þ 2mlÞ

3

r
=

�
1

mt
þ 3

mt þ 2ml

�
;

ð27Þ

ν110 ¼ 128a6BΔ2
so

ℏ4d2
ffiffiffiffiffiffiffiffiffiffiffi
mtml

p
=

�
1

mt
þ 2

mt þml

�
ð28Þ

for the (111) and (110) 2DEGs, respectively. With respect
to typical Δso and d parameters, ν111 ¼ 1.5 × 10−5

ðΔso=0.1 meVÞ2ð20 nm=dÞ2 and ν110 ¼ 5.6 × 10−6

ðΔso=0.1 meVÞ2ð20 nm=dÞ2. Obviously, this ratio depends
quadratically on the impurity SOC constant Δso. For the
expected typical values of the impurity SOC Δso in Si and
the 2DEG width d, this ratio ν varies between 10−6 and
10−4. By comparison, we note that, for intrinsic phonon-
induced spin and momentum-relaxation rates in 3D bulk Si,
this ratio is around 10−5 [54], which is determined
completely by the host Si SOC.

V. SUMMARY AND OUTLOOK

We have introduced in Si 2DEG a previously overlooked
yet important spin-relaxation mechanism due to electron-
impurity scattering. This mechanism dominates over other
spin relaxations in the multivalley Si conduction band as
impurity density increases, and it can be significantly sup-
pressed when electrons are transferred into two opposing
ground valleys by specific 2DEG orientations and stress
configurations. We provide the general expression for
obtaining the leading-order spin-relaxation rate under arbi-
trary confinement potential, applied stress, and subband
occupation. We calculate quantitatively the (T1) spin-relax-
ation time τsðsÞ as a function of spin orientation s, as well as
of the conduction electron density and confinement strength
for the representative square and triangular wells.
Moreover, the consequences of various stress configu-

rations have been worked out in detail. Importantly, this
newly discovered spin-relaxation mechanism combined
with the Si 2DEG setup provides interesting possibilities
to tune the spin lifetime as well as its dependence on spin

orientation (or the applied magnetic-field direction) sub-
stantially by on-chip gate voltages, and possibly by local
stress. Such a tunability of spin relaxation in MOSFET-type
Si devices could have potential spintronic applicability.
Also crucially, we provide experimental ways (elabo-

rated on in Sec. IV) to verify our spin-relaxation mecha-
nism and distinguish it from the DP spin-relaxation effect
from the generalized Rashba-Dresselhaus field in Si
2DEGs, by exploiting their different dependence on impu-
rity densities and types, on the interface symmetry proper-
ties, and on 2DEG plane, spin, and stress orientations.
Regarding a general expansion of this model, we point out

that, for 2DEG near the interfacewith a considerable amount
of disorder, a variation of our impurity-driven intervalley
spin-flip process may become quantitatively important in
determining the spin-relaxation rate. As mentioned in the
Introduction, the DP spin-relaxation mechanism alone leads
to a much longer spin lifetime for low-mobility 2DEG than
has been observed experimentally [18]. However, spin life-
time is apparently shorter in 2DEG near typical Si=SiO2

interfaces, indicating impurity-driven Elliott-Yafet spin
relaxation. While our spin-flip matrix elements [Eq. (2)]
apply specifically to substitutional impurities in Si with their
given symmetry, it is a basic rule that lower-symmetry
disorder inherits the allowed transition matrix elements.
Thus, the key idea of zeroth-order intervalley spin-flip
scattering [22] robustly holds for irregular defects, with
additional scattering channels potentially being open
depending on the specific defects. It is, therefore, possible
that interface impurities (even when they are completely
nonmagnetic—a restriction that our theory holds itself to—
any magnetic interface impurities will, of course, very
strongly affect spin relaxation near the surface through direct
magnetic spin-flip scattering) are playing a strong role in
determining the 2D spin-relaxation time in disordered
Si=SiO2 MOSFETs by participating in the Yafet process
identified and analyzed in this work. Obviously, figuring this
problem out presents an open and important future exper-
imental challenge in Si spintronics.
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APPENDIX: PHYSICS OF INTERVALLEY
COUPLING IN Si AND SYMMETRY

ANALYSIS

To be self-contained, we provide the essential physical
picture of intervalley coupling in bulk Si and the relevant
symmetry analysis and selection rules for Sec. II.
Bulk Si has a crystal structure [Fig. 10(a) in the absence

of the impurity substitution] consisting of two sets of
interpenetrating face-centered-cubic lattices and a space
symmetry group O7

h. Its lowest conduction band in the
wave-vector space has its bottom not at the center of the

FIG. 9. The kF-dependent factor in the momentum scattering
rate [Eq. (26)], Im ≡ ð1=πÞðkF=qTFÞ2

R
1
0 ðdxx2=ðxþ qTF=2kFÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

Þ, for the (111) and (110) 2DEG orientations, respec-
tively, over 0 < kF < 0.1 Å−1.
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Brillouin zone but along the cubic-axis directions. Crystal
symmetry determines that six energy valleys reside cylin-
drically along the �x, �y, and �z axes. This well-known
multivalley picture of Si supplies relevant information for
the electron states involved in this work. The transitions
between the electron states residing near the bottom of
the conduction valleys can obviously be classified
into three groups [see Fig. 10(b)]: (I) within the same
valley (“intravalley”), (II) between two opposing valleys
(“intervalley g process”), and (III) between two nonoppos-
ing valleys (“intervalley f process”).
The specific scattering potential we deal with comes

from the impurity which replaces one of the Si atoms. This
impurity immediately invalidates the translational sym-
metry of the Si crystal, and as a result the symmetry of the
Hamiltonian system falls into a point group around the
impurity [Fig. 10(a)]. This point group has the same
symmetry operations as a tetrahedron molecule: C2 rotation
about the x, y, or z axis,C3 rotation about body diagonals, σ
reflection about the face-diagonal planes, and S4 (C4

followed by reflection) about the x, y, or z axis, and the
point group is called the Td group.
To utilize the symmetry property of this system for

selection rules, we work with symmetrized electrons states
by linearly combining six different valleys, rather than
states in each individual valley as one is used to. The six
combinations are as follows [41]:

ψA1
¼ 1ffiffiffi

6
p ð1; 1; 1; 1; 1; 1Þ; ðA1Þ

ψEI ¼ 1

2
ð1; 1;−1;−1; 0; 0Þ; ðA2Þ

ψEII ¼ 1

2
ffiffiffi
3

p ð1; 1; 1; 1;−2;−2Þ; ðA3Þ

ψTI
2
¼ 1ffiffiffi

2
p ð1;−1; 0; 0; 0; 0Þ; ðA4Þ

ψTII
2
¼ 1ffiffiffi

2
p ð0; 0; 1;−1; 0; 0Þ; ðA5Þ

ψTIII
2
¼ 1ffiffiffi

2
p ð0; 0; 0; 0; 1;−1Þ; ðA6Þ

where the ordering of the six components of the state
vectors applies to the valley bottom states along theþx, −x,
þy, −y, þz, and −z axes, respectively. Each new state is
given a name at the subscript of ψ , following the well-
established naming system (see the Td-group character
table in Ref. [68] or [22]). The selection rules immediately
follow since only the same-symmetry states can couple,
while different-symmetry states are not mixed by the
scatterer potential, which transforms as the identity in this
group. Once we get the scattering matrix elements that do
not vanish, we can easily make linear combinations
between them to transfer back to the familiar intravalley
and intervalley g and f processes [22].
Thus far, we have not considered spin degrees of

freedom or SOC. To include spin, we can expand the basis
to be the product space of six valleys and two spins. It turns
out that two F states emerge from this valley-spin coupling.
To be concrete, the multiplication expressions are as
follows. The pure spin transforms as E1, and we then have

A1 × E1 ¼ E1; ðA7Þ

E × E1 ¼ F; ðA8Þ

T2 × E1 ¼ E2 þ F: ðA9Þ
We may follow a similar procedure as the spinless case to
obtain spin-dependent scattering selection rules [22]. Only
states with the same symmetry can be coupled. Among all
five nonvanishing couplings [each of the four states in
Eqs. (A7)–(A9) coupling to itself, as well as the intercou-
pling of the two F states from Eqs. (A8) and (A9)], we find
that there are spin-flip terms in two of them: the difference
between the E2 and F self-coupling matrix elements from
Eq. (A9), and the intercoupling matrix element between
two different F’s. This finding leads to the two terms in
Eq. (2). After transforming back to the intravalley, inter-
valley g, and intervalley f processes, we find [22] that both
terms contribute to the f-process spin flip.
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