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Metamaterials are engineered materials which exhibit fascinating properties unreachable by traditional
materials. Here, we report on the design, fabrication, and experimental characterization of a three-
dimensional single-port labyrinthine acoustic metamaterial. By using curled perforations with one end
closed and with appropriate loss inside, the metamaterial can perfectly absorb airborne sounds in a low-
frequency band. Both the position and the relative width of the band can be tuned flexibly. A trade-off is
uncovered between the relative absorption bandwidth and thickness of the metamaterial. When the relative
absorption bandwidth is as high as 51%, the requirement of deep-subwavelength thickness (0.07λ) can
still be satisfied. We emphasize that the perfect absorption with large tunability in relative bandwidth (from
9% to > 180%) was not attainable previously and may find applications ranging from noise reduction to
sound imaging.
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I. INTRODUCTION

Acoustic metamaterials (AMMs) are artificial periodic
structures with subwavelength building blocks that exhibit
unusual acoustic characteristics [1–10]. There has been
tremendous attention to AMMs since its first demonstration
in 2000 by Liu et al. [1]. A number of functionalities and
applications have been proposed and achieved based on
AMMs [11–19]. Labyrinthine AMMs (LAMMs) com-
posed of curled perforations are one of the most significant
types of AMMs due to their extreme constitutive param-
eters and plentiful potential applications [20–25]. For
instance, LAMMs show diverse properties such as double
negativity, a density near zero, and a large refractive index
in different frequencies, giving rise to fascinating phenom-
ena, including negative refraction and zero-density tunnel-
ing [20–22]. By applying a graded structure, a labyrinthine
metasurface with graded index can be constructed to
modify the wave front and the direction of the outgoing
waves [23,24]. Total reflection of low-frequency sounds
was also achieved very recently by applying an ultrasparse
labyrinthine metasurface [25]. To date, most of the studies
have been done in two-dimensional (2D) cases, and the
LAMMs usually have a two-port character so that trans-
mission is permitted [20–25]. Although they are important
in controlling sound waves in a three-dimensional (3D)
space [26,27], 3D LAMMs have seldom been investigated
and demonstrated.
In this paper, we report on the design, fabrication, and

experimental characterization of 3D single-port LAMMs

that are composed of curled, one-end-closed channels. Via
adjusting the sound loss in channels to a critical value, such
LAMMs can have impedance matching to the background
and thus can perfectly absorb sounds in a low-frequency
band; both the position and the relative width of the band
can be tuned flexibly. Analytic formulas are derived to
predict the critical loss in channels and the relative
absorption bandwidth, and their accuracy is verified by
both simulations and experiments. A trade-off is found
between the relative absorption bandwidth and the
thickness of the LAMM. When the relative absorption
bandwidth is as high as 51%, the requirement of deep-
subwavelength thickness (0.07λ) can still be satisfied
(while the lateral sizes of a unit cell are 0.04λ).
Perfect absorption of waves is important to many

applications, which has recently been a hot topic in the
fields of wave physics and materials engineering
[9,10,28]. Much effort has been devoted to construct
perfect absorbers of electromagnetic and acoustic waves
based on metamaterials with subwavelength thickness
[9,10,28–32]. However, their relative absorption band-
widths are usually narrow and difficult to adjust. This
work demonstrates perfect absorbers with large tunability
in relative bandwidth (from 9% to > 180%).

II. THEORY

To illustrate the principle, we first consider a 2D
labyrinthine acoustic metasurface, which is a rigid slab
with a channel array embedded [see Fig. 1(a)]. Unlike two-
port labyrinthine AMMs [20–23,25], the labyrinthine
metasurface here employs one-end-closed channels so that*huxh@fudan.edu.cn
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transmission is forbidden. The metasurface is perpendicular
to the z direction, invariant along the y direction, and
immersed in a background fluid where the sound velocity is
c. The channels have a length of L, a width of w, and a
period a along the x direction (a ≫ w). Upon the metasur-
face is normally impinging a harmonic sound plane wave
with wavelength λ ≫ a and frequency f ¼ c=λ. Inside the
channels, the wave number of sound kc ¼ kð1þ iβÞ, where
k ¼ 2π=λ and β denotes the loss of sound (similar to the
imaginary part of the refractive index in optics). When
w ≪ λ, the absorption does not change when the coiled
channels become straight, as shown by the superposition of
the solid and dotted lines in Fig. 1(e). For a system with
straight channels, a coupled-mode theory can be applied
(see Appendix A). If only fundamental modes are consid-
ered in both the channels and the background, the

absorption of the metasurface can be analytically derived
(see Appendix B),

A ¼ 1 − jrj2; ð1Þ

where the reflection coefficient r ¼ ð1 − ZÞ=ð1þ ZÞ, the
impedance of the metasurface relative to the background
Z ¼ ðw=aÞ½1 − exp ði2kcLÞ�=½1þ exp ði2kcLÞ�, and i is
the imaginary unity. Matched impedance (Z ¼ 1) and thus
unity absorption (A ¼ 1) can be achieved when particular
values of frequency and loss (f ¼ fm, β ¼ βm) are sat-
isfied. Here, the resonant frequency fm and critical loss βm
are given by (see Appendix B)

fm ¼ ð2m − 1Þc
4L

; ð2Þ

FIG. 1. The design principle of single-port LAMMs in 2D. (a) A rigid slab with a periodic array of curled, one-end-closed channels,
which is embedded in a background fluid with a sound velocity of c (left panel). The channels have a width w, a length L, and a period a.
The structure is invariant in the y direction. The slab is impinged normally by a plane sound wave with a wavelength λ, a frequency f,
and a pressure P0. The wave number is kð1þ iβÞ in the channels, where k ¼ 2π=λ and β represents the loss. The acoustic absorption of
the slab does not change when the channels become straight (right panel), as exemplified by (e). (b) Calculated absorption, shown in
color, as a function of frequency f and loss β for the slab with w=a ¼ 0.044 in (a). The absorption A ¼ 1when f ¼ fm and β ¼ βm, with
m ¼ 1, 2, 3. (c) The distributions of acoustic pressure inside the channels for the situations with A ¼ 1 in (b). (d),(e) Replotting of
(b) along f ¼ fm and β ¼ βm, respectively. The solid and dotted lines in (e) are results for straight and coiled channels, respectively. (f),
(g) Optimal loss βm and relative bandwidth Δf=fm as a function of channel width w, where Δf is the full width at half maximum of the
mth absorption peak, with β ¼ βm. (h) Relative bandwidth Δf=fm as a function of hmin=λm, where λm ¼ c=fm and hmin ¼ Lw=a is the
minimal thickness of the slab with curled channels.
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βm ¼ 2w
πð2m − 1Þa ; ð3Þ

where m is a positive integer (m ¼ 1; 2; 3…). Interestingly,
the critical loss depends on the relative channel width w=a
and does not rely on the channel length, while the critical
decay length in channel is the same (c=2πfmβm ¼ La=w)
for any resonance order. The corresponding relative absorp-
tion bandwidth can also be analytically obtained:

Δf
fm

¼ 8w
πð2m − 1Þa ; ð4Þ

where Δf is the full width at half maximum for the mth-
order absorption peak with β ¼ βm (see Appendix B).
When the rigid body has a minimal filling fraction in the
metasurface, the metasurface has a minimal thickness
hmin ¼ Lw=a, so that Eq. (4) can be rewritten as

Δf
fm

¼ 32hmin

πð2m − 1Þ2λm
; ð5Þ

where λm ¼ c=fm is the wavelength of the mth-order
resonance. We note that, if the ratio of w=a is replaced
by pq=a2 [with p, q, and a defined in Figs. 2(a)–2(c)],
the above formulas are also valid for a 3D labyrinthine
metasurface. In particular, to achieve perfect absorption for
the fundamental mode (m ¼ 1) in 3D, the loss in channels
should satisfy

β ¼ 2pq
πa2

: ð6Þ

We note that Eqs. (3)–(6) have not been derived previously
and could be useful for dealing with similar systems [33].

III. SIMULATIONS

To verify the accuracy of the above formulas, we perform
full-wave simulations for a 2D labyrinthine metasurface
with parameters of w ¼ 0.044a and length L ¼ 6.7a. The
results are shown in Figs. 1(b)–1(e). We can see that
the metasurface supports multiple resonant modes, with the
frequencies agreeing well with Eq. (2). For the mth-order
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FIG. 2. Experimental realization of a 3D single-port LAMM with a narrow absorption band. (a) An acoustic metasurface that is
immersed in air and impinged normally by a plane sound wave. The metasurface is periodic in the x-y plane and its unit cell has a size
a ¼ 8.92 cm in both the x and y directions and a height h in the z direction. A curled, one-end-closed channel exists in the unit cell and is
connected to the outside via a rectangular aperture at the upper surface of the unit cell. The aperture has the same area as the cross section
of the channel. (b) Photographs of a realistic unit cell fabricated with PLA by means of (left) 3D printing and (right) its inner structure.
(c) Schematic illustration of the curled channel in the unit cell. The channel has a wall thickness t ¼ 1 mm, a width p ¼ 1.16 cm, and a
height q. (d),(e) Measured and calculated absorption spectra for various heights of unit cells in (a). (f)–(i) Amplitude and relative width
of the absorption peak (Apeak and Δf=fpeak), the loss β in the channel for achieving ideal and realistic absorption [the black line and the
symbols in (h)], and the absorptive and radiative quality factors (Qa and Qr) of the unit cell as a function of the height h.
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resonance [see Fig. 1(c)], there are m nodes (with local
minimum) of sound pressure along the channel, which are
also antinodes (with local maximum) of fluid velocity.
Because of the friction between the fluid and channel walls,
sound waves dissipate inside the channels. However, only
when the sound loss inside the channel approaches critical
values (β ¼ βm), the metasurface can totally absorb sound
waves at resonant frequencies (f ¼ fm), as shown in
Figs. 1(d) and 1(e).
Figures 1(f)–1(h) demonstrate the critical loss βm inside

channels and relative absorption bandwidths Δf=fm for
different channel widths. Good agreement is found between
the simulated and analytical results. Both the critical loss
βm and the relative absorption bandwidths Δf=fm are
independent of the channel length and are related only to
both the resonance order m and the relative channel width
w=a. If a larger relative absorption bandwidth is desired,
the fundamental mode (m ¼ 1) is preferable while a larger
relative channel width w=a and a higher critical loss β1
should be applied.

IV. EXPERIMENTS

Experimentally, a high critical loss β1 can be realized
by placing some porous media (such as cotton) inside the
channels. However, in the following, we consider a more
interesting problem: whether perfect absorption with tun-
able bandwidth can be achieved in single-port LAMMs
with hollow channels (i.e., without using porous media).

A. Single-channel case

Figure 2(a) shows a fabricated 3D labyrinthine metasur-
face which is periodic in the x-y plane and embedded in
air. Its building block is a cuboid box fabricated with
polylactic acid (PLA) by means of 3D-printing technology
[see Fig. 2(b)]. The box has a fixed size of a ¼ 8.92 cm in
both the x and y directions and a height of h in the z
direction. A curled channel is embedded inside the box [see
Fig. 2(c)] and connected to outside via an aperture at the
upper surface of the box. Both the opening and the cross
section of the channel are rectangles with the same width of
p ¼ 1.16 cm and height of q ¼ h − 2t, where the thickness
t ¼ 1 mm for all of the walls of the box and channels.
A series of building blocks have been fabricated with the

channel height q ranging from 1 to 5 cm (see Appendix D),
and their measured acoustic absorption spectra are shown
in Fig. 2(d). We can see that absorption peaks occur at
146 Hz (thus, a ≈ 0.04λ), corresponding to the m ¼ 1
resonance of a channel with a length of L ¼ 58 cm. Such
an effective channel length is close to the realistic length of
7ða − 2tÞ ¼ 61 cm. The channel height has a small influ-
ence on the resonant frequency, while it strongly affects the
amplitude of the absorption peak [see Fig. 2(f)]. When the
channel height increases, the peak amplitude first increases,
then decreases. When the channel height q ¼ 2.5 cm (i.e.,

q ≈ 0.01λ), the measured absorption can be as high as
99.9% at resonant frequency. In addition, the relative
absorption peak width Δf=fpeak increases with increasing
channel height (or metasurface thickness). For a channel
height q of 3 cm, the relative peak width can be 9%. We
note that the performances of our structure, such as the
measured peak absorption A ¼ 99.9% and the ratio of
metasurface thickness to wavelength q ≈ 0.01λ, are supe-
rior to those of a similar structure whose measurements are
A ¼ 90% and q ≈ 0.02λ [33].
We applied a finite-element method to simulate the 3D

labyrinthine metasurface (see Appendix C). The funda-
mental resonant frequency is first obtained by using a small
sound loss in channels. Then the critical loss in channels
is searched to achieve unity absorption at the resonant
frequency, as shown by the solid line in Fig. 2(h). The
simulated results are very close to the values in Eq. (6). The
sound loss in channels is also obtained [see the symbols in
Fig. 2(h)] by fitting the amplitudes of the calculated
absorption peaks with the measured ones. We can see that
the sound loss in channels decreases with an increase in the
channel height q. The obtained sound loss from the
measured absorption can be fitted by a simple model [34],

β ¼ β0 þ 2gðpþ qÞ=pq; ð7Þ

where β0 ¼ 2 × 10−5 is the sound loss due to the shear
viscosity of air itself [34], and the second term with g ¼
0.02 cm is due to the friction (or shear viscosity) between
the air molecules and the channel walls and is dominant
here. Similar to the imaginary part of the refractive index
of many optical materials (such as glass), β is also small
and almost constant in a wide frequency range (e.g., from
100–1000 Hz), so that perfect absorption can be achieved at
different peak frequencies [see Fig. 3(c)]. When the channel
height q ¼ 2.5 cm, the loss in channels approaches a
critical value, leading to unity absorption at the resonant
frequency [see Figs. 2(e) and 2(f)]. The relative peak width
Δf=fpeak is also found to increase with increasing channel
height [see Fig. 2(g)].
Apart from the above first-principle microscopic simu-

lation, the labyrinthine metasurface can also be understood
by a macroscopic model, where the metasurface is regarded
as a one-port resonator array with a reflection coefficient
given by

r ¼ 1 −
X
m

2Q−1
r;m

−i2ðf=fm − 1Þ þQ−1
a;m þQ−1

r;m
: ð8Þ

Here, Qa;m ¼ πfmta;m and Qr;m ¼ πfmtr;m are the absorp-
tive and radiative quality factors, respectively; ta;m and tr;m
are the lifetimes of the resonance due to absorption inside
the structure and radiation to the far field, respectively.
For the m ¼ 1 mode, the absorptive and radiative quality
factors, Qa and Qr, are retrieved from the measured and
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simulated absorption (see Appendix C), as shown in
Fig. 2(i). We can see that, with an increasing channel
height q, the absorptive quality factor Qa increases, while
the radiative one Qa decreases. When 2 cm < q < 3.2 cm,
the two quality factors are close to each other (Qa ≈Qr),
so that the metasurface can absorb strongly (A > 98%)
incident sounds from the background medium of air at
resonant frequency.

B. Multiple-channel case

The above experiments demonstrate that, when appro-
priate cross sections of channels are adopted, a labyrinthine
metasurface with deep-subwavelength thickness (h=λ ¼
1.2%) can totally absorb sounds at a resonant frequency of
146 Hz, holding a relative bandwidth of 9%. In the
following, we show that the relative absorption bandwidth
can be further broadened by applying various channels in
the unit cell of the metasurface.
Figure 3(a) shows a fabricated cuboid unit cell with an

unchanged size a ¼ 8.92 cm in both the x and y directions
and an increased height h ¼ 18.2 cm in the z direction.
Inside the unit cell, there exist six channels with the same

cross section [p ¼ 2.84 cm and q ¼ 1.16 cm; see
Fig. 3(b)]. The channel lengths are 78, 72, 66.4, 59.0,
54.1, and 49.7 cm, respectively.
Absorption spectra are first measured for unit cells with a

single channel [see Fig. 3(c)], where one channel is hollow
and the others are filled with water. We can see that the six
channels individually contribute six absorption peaks,
with central frequencies at 109, 118, 128, 144, 157, and
171 Hz, respectively. Similar to the channel lengths, the six
resonant frequencies are also a geometric progression with
a common ratio of 1.07. All six absorption peaks have
amplitudes higher than 97% and an average width of about
9%. When all six channels are unblocked, the six peaks can
merge together into an absorption band, with frequencies
ranging from 105 to 177 Hz and a relative width of 51%.
The thickness of the unit cell is much shorter than the
central wavelength of the absorption band (h=λ ¼ 0.07).
Although only six channels exist in the unit cell, as

shown in Fig. 3(a), more channels can be adopted in the
configuration. For an extreme situation with 21 channels,
the first-order absorption band can possess a relative
bandwidth as large as 180%. In addition, absorption bands
with neighbored orders can overlap with each other,
resulting in an ultrabroad absorption band (A > 90% for
f > fc) which is similar to that of a porous medium [35].
Hence, our 3D single-port LAMMs serve as a bridge
linking damping resonant structures in a narrow band
[9,10,33,36–38] and porous absorptive media for high
frequencies [35]. We stress that the broadband perfect
absorption observed here is not easy to achieve since, in
many cases, resonators with small interspaces influence
each other and the absorption can be suppressed by the
spectral competition effects [39,40].

C. High absorption at oblique incidence

The observed strong absorption can also occur in a wide
range of incident angles (see Fig. 4). Although the
absorption decreases with an increasing incident angle θ,
the peak absorption remains as high as 85% at θ ¼ 750 [see
Fig. 4(a)]. The conclusion is also valid for the case of
multiple channels with different lengths [see Fig. 4(b)].
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FIG. 3. Experimental realization of a 3D single-port LAMM
with broadband absorption. (a) Photograph of the unit cell of
acoustic metasurface. The unit cell has a size a ¼ 8.92 cm in both
the x and y directions and a height h ¼ 18 cm, and it is composed
of three parts that are fabricated with PLA by means of 3D
printing. Six curled, one-end-closed channels exist in the unit cell
and are connected to the outside via rectangular apertures of
2.84 × 1.16 cm at the upper surface of the unit cell. The lengths
of the six channels are 49, 54, 59, 65, 72, and 79 cm, respectively.
(b) Schematic illustration of the six channels (indicated with
different colors) in the unit cell. The channels have a wall
thickness t ¼ 1 mm and width p ¼ 1.16 cm. Other parameters
are h1 ¼ 5 cm, h2 ¼ 2.84 cm, and h3 ¼ 7 cm. (c),(d) Measured
and calculated absorption spectra of the unit cell (the thick
curves). The results are also plotted when one aperture is open
and others are closed in the unit cell (the thin curves).
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V. SUMMARY

In this paper, we design, fabricate, and test a 3D single-
port LAMMwhich can perfectly absorb airborne sound in a
low-frequency band, when the sound loss in channels is
adjusted to a critical value. In addition to its position, the
relative width of the band can be changed in a very wide
range (from 9% to > 180%). Such a new type of sound-
absorbing materials serves as a bridge between traditional
porous materials for high frequencies [35] and advanced
damping resonant structures in a narrow band [9,10,33,
36–38]. Our work presents a robust approach in controlling
the sound loss in perforations and could benefit the
experimental realizations of additional acoustic designs
based on labyrinthine metamaterials.
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APPENDIX A: COUPLED-MODE THEORY

Consider the 2D acoustic metasurface shown in the right
panel of Fig. 1(a), which is invariant in the y direction and
periodic along the x direction. The unit cell of the 2D
metasurface is ranging from 0 < x < a (see Fig. 5). A rigid
body exists in the green part, with z < 0 and x < p or
x > pþ w. Fluid 1 exists in region I, with z < 0 and 0 <
x < a (i.e., the background), while fluid 2 exists in region II
with z < 0 and p < x < pþ w (i.e., the channel).
In region I, the acoustic pressure Pðz; xÞ satisfies

∇2Pþ k2P ¼ 0, so that we have P ¼ P
N
j¼−N ½Cj exp

ðikzjzÞ þDj exp ð−ikzjzÞ� exp ðikxjxÞ for z < 0 and
0 < x < a. Here, Cj and Dj represent the complex ampli-
tude of incident and reflected waves, respectively, with
j ¼ 0;�1;�2;…;�N. k ¼ ω=c, c ¼ ffiffiffiffiffiffiffiffi

B=ρ
p

, B, and ρ are
the wave number, sound velocity, bulk modulus, and
mass density in region I, respectively. k2z þ k2xj ¼ k2 and
kxj ¼ j2π=a.
In region II, the acoustic pressure Pcðz; xÞ satisfies

∇2Pc þ k2cPc ¼ 0 with ∂xPc ¼ 0 at x ¼ p and pþ w.
Hence, we have Pc ¼

PNc
j¼0 ½Ej exp ðikczjzÞ þ

Fj exp ð−ikczjzÞ� cos ½kcxjðx − pÞ� for z > 0 and

p < x < pþ w. Here, Ej and Fj represent the complex
amplitude of inward and outward waves, respectively, with
j ¼ 0; 1; 2;…; Nc. kc ¼ ω=cc, cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Bc=ρc

p
, Bc, and ρc

are the wave number, sound velocity, bulk modulus, and
mass density in region II, respectively. k2czj þ k2cxj ¼ k2c
and kcxj ¼ jπ=a.
The linking conditions at z ¼ 0 are

P ¼ Pc for p < x < pþ w; ðA1Þ

ρ−1
∂
∂z P ¼

�
0 for p > x or x > pþ w

ρ−1c
∂
∂z Pc for p < x < pþ w

�
: ðA2Þ

Bysubstituting the expressions ofP andPc intoEqs. (A1) and
(A2), multiplying Eq. (A1) with

R
pþw
p cos ½kcxlcðx − pÞ�dx

and Eq. (A2) with
R
a
0 exp ð−ikxlxÞdx, then using

Fj ¼ Ej exp ði2kczjLÞ, we have

Xj¼−N

N

G1;lcjðCj þDjÞ ¼
XNc

j¼0

G2;lcj½1þ exp ði2kczjLÞ�Ej;

ðA3Þ

XN
j¼−N

G3;ljðCj −DjÞ ¼
XNc

j¼0

G4;lj½1 − exp ði2kczjLÞ�Ej:

ðA4Þ

Here, lc ¼ 0; 1; 2;…; Nc, l ¼ 0;�1;�2;…;�N, G1;lcj ¼R
pþw
p cos ½kcxlcðx − pÞ� exp ðikxjxÞdx, G2;lcj ¼

R
pþw
p cos

½kcxlcðx − pÞ� cos ½kcxjðx − pÞ�dx, G3;lj ¼ kzjρ−1
R
a
0 exp

ð−ikxlxÞ exp ðikxjxÞdx, and G4;lj ¼ ρ−1c kczj
R
pþw
p exp

ð−ikxlxÞ cos ½kcxjðx − pÞ�dx. By using Cj ¼ δj;0, Dj, Ej,
reflection R ¼ jD0=C0j2, and absorption A ¼ 1 − R can be
obtained.

APPENDIX B: DERIVATIONS OF EQS. (1)–(4)

When N ¼ Nc ¼ 0, Eqs. (A3) and (A4) become

G1ðCþDÞ ¼ G2½1þ exp ði2kcLÞ�E; ðB1Þ

G3ðC −DÞ ¼ G4½1 − exp ði2kcLÞ�E; ðB2Þ

where G1 ¼ w, G2 ¼ w, G3 ¼ kρ−1a, and G4 ¼ kcρ−1c w.
Hence, we have

R≡
����DC

����
2

¼
���� 1 − Z
1þ Z

����
2

; ðB3Þ

where Z ¼ ðkcρ=kρcÞðw=aÞ½1 − exp ði2kcLÞ�=
½1þ exp ði2kcLÞ�. When kcρ=kρc ≃ 1, we have Z ¼

x0 a
Cj Dj

Ej Fj

I

wz

y

L

p II

FIG. 5. The unit cell for the 2D acoustic metasurface shown in
the right panel of Fig. 1(a).
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ðw=aÞ½1 − exp ði2kcLÞ�=½1þ exp ði2kcLÞ�. Thus, Eq. (1)
can be obtained from A ¼ 1 − R and Eq. (B3).
The condition for R ¼ 0 (or Z ¼ 1) is

exp ði2kcLÞ ¼ −ð1 − w=aÞ=ð1þ w=aÞ: ðB4Þ

By using kc ¼ kð1þ iβÞ, and thus exp ði2kcLÞ ¼
exp ði2kLÞ exp ð−2kβLÞ, the above equation becomes
exp ði2kLÞ ¼ −1 [i.e., 2kL ¼ ð2m − 1Þπ, m ¼ 1; 2; 3…]
and expð−2kβLÞ¼ð1−w=aÞ=ð1þw=aÞ (i.e., 1 − 2kβL≃
1 − 2w=a, when w=a ≪ 1). Hence, we obtain Eqs. (2)
and (3).
Assume k ¼ km þ Δk=2, km ¼ ð2m − 1Þπ=2L, and

Δk=2 ≪ km. When Eq. (3) is satisfied, Eq. (B4) becomes
R ¼ ½2 þ 2 cos ð2kLÞ�=½v2=u2 þ u2=v2 þ 2 cos ð2kLÞ�,
where u ¼ 1 − w=a and v ¼ 1þ w=a. Thus, the condition
for R ¼ 1=2 is

cos ð2kLÞ ¼ ðv2=u2 þ u2=v2Þ=2 − 2. ðB5Þ

By using ðv2=u2 þ u2=v2Þ=2 − 2≃ −1þ 8ðw=aÞ2 and
cosð2kLÞ≃−1þ 1

2
ðΔkLÞ2, Eq. (B5) becomes Δk¼w=aL,

so that we have Δk=km ¼ 8w=½πð2m − 1Þa�, allowing
Eq. (4) to be obtained.

APPENDIX C: DETAILS OF SIMULATIONS

With the exception of the dotted lines in Fig. 1(e), all of
the results in Figs. 1(b)–1(h) are calculated by using the
coupled-mode theory with N ¼ Nc=2 ¼ 3 in the right
panel of Fig. 1(a). The results with N ¼ Nc=2 ¼ 3 are
almost the same as those with N ¼ Nc ¼ 0.
Other simulated results [the dotted lines in Figs. 1(e),

1(c), 2, and 3] are obtained by a finite-element method
(COMSOL Multiphysics v4.3). Here, the mass density and
the sound velocity of air are set as 1.29 kg=m3 and
340 m=s, respectively; the mass density, Young’s modulus
and Poisson’s ratio of PLA are set as 1.24 × 103 kg=m3,
3.5 GPa, and 0.4, respectively. Since PLA and air are very
different in density, simulated resonant frequencies change
slightly (< 1%) when PLA is replaced by a rigid body. In
experiments, the measured absorption spectra do not
change when PLA is replaced by acrylonitrile butadiene
styrene.
In the frequency ranges studied in Figs. 3(d) and 3(e),

the fundamental (m ¼ 1) resonance dominates, so that
Eqs. (7) and (8) can reduce as

A ¼ 4Q−1
a Q−1

r

4ðf=f1 − 1Þ2 þ ðQ−1
a þQ−1

r Þ2 : ðC1Þ

By fitting the curves in Figs. 3(d) and 3(e) with this
simplified equation, the resonant frequency f1, the absorp-
tive quality factor Qa, and the radiative quality factor Qr
can be obtained for the m ¼ 1 resonance.

APPENDIX D: DETAILS OF EXPERIMENTS

The sample shown in the left panel of Fig. 2(b) is
composed of a bottom part, as shown in the right panel of
Fig. 2(b), and a square cover [see Fig. 6(a)]. The two parts
are first fabricated with PLA by 3D-printing technology,
then agglutinated together. Similarly, the sample shown in
Fig. 3(a) is also fabricated.
A commercial impedance tube (Hangzhou Aihua,

AWA6290T), which complies with ASTM C384-04
(2011) and ASTM E1050-12, was applied to measure
the absorption of acoustic metasurfaces. Here, the imped-
ance tube has a square cross section with a size of 9.05 cm,
one (left) closed end and another (right) open end [see
Fig. 6(b)]. Two 1=4-in. condensed microphones are situated
at designated positions to sense local pressure. For each
measurement, a unit cell of the metasurface is first placed at
the left end of the tube, and a cubic box with a loudspeaker
is then placed at the right end (so that the right end is also
closed). The loudspeaker was fed with a sinusoidal signal
of which the frequency increases with increasing time. By
analyzing the signals from microphones, the absorption of
the unit cell can be obtained by A ¼ 1 − jrj2, where r is the
reflection coefficient of the unit cell.
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