
Deviation from the Normal Mode Expansion in a Coupled
Graphene-Nanomechanical System

Cornelia Schwarz, Benjamin Pigeau, Laure Mercier de Lépinay, Aurélien G. Kuhn, Dipankar Kalita,
Nedjma Bendiab, Laëtitia Marty, Vincent Bouchiat, and Olivier Arcizet*

Institut Néel, Université Grenoble Alpes-CNRS:UPR2940, 38042 Grenoble, France
(Received 3 December 2015; revised manuscript received 14 November 2016; published 29 December 2016)

A significant deviation from the normal mode expansion is observed in the optomechanically measured
thermal noise of a graphene membrane suspended on a silicon nitride nanoresonator. This deviation is due
to the heterogeneous character of mechanical dissipation over the spatial extent of coupled eigenmodes,
which is tuned through an avoided anticrossing. We demonstrate that the fluctuation-dissipation theorem
permits a proper evaluation of the thermal noise of the coupled nanomechanical system. Since a good
spatial homogeneity is delicate to ensure at the nanoscale, this approach is fundamental to correctly
describing the thermal noise of nanomechanical systems which ultimately impact their sensing capacity.
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I. INTRODUCTION

Nanomechanical oscillators are routinely used in funda-
mental and applied physics [1,2] as ultrasensitive force or
mass sensors due to their increased sensitivity to their
environment. The understanding of dissipation at the
nanoscale is the key ingredient towards extreme sensitivity
operation. Among others, carbon-based nanoresonators and
alternative 2D materials [3] have revolutionized the field of
nanomechanics [4–14] by pushing the oscillator dimen-
sions down to a single atomic layer. The extreme sensi-
tivities achieved are ultimately limited by the thermal noise
of the nanoresonators, which underlines the importance of
correctly understanding and describing their Brownian
motion. The thermal noise of a vibrating nanomechanical
system is commonly described using the normal mode
expansion, which assumes that each eigenmode is driven
by an independent fluctuating Langevin force, presenting
no correlation with other eigenmodes. However, this
intuitive description only holds when the mechanical
dissipation is homogeneously distributed in the system
[15–17]. Otherwise, inhomogeneous damping can create
dissipative coupling between eigenmodes, leading to a
violation of their assumed independence. Such deviations,
which have been reported on macroscopic devices [18,19],
are expected to be extremely important in nanomechanical
systems since it becomes increasingly difficult to ensure
and even measure a good spatial homogeneity over the
entire nanosystem as its size is decreased. However, no
deviations from the normal mode expansion have been
observed at the nanoscale to date, despite the large variety
of nanoresonators investigated.
In this article, we report on the deviation from the normal

mode expansion in the optomechanically measured thermal

noise of a nanomechanical arrangement made of a sus-
pended graphene monolayer coupled to a silicon nitride
nanomembrane which supports the graphene resonator.
To fully explore the deviation from the normal mode
expansion, we exploit the inertial coupling between both
nanoresonators: upon temperature-controlled tunable
hybridization, the coupled eigenmodes become spatially
delocalized on the two subsystems whose intrinsic mechani-
cal damping rates differ by 2 orders of magnitude. In this
situation with strong coupling between the two nanoreso-
nators, the damping homogeneity is, therefore, no longer
maintained, which results in a pronounced deviation from
the normal mode expansion that we report on and analyze.
Then we measure the local mechanical susceptibility of
the coupled nanomechanical system and prove that the
fluctuation-dissipation theorem still holds across the entire
observed anticrossing—that is, for both homogeneously and
heterogeneously distributed mechanical damping.
These considerations are essential for correctly describ-

ing nanomechanical systems affected by inhomogeneous
damping and point out the importance of having access to
the local mechanical susceptibility to correctly estimate the
thermal noise of complex nanomechanical systems.

II. SAMPLE PREPARATION

Our nanomechanical system is a fully suspended single-
layer graphene sheet deposited on a square window opened
in a Si3N4 nanoresonator, itself supported on an opened
silicon wafer (see Fig. 1), which allows a dual optical
access from both sides. It is obtained [see the Supplemental
Material (SM) [20]] by transfer in the liquid phase of a
monolayer, polycrystalline graphene grown by CVD on
Cu [21,22] and suspended over up to 25 × 25 μm2 on a
prepatterned stoichiometric Si3N4 membrane which is
500 nm thick and 100 μm wide.*olivier.arcizet@neel.cnrs.fr

PHYSICAL REVIEW APPLIED 6, 064021 (2016)

2331-7019=16=6(6)=064021(8) 064021-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevApplied.6.064021
http://dx.doi.org/10.1103/PhysRevApplied.6.064021
http://dx.doi.org/10.1103/PhysRevApplied.6.064021
http://dx.doi.org/10.1103/PhysRevApplied.6.064021


The used substrate is a silicon wafer coated on both
sides with plasma-sputtered low-stress Si3N4 thin films of
500 nm thickness. Large windows of about 100 × 150 μm
are defined using laser lithography on the wafer back side,
while smaller square windows (4–25 μm sized) are defined
on the top surface, centered above the bottom windows.
The silicon nitride is etched away by reactive-ion etching
in a SF6 plasma. In order to permit optical transmission
through the sample, and thus optical access from both
sides, the silicon is subsequently etched away through the
windows opened in the silicon nitride layers in a KOH
solution. This etching away results in suspended silicon
nitride membranes with predefined holes, as shown in
Fig. 1 and the SM [20]. The graphene is grown on a copper
foil by chemical vapor deposition from a methane precursor
to form a continuous layer [21]. The monolayer graphene is
covered by a spin-coated resist support layer (PMMA) and
the copper is etched away in an ammonium persulfate
solution. The graphene is then transferred onto the pre-
patterned substrate. After removal of the PMMA layer in
acetone and rinsing in isopropanol, the sample is dried in a
supercritical carbon dioxide dryer to protect it from strong
surface-tension forces that can be exerted by drying liquid
droplets. The quality of the suspended graphene and the
low levels of doping and residual strain are verified and

estimated [23] using confocal micro-Raman mapping; see
the SM [20].

III. THE EXPERIMENTAL SETUP

A 633-nm probe laser is focused on the graphene
resonator with a high numerical-aperture objective (whose
optical waist approximately equals 400 nm). The weak
reflected beam constitutes the signal arm of a balanced
homodyne detection [24] [see Fig. 1(c) and the SM [20]].
The sample is mounted vertically on an XYZ piezoelectric
stage (100 × 100 × 100 μm scan range) permitting a pre-
cise positioning with respect to the probe-laser beam,
which is fixed in space in order to ensure a stable operation
of the interferometer. The long working distances (4 mm)
and large numerical apertures (0.75) of the microscope
objectives employed permit us to focus the laser beams
down to optical waists of approximately 330 nm with half
focusing angles approximately equal to 45°. This angle is
smaller than the KOH chemical-etching angle of silicon
(54°) so that a full laser-beam transmission is preserved all
over the graphene membrane. The experiment is conducted
in a vacuum chamber to suppress air damping, which
limits the oscillators’ quality factors. Static pressures below
0.01 mbar can be maintained over several days.
The interferometer permits a shot-noise-limited readout

of the membrane’s thermal noise, with injected optical
powers ranging from 1 to 100 μW. A fast piezoelectric
element driving the local oscillator mirror permits a robust
calibration of the interferometer, particularly insensitive to
spatial drifts or reflectivity variations due to nonhomo-
geneous graphene properties (wrinkles or grain bounda-
ries). Reflectivities in the 1%–10% range are measured on
monolayers depending on the level of contaminants. A
typical calibrated-displacement noise spectrum is shown in
Fig. 1. Its reproduction at varying optical powers permits us
to verify the absence of optical backaction (see the SM
[20]). The uncoupled graphene resonators present funda-
mental eigenmodes in the 1–10 MHz range, with quality
factors from 10 to 500 in vacuum and effective masses
ranging from 10−16 to 10−14 kg. Operating with fully
transmitting systems permits the suppression of additional
cavity effects [25] which could complicate the noise
thermometry. The spatial profile of graphene eigenmodes
can be mapped by probing thermal-noise spectra at varying
positions on the graphene membrane; see the SM [20].
The slight elliptical structure and the frequency splitting
observed on higher-order modes reflects the presence of a
residual 20-MPa stress along the diagonal direction
[26,27], attributed to the graphene transfer process. Also
visible on the thermal-noise spectrum are sharp peaks
corresponding to higher-order eigenmodes of the Si3N4

nanomembrane, whose fundamental mode oscillates at
around 100 kHz. They present larger quality factors (above
1000) but higher masses, on the order of 10−12 kg. In the
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FIG. 1. The experimental setup. (a) SEM of a 20 × 20 μm2

suspended CVD-grown graphene monolayer supported on a
300-nm-thick SiN nanomembrane, as sketched in (b). (c) Exper-
imental setup. A balanced homodyne detection measures the
phase fluctuations of the probe-laser field reflected by the sample
and monitors its position fluctuations. A second counterpropa-
gating pump-laser beam can be intensity modulated to opto-
mechanically drive the coupled nanoresonators. The experiment
is performed at pressures below 10−3 mbar. (d) Model describing
the inertially coupled nanoresonators. (e) Thermal noise of a
graphene membrane. The sharp peaks on each side are weakly
coupled SiN eigenmodes.
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following, we investigate the thermal noise of the
coupled system.

IV. HYBRIDIZATION OF GRAPHENE
EIGENMODES

In order to tune the eigenfrequencies, we exploit the
partial absorption of a second laser beam at 532 nm focused
down to an optical waist of ≃300 nm, spatially super-
imposed on the probe beam and injected from the opposite
side of the sample. It generates a slight temperature increase
which is almost nondetectable in the Brownian temperature
[see Fig. 2(e)] but is sufficient to significantly thermally
tune the graphene eigenfrequency. A clear hybridization
between both the graphene and Si3N4 eigenmodes is shown
in Fig. 2(b), where a pronounced frequency anticrossing
can be seen, as well as a modification of the mechanical
damping rates. Such signatures are fingerprints of strong

dual-mode coupling [28], which can also affect the force
sensitivity [29–31].
The modelization of our inertially coupled nanomechan-

ical system is based on cascaded mechanical oscillators
[15,16], as sketched in Fig. 1(d). Their vibrations δxG and
δxS around the rest positions are coupled through

̈δxG ¼ −Ω2
GðδxG − δxSÞ − ΓGð _δxG − _δxSÞ þ δFG=MG

̈δxS ¼ −Ω2
SδxS − ΓS

_δxS þ μΩ2
GðδxG − δxSÞ

þ μΓGð _δxG − _δxSÞ þ δFS=MS; ð1Þ

where ΩG;S=2π (ΓG;S) are the uncoupled frequencies
(damping rates). δFG is an external force applied on the
graphene membrane andMG the graphene effective mass at
the measurement location [17], while μ≡MG=MS para-
metrizes the hybridization strength. Depending on the
graphene and Si3N4 membrane geometries which govern
the vibration-mode spectrum and their spatial profiles,
anticrossings with varying strength can be observed
(see the SM [20]). Intuitively, if graphene is positioned
at a node of the membrane eigenmode, their hybridiza-
tion will be reduced. In the Fourier domain, we have� δxG
δxS

�
¼χ½Ω� ·

� δFG

μδFS

�
, using δxi½Ω�≡

R
R dteiΩtδxiðtÞ.

The dynamical matrix χ½Ω�−1 is

 
χ−1G MGΩ2 − χ−1G

μðMGΩ2 − χ−1G Þ μðχ−1S þ χ−1G þMGΩ2Þ

!
; ð2Þ

where we use the uncoupled mechanical susceptibilities
χG;S ≡M−1

G;SðΩ2
G;S −Ω2 − iΩΓG;SÞ−1. Diagonalizing the

restoring-force matrix M−1
G χ½0�−1 yields the new eigenfre-

quencies Ω�=2π of the coupled system:

Ω2
�≡ð1þμÞΩ2

GþΩ2
S

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2

S−ð1þμÞΩ2
GÞ2þ4μΩ2

GΩ2
S

p
2

:

ð3Þ

When μ ≪ 1, the minimum relative-frequency splitting
amounts to

ffiffiffi
μ

p
, corresponding to a canonically defined

coupling strength of g ¼ ΩG
ffiffiffi
μ

p
[28]. Depending upon the

sample geometry, a large variety of coupling strengths can
be observed, up to 200 kHz, largely entering the so-called
strong-coupling regime (g > ΓS, ΓG). The experimentally
measured coupled eigenfrequencies are shown in Fig. 2(c)
for increasing pump-laser powers. They can be well fitted
using Eq. (3) and a linear pump-power dependence for
the uncoupled graphene and Si3N4 eigenfrequencies of
−284 Hz=μW and −2 Hz=μW, respectively. The latter
corresponds to a maximum static heating of the Si3N4

nanoresonator estimated at the level of ≃1 K [32]. Using
the experimentally measured heat diffusion coefficient of
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FIG. 2. Thermal noise of the hybridized eigenmodes. (a) Ther-
mal noise of the coupled nanomechanical system measured in
the middle of the graphene membrane (SδxG ½Ω�) when tuned
to an anticrossing region by adjusting the pump intensity
(400 μW). Lower traces are obtained after numerical back-
ground substraction. The solid lines are the best fits derived
employing the normal mode expansion. The dashed green lines
are fits using expression (4). (b) Spectra measured through the
anticrossing for increasing tuning laser powers. The dashed
lines are fits using Eq. (4) with the fitting parameters ΩS;G, ΓS;G
reported in (c),(d) using μ ¼ 0.002. The purple disks represent
the measured coupled eigenfrequencies Ω�=2π, and the solid
lines are deduced from Eq. (3). (d) A similar analysis for
damping rates Γ�=2π. (e) Relative Brownian temperature
variation deduced from the fits.
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5 × 10−6m2=s (see the SM [20]), the thermal heat resistance
of graphene is numerically estimated at 0.25 K per micro-
watt absorbed. The effective mechanical damping rates Γ�
of the coupled modes can be roughly estimated using the
FWHM of the thermal-noise spectra [see Fig. 2(d)] and
then used to extrapolate the uncoupled damping rates (see
the SM [20]).

V. VIOLATION OF THE NORMAL
MODE EXPANSION

Meanwhile, a striking feature can be seen in the
displacement noise spectra shown in Fig. 2: a characteristic
peak asymmetry and a sharp noise minimum between both
eigenmodes are clearly visible in the anticrossing region.
These spectra cannot be fitted with two independent
mechanical thermal-noise spectra [see Fig. 2(a)] with a
deviation larger than 10 dB observed in the vicinity of ΩS.
Therefore, the measured thermal noise cannot be described
by two eigenmodes driven with independent Langevin
forces, which reveals the violation of the normal mode
expansion. As illustrated in Fig. 3, this violation is a
consequence of the spatial inhomogeneity of damping rates
across the system: acoustic vibrations are more efficiently
damped in graphene than in Si3N4. When the eigenmodes
become hybridized, their spatial profiles are delocalized

over both systems [see the Fig. 2(c) insets], so that
mechanical damping becomes inhomogeneous over the
eigenmode spatial extension. Thus, the spatial profile of
the vibration pattern cannot be stationary anymore since it is
nonhomogeneously damped and cannot be preserved over
time. As such, dissipation is now able to couple eigenmodes,
which breaks the fundamental hypothesis required to apply
the normal mode expansion [15,17]. When ΩG ¼ ΩS, the
thermal-noise spectral density at the minimum noise fre-
quency is measured at a level approximately 2ΓG=ΓS times
lower than the prediction of the normal mode expansion; see
the SM [20]. The understanding of this deviation is critical
for patching the normal mode expansion and working out an
analytical description of the system fluctuations.

VI. THERMAL NOISE OF THE HYBRIDIZED
NANOMECHANICAL SYSTEM

To properly describe the nanosystem thermal noise, it is
necessary to return to the original formulation of the
fluctuation-dissipation theorem [15,33]:

SδxG ½Ω� ¼
2kBT
jΩj jImχGG½Ω�j; ð4Þ

which relates the measured displacement noise spectral
density to the local mechanical susceptibility χGG. The
latter connects the optomechanically measured deforma-
tions of the graphene membrane δxG½Ω� to the external
force δFG applied on the graphene membrane at the
measurement point: δxG½Ω� ¼ χGG½Ω�δFG. First, we pursue
the analysis based on the model employed above. Inverting
Eq. (2), we obtain

χGG½Ω�−1 ¼ χ−1G −
ðχ−1G þMGΩ2Þ2

χ−1G þ χ−1S þMGΩ2
; ð5Þ

which permits a derivation of the expected thermal noise
(see the SM [20]) using Eq. (4). Our experimental results
can be well fitted with this model [see Figs. 2(a) and 2(b)]
using the fitting parameters which are reported in Figs. 2(c),
2(d), and 2(e). The magnitude of the coupling parameter
μ ¼ 0.002 is also in agreement with the ratio of bare
effective masses of both nanoresonators. No significant
variation in the fitted noise temperature could be detected
[see Fig. 2(e)], which places an upper bound of ≃10 K on
the maximum temperature increase induced by the tuning
laser. This observation is also consistent with the estimated
thermal resistance given above and allows us to neglect the
role of temperature inhomogeneities in our modelization.

VII. VALIDITY OF THE FLUCTUATION-
DISSIPATION THEOREM IN THE COUPLED

NANOMECHANICAL SYSTEM

Verifying the validity of the fluctuation-dissipation
theorem is essential in order to assess whether the measured
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FIG. 3. Role of damping heterogeneity. (a) Numerical simu-
lations of thermal-noise spectra deduced from the model (see the
SM [20]) for varying uncoupled graphene frequency ΩG and
different graphene damping rates. From left to right, ΓG=2π ¼ 5,
50, and 500 kHz (ΩS=2π ¼ 2 MHz, μ ¼ 0.1, ΓS=2π ¼ 5 kHz).
(Bottom panels) Thermal-noise spectra calculated with ΩG=2π ¼
1.5 MHz for different graphene damping rates [5, 10, 20, 50, 100,
200, 300, and 500 kHz from (i) to (viii)] and respective coupling
strength of μ ¼ 0.1 and 0.01 for (b) and (c), respectively. The
peak asymmetry and the noise reduction are absent in the case of
homogeneous damping (i), and the simulations are well described
by a modal expansion (the dashed lines).
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spectra correspond to the thermal noise of the system.
Following the principles of linear response theory [33], this
verification requires measuring the local mechanical sus-
ceptibility χGG of the coupled nanomechanical system. To
do so, we modulate the pump beam intensity by means of
an acousto-optic modulator (AOM) and realize response
measurements by sweeping the modulation frequency
while recording the driven displacement. Both laser spots
are carefully superimposed on the graphene membrane to
access the local susceptibility; it is worth mentioning that
this measurement cannot be realized with electrostatic gate
or with piezoelectric actuations since their spatial excitation
profile is not localized on the measurement spot. We first
verify the linearity of the actuation [see Fig. 4(a)] by
varying the optical modulation depth δP over 2 orders
of magnitude without modifying the mean pump power
(60 μW) to ensure a stable graphene frequency, away from
the anticrossings. No deviation from linearity are observed
in the driven oscillations up to a maximum amplitude
of 1 nm, a few times the monolayer thickness (0.3 nm), so
that we perfectly sit in the linear actuation and measure-
ment regime. A typical actuation efficiency of 17 pm=μW
is measured, corresponding to an optical force of
540 fN=μW. This value is significantly larger than the
radiation-pressure-force contribution of 0.3 fN=μW for a
10% absorption coefficient, which confirms the dominant

role of photothermal forces [34,35] in the optical actuation
of graphene [25]. The backaction noise resulting from the
intensity fluctuations of the shot-noise-limited laser beams
can thus be evaluated at the level of ≃0.1 fm=

ffiffiffiffiffiffi
Hz

p
for

P0 ¼ 100 μW. This value is largely negligible compared to
the measured thermal noise, so backaction cancellation [36]
and classical noise-squashing mechanisms [37] can be
safely excluded while interpreting our results.
Several response measurements are subsequently per-

formed through the anticrossing in the same measurement
conditions as in Fig. 2(a) by progressively increasing the
pump intensity while maintaining a fixed modulation depth
(δP=P0 ¼ 30%). The response curves shown in Fig. 4(c)
permit us, once combined with the optical to force con-
version factor measured in Fig. 4(a) in the absence of
hybridization, to determine the complex local mechanical
susceptibility, χGG½Ω�, as shown in Fig. 4(d). Its proper
determination requires us to take into account the weak
residual contribution of the interferometer feedback loop
in the measurement span, the transfer function of all
photodetectors employed, and the spectral response of
the AOM. With this determination, the expected thermal
noise can be properly estimated using Eq. (4) and compared
to the measured thermal-noise spectrum, as shown in
Fig. 4(e). The excellent quantitative agreement found
between both measurements all across the hybridization
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FIG. 4. Optomechanical response of the hybridized nanomechanical system. (a) Optomechanical response obtained by modulating the
pump intensity for increasing modulation depths δP with a fixed average tuning power (P0 ¼ 60 μW). (b) Maximum driven displacement
reported as a function of δP. The solid line has a slope of 17 μm=W. (c) Optomechanical responses obtained for an increasing optical pump
power P0 (30% modulation strength). (d) Amplitude and phase of the mechanical susceptibility χGG derived for 400 μW of tuning power.
The corresponding thermal-noise spectrum expected using Eq. (4) is reported in (e)(i) and presents a very good agreement with the
measured spectrum (ii). The detection noise is included in traces (iii) and (iv). A 30% correction is used here on the optical to the force
conversion factor determined in Fig. 4(a) to account for a slight modification of the actuation efficiency between both measurements.
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(see Fig. 5) demonstrates the validity of the fluctuation-
dissipation theorem in our strongly coupled nanomechan-
ical arrangement.
The hybridization dramatically modifies the graphene

mechanical response and has an impact on the signal-
to-noise ratio (SNR) observed in a force measurement.
For a monochromatic force of amplitude δFG applied
in the center of the graphene membrane, the SNR can
be expressed as SNR½Ω�=ðSNRGÞ ¼ jIm ϰ−1G =Im ϰ−1GGj,
where SNRG ≡ δF2

G=2MGΓGkBT represents the SNR of
the uncoupled graphene alone. As verified experimentally
and confirmed with the model (see the SM [20]), the SNR
can be improved with respect to the uncoupled graphene
resonator in narrow frequency bands in the vicinity of the
Si3N4 resonance. As already employed with macroscopic
devices [19], this approach constitutes a strategy for
achieving larger sensitivities in hybrid nanosensors.

VIII. CONCLUSIONS

In this paper, we demonstrate the violation of the normal
mode expansion in a multimode nanomechanical system
and verify that the fluctuation-dissipation theorem well
describes its thermal noise despite the large mass and
damping asymmetries. This work underlines the impor-
tance of measuring the local mechanical susceptibility of a
nanosystem to correctly understand its thermal noise. Since
a good sample homogeneity is more delicate to ensure in
extremely downsized nanomechanical devices, we antici-
pate that these deviations will play an important role in the
future of nanomechanical sensors. Our observations, real-
ized on inertially coupled nanomechanical oscillators,
have a more general reach and are also valid when
mechanical modes are externally coupled, such as by
optical or electrostatic force-field gradients [8,14,38–44].
Such a fundamental approach could be used for developing
alternative force-detection protocols based on multimodal
nanosystems. Furthermore, optomechanical cooling is
intrinsically responsible for both mode cross-coupling

and nonhomogeneous modification of the damping rates
when the feedback actuation profile does not perfectly
match the vibration profile of the mode of interest.
Therefore, our conclusions and our approach should be
directly transposed to correctly understand the noise of
actively cooled multimode optomechanical systems
[38,45–47]. Finally, we emphasize that the coupling
mechanism involved here is of a conservative nature in
the sense that it does derive from a potential energy.
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