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Dielectric elastomers (DEs) are a category of soft materials that are capable of large deformation,
however, the actuation performance is affected by snap-through instability. In this article, a dynamics
model is developed to investigate the dynamic snap-through instability of DEs by applying the triangle and
sinusoidal voltages. The DE materials with different limiting stretches are considered. When the DE is
under a triangle voltage or a sinusoidal voltage, the snap-through behavior may emerge during the response
in time domain, and the DEs with a large value of limiting stretch are susceptible to dynamic snap-through
instability. By tuning the mechanical tensile force, the occurrence of dynamic snap-through instability can
be controlled. With the increase of tensile force, the dynamic snap-through behavior initially does not
emerge during vibration, then accompanies the vibration, and eventually disappears. Phase paths and
Poincaré maps are utilized to explore the dynamic stability evolution of the DE systems.
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I. INTRODUCTION

Dielectric elastomers (DEs) are a category of soft
membranes that can shrink in thickness and expand in
area [1–5]. The induced strains can be up to 100% [1].
Therefore, DEs are generally considered for biological
materials and artificial muscles [3]. Recently, DEs have
gained sustaining and significant investigation in the
electromechanical field, and they are applied in a wide
range of applications, such as spring-roll actuators [6,7],
tunable lenses [8,9], loudspeakers [10], acoustic actuators
[11], and energy generators [12,13].
In view of their versatile properties, DEs are admirable

candidates for musclelike soft actuators. However, DEs
are susceptible to emerging electromechanical instabilities
(EMI) during the actuation process [4,14–17]. Typical EMI
phenomena include pull-in instability [18] and snap-
through instability [4]. When a DE membrane is subject
to a high voltage, the induced Maxwell stress squeezes the
membrane, causing a further-enhanced electrical field. The
electrical field will further compress the DE membrane.
This positive feedback may generate the pull-in instability
of DEs, which plays an essential role in hindering the large
stable actuation of DEs.
After the pull-in instability, the elastomer can survive

without electrical breakdown; instead, it may be stabilized
in a state of a much smaller thickness, resulting in a snap-
through instability [4]. When the elastomer is actuated by

voltage, the voltage-stretch curve may take an N-shaped
form [4,14,15], that is, snap-through behavior happens.
Snap-through instability is likely to induce the electrical
breakdown and tearing failure of the DE membrane. To
overcome this unwelcome issue, some attempts have been
performed, and the corresponding methods are proposed,
such as prestretch [15,19], the pure-shear deformation
mode [19,20], and charge-controlled actuation [21,22].
These strategies can certainly suppress the snap-through
behavior in DE actuation. Unfortunately, almost all the
reported work related to snap-through instability focuses
on static deformation, without involving dynamic snap-
through instability. However, to perform as electromechani-
cal actuators, e.g., frequency tuning [23], pumps [24], and
acoustic actuators [11], DEs are mostly expected to operate
under the alternating load. Recently, by employing a
structure of the DE balloon and incorporating pneumatic
pressure, Chen et al. [25] studied four types of oscillation
and analyzed the results, taking account of the dynamic
snap-through instability. However, a method to overcome
and control this undesirable dynamic snap-through insta-
bility is still not investigated, which is definitely worth
being explored.
Admittedly, most workhorse DE materials belong to a

class of macromolecular polymers, such as polyacrylate
[26], polydimethylsiloxane [27], silicone [28], and rubber
[29]. The dissipative characteristics, such as viscoelasticity,
will certainly affect the actuation process, especially for
the VHB-based elastomer [26]. However, in this paper, the
performance and overcoming method of dynamic snap-
through instability of DEs are the main focuses. In order to
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simplify the modeling work, we adopt the ideally hypere-
lastic DEs [30,31] and neglect the effect of viscoelasticity.
To investigate the dynamic performance, the triangle and

sinusoidal voltages are applied to actuate the DEs, respec-
tively. Dynamic snap-through instability under the stimu-
lation of these two waveform voltages is studied. The
results indicate that the snap-through behavior perhaps
emerges during the response in time domain, which is
also determined by the value of the limiting stretch of the
DE material. In the following, the method to control the
dynamic snap-through instability is explored by utilizing a
mechanical force. With the increase of tensile force, the
dynamic snap-through behavior initially does not emerge,
then accompanies the vibration, and disappears eventually.
We also analyze the stability evolution of vibration under
different actuated voltage and mechanical forces through
the phase paths and Poincaré maps.

II. DYNAMICS MODEL OF THE DE SYSTEM

A square DE membrane of initial length L and thickness
H in the reference state is employed to develop the
dynamics model, as shown in Fig. 1(a). The DE membrane
is coated with compliant electrodes on both surfaces.
Subject to an equibiaxial and homogenous tensile force
P, and a voltage ϕ through the thickness direction, the DE
deforms to length l, and thickness h, as shown in Fig. 1(b).
We define the stretch in the in-plane direction as λ ¼ l=L.
By assuming the incompressibility of DEs [31], we obtain
the stretch in the thickness direction as λh ¼ h=H ¼ λ−2.
When an ac voltage is applied, the DE membrane vibrates.
To analyze the dynamic electromechanical behavior, the
inertial forces should be included when deriving the
governing equations. During the process of actuation,
the total work done by the inertial force is calculated by
integrating along the three principle directions [32];
whereas, the inertial force in the thickness direction is
neglected, as the size of the thickness is much smaller than
that in the in-plane direction [33]. As reported previously,
the work done by the inertial force in the in-plane direction
is obtained as ð−ρL4H=3Þðd2λ=dt2Þδλ [32,34], where t
denotes the time, and ρ is the density of the DE.

Suppose that the charge accumulated on the DE surfaces
is Q, then the electrical displacement is obtained as
D ¼ Q=ðL2λ2Þ. The thermodynamics of an ideal DE is
characterized by the density of the Helmholtz free energy
Wðλ; DÞ. To account for the behavior of strain stiffening,
the Gent model [35] is adopted in this article. Therefore,
based on the assumption of DE incompressibility, the free-
energy density function is expressed as

Wðλ; DÞ ¼ − μJlim
2

log

�
1 − 2λ2 þ λ−4 − 3

Jlim

�
þD2

2ε
; ð1Þ

where ε is the permittivity, μ is the shear modulus, and Jlim
is the material constant related to the limiting stretch,
respectively.
In this paper, the ideal DEs are utilized, that is, the

inherent viscoelasticity is ignored. Therefore, by employ-
ing the law of thermodynamics, we conclude that variation
of the free energy of the DE is equal to the work done
jointly by the voltage, the tensile force, and the inertial
force

L2HδW ¼ ϕδQþ 2PLδλ − 2ρL4H
3

d2λ
dt2

δλ: ð2Þ

The variation of charge Q can be expressed as

δQ ¼ L2λ2δDþ 2DL2λδλ: ð3Þ

Combining Eqs. (1)–(3), the governing equation of the
dynamical DE system can be yielded as

ρL2

3μ

d2λ
dt2

þ λ − λ−5
1 − ð2λ2 þ λ−4 − 3Þ=Jlim

− P
μLH

− εϕ2

μH2
λ3 ¼ 0.

ð4Þ

To be more general, the variables are simplified to be
nondimensionalized. Consequently, Eq. (4) can be reex-
pressed in the following form:

d2λ
dT2

þ λ − λ−5
1 − ð2λ2 þ λ−4 − 3Þ=Jlim

− P
μLH

− εϕ2

μH2
λ3 ¼ 0;

ð5Þ

where T ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρL2=3μ

p
is the dimensionless time,

P=ðμLHÞ is the dimensionless mechanical force, and
ϕ=ðH ffiffiffiffiffiffiffiffi

μ=ε
p Þ is the dimensionless voltage.

III. STATIC SNAP-THROUGH INSTABILITY

First, we reexplore the snap-through behavior of DE
under dc voltage by taking into account different values
of Jlim [30]. Under such a condition, the inertial force is
neglected [15,19,20]. Thus, Eq. (5) reduces to

L

H
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P
P

φ

h

l

P

P

l

(a) Reference State

Compliant electrodes

Dielectric elastomer

(b) Deformed State

FIG. 1. (a) In the reference state, a DE membrane is of length L
and thickness H. (b) In the deformed state, subject to the
homogenous tensile force P and a voltage ϕ, the DE membrane
has length l, and thickness h.
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ϕ

H
ffiffiffiffiffiffiffiffi
μ=ε

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ−2 − λ−8
1 − ð2λ2 þ λ−4 − 3Þ=Jlim

− P
μLH

λ−3
s

: ð6Þ

Figure 2 illustrates the voltage-stretch curves of DE
under different values of dimensionless tensile force. Under
a constant tensile force, the voltage-stretch curve of DE
evolves from monotonically increasing to N shaped with
the enlargement of Jlim, that is, the actuation property of DE
changes from stable to unstable with increasing Jlim. As
indicated in Fig. 2, the critical Jlim of transition from stable
to unstable is 7.3 [P=ðμLHÞ ¼ 0], 27.9 [P=ðμLHÞ ¼ 1],
and 92.7 [P=ðμLHÞ ¼ 2], respectively. This suggests that
mechanical force adds the critical Jlim and enhances the
actuation stability, which is consistent with other reported
works [14,15,19]. The critical Jlim can be obtained by
calculating the first-order derivative of dimensionless
voltage versus stretch, that is, dϕ=ðH ffiffiffiffiffiffiffiffi

μ=ϵ
p

dλÞ. If the
value of Jlim satisfies the condition that only one zero
point of dϕ=ðH ffiffiffiffiffiffiffiffi

μ=ϵ
p

dλÞ exists, then this Jlim is the critical

one. In the following, we define the critical Jlim of stability
transition as Jclim.
Furthermore, the continuous relationship between Jclim and

P=ðμLHÞ is plotted by the red solid curve in Fig. 3. SinceJclim
is calculated numerically, a nonlinear fitting is applied by
assuming an analytic exponential formula. The fitting result
is obtained as Jclim ¼ 20.6½P=ðμLHÞ�2.05 þ 7.31, as shown
by the blue dashed curve in Fig. 3. With the increase of
P=ðμLHÞ, Jclim initially enlarges slowly, and subsequently
enlarges dramatically. Under each value of P=ðμLHÞ, when
Jlim > Jclim, the snap-through behavior emerges, while
Jlim < Jclim, the snap-through behavior does not emerge.
This result can help to guide the practical applications to
avoid the snap-through instability by selecting the required
DE materials of suitable Jlim with incorporation of the
different mechanical tensile forces.

IV. ANALYSES ABOUT DYNAMIC
SNAP-THROUGH INSTABILITY

In this section, we carry out the analyses about dynamic
snap-through instability by applying the triangle and
sinusoidal voltages. Figure 4 sketches the snap-through
behavior of DEs [14,36]. When the applied voltage
increases, the stretch enlarges continuously from point O
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FIG. 2. The voltage-stretch curves of DE under different values of tensile force P. (a) P=ðμLHÞ ¼ 0, (b) P=ðμLHÞ ¼ 1, (c)
P=ðμLHÞ ¼ 2. With increasing the value of Jlim, the actuation of DE evolves from stability to snap-through instability.
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FIG. 3. Relationship between the critical Jlim of DE, Jclim, and
dimensionless tensile force. When Jlim > Jclim, the snap-through
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FIG. 4. Schematic of the snap-through behavior. When the
voltage adds to point A, the stretch snaps from A to B, and then
enlarges gradually; when the voltage drops to point C, the stretch
snaps from C to D, and then reduces gradually.
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to point A. After point A, the stretch continues to increase,
while the voltage drops down. However, in practical
actuation, the applied voltage is kept increased, resulting
in a snap-through behavior from point A to point B. On the
other hand, when the voltage decreases, the stretch first
reduces gradually from point B to point C. After point C,
the stretch continues to decrease, while the required voltage
should be enlarged. In practical actuation, the applied
voltage is kept reducing, leading to the snap-through of
the stretch from point C to point D.

A. Dynamic snap-through instability
under a triangle voltage

In this subsection, we investigate the dynamic snap-
through behavior of DEs under a cycled triangle voltage
shown in Fig. 5. The maximum value of the dimensionless
voltage is ϕ=ðH ffiffiffiffiffiffiffiffi

μ=ε
p Þ ¼ �2, and the dimensionless

period is T ¼ 40. The dimensionless mechanical tensile
force is prescribed as P=ðμLHÞ ¼ 0. As we know, the
triangle voltage varies linearly, and the induced Maxwell
stress generates the inertial force [37], which is included in
our modeling.
Figure 6 describes the dynamic response of the DE

by applying the cycled triangle voltage shown in Fig. 5.
Under the circumstance of Jlim ¼ 2, the stretch vibrates

continuously and gently in the time domain, as exhibited in
Fig. 6(a). Figure 6(b) reveals the response of the DE with
Jlim ¼ 20. It is shown that the stretch initially vibrates
continuously and strongly, and then suddenly the jumping
behavior emerges.
When actuated by a triangle voltage, the DE may vibrate

with snap-through behavior. Under the identical actuation,
a DE with a larger value of Jlim will be susceptible to the
dynamic snap-through instability. Therefore, the strategy
that selects a DE material with a relatively small value of
Jlim can avoid the dynamic snap-through instability during
vibration.

B. Dynamic snap-through instability
under a sinusoidal voltage

If the DE is stimulated by sinusoidal voltage, the
deformation will be quite complicated. In this subsection,
we define the applied sinusoidal voltage as

ϕ ¼ ϕ0 sinðwtÞ: ð7Þ

By utilizing the dimensionless time, Eq. (7) can be
rewritten as ϕ ¼ ϕ0 sinðΩTÞ, in which Ω ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρL2=3μ

p
.

Thus, Eq. (5) becomes

d2λ
dT2

þ λ − λ−5
1 − ð2λ2 þ λ−4 − 3Þ=Jlim

− P
μLH

− εϕ2
0

μH2
λ3sin2ðΩTÞ ¼ 0. ð8Þ

In the following calculation, we define Φ0 ¼
ϕ0=ðH

ffiffiffiffiffiffiffiffi
μ=ε

p Þ as the dimensionless amplitude of the
applied sinusoidal voltage. In order to make a comparison
with the actuation under triangle voltage, the dimensionless
period of the sinusoidal voltage is assumed to be equal to
the triangle voltage, namely, T ¼ 40. Likewise, the dimen-
sionless mechanical tensile force is also prescribed
as P=ðμLHÞ ¼ 0.
Subject to the sinusoidal voltage, Fig. 7 plots the

dynamic responses, phase paths, and Poincaré maps of

φ
μ εH

T20 40 60

2

-2

FIG. 5. A cycled triangle voltage with a dimensionless maxi-
mum voltage of ϕ=ðH ffiffiffiffiffiffiffi

μ=ε
p Þ ¼ �2 and a dimensionless period

of T ¼ 40.
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DE with the limiting stretch of Jlim ¼ 2 by differing the
dimensionless amplitude of the applied voltage. The phase
paths and Poincaré maps are used to further detect the
properties of dynamic DE systems. If all the points in
Poincaré maps overlap to one point, the DE system
experiences a periodic vibration. Meanwhile, if the points
in Poincaré maps can form a closed loop, the DE system
then undergoes a quasiperiodic vibration. On the contrary,
if the points in Poincaré maps are disordered, the dynamic
system experiences an aperiodic vibration. In the phase

paths and Poincaré maps, λ
·
means the first-order derivation

of λ versus the dimensionless time, i.e., λ
·
¼ dλ=dT. When

Φ0 is relatively smaller, such as Φ0 ¼ 0.5 and Φ0 ¼ 1, the

stretch vibrates stably and the dynamic snap-through
behavior does not emerge in the response [Figs. 7(a) and
7(d)]. Also, the phase paths under Φ0 ¼ 0.5 and Φ0 ¼ 1 are
presented in Figs. 7(b) and 7(e), indicative of a convergent
closed loop. The related Poincaré maps [Figs. 7(c) and 7(f)]
are ordered and form closed loops, demonstrating that the
DE under Φ0 ¼ 0.5 and Φ0 ¼ 1 experiences a quasiperi-
odic vibration. However, with the increase ofΦ0, takeΦ0 ¼
2 as an example, the snap-through phenomenon emerges in
the dynamic response of the stretch [Fig. 7(g)]. The stretch
initially snaps to a large level and vibrates for a lasting
period, and then snaps to a small value. The vibration
almost centers around the large level, which is consistent to
the dynamic response of DE under triangle voltage in
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Fig. 6. The corresponding phase path in Fig. 7(h) also
describes such a behavior. The Poincaré map under Φ0 ¼ 2

is disordered and does not form a closed loop, indicating an
aperiodic vibration, as illustrated in Fig. 7(i). IfΦ0 is further
enlarged to a critical level, such as Φ0 ¼ 5.2, the electro-
mechanical failure behavior occurs in the dynamic actua-
tion, Fig. 7(j). The phase path and Poincaré map under such
a critical Φ0 are provided in Figs. 7(k) and 7(l). It can be
found that when the dynamic snap-though behavior occurs,
the Poincaré maps show a disordered state, implying
an aperiodic vibration; however, when the dynamic
snap-though behavior is suppressed, the Poincaré maps
transform to a closed loop, implying a quasiperiodic
vibration. Dynamic snap-through instability strengthens

the nonlinearity of vibration. The reason that the vibrations
become aperiodic may result from the strong nonlinearity
induced by dynamic snap-through behaviors.
Similar to Fig. 7, Fig. 8 describes the dynamic responses,

phase paths, and Poincaré maps of DE with the limiting
stretch of Jlim ¼ 20 by differing the dimensionless amplitude
of the applied sinusoidal voltage. Similar results are con-
cluded. When Φ0 is small, the snap-through behavior does
not emerge in the dynamic response, and the DE undergoes a
quasiperiodic vibration, as sketched in Figs. 8(a)–8(c). With
the increase of Φ0, the snap-through instability tends to
appear during vibration, and the stability of the vibration
evolves to be aperiodic, as plotted in Figs. 8(d)–8(i).
Likewise, if Φ0 is further enlarged to a critical level, such
asΦ0 ¼ 2.1, the electromechanical failure behavior occurs in

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 8. Under sinusoidal voltage, the dynamic responses (a), (d), (g), (j); phase paths (b), (e), (h), (k); and Poincaré maps (c), (f), (i), (l)
of DE with the limiting stretch of Jlim ¼ 20. Four different diemnsionless amplitudes of sinusoidal voltage are used in the calculation:
Φ0 ¼ 0.5 for (a), (b), (c); Φ0 ¼ 1 for (d), (e), (f); Φ0 ¼ 1.5 for (g), (h), (i); Φ0 ¼ 2.1 for (j), (k), (l).

JUNSHI ZHANG, HUALING CHEN, and DICHEN LI PHYS. REV. APPLIED 6, 064012 (2016)

064012-6



the 4th dimensionless period, as shown in Fig. 8(j). The
Poincaré map in Fig. 8(l) also implies that the electro-
mechanical failure occurs after the 3rd periods.
Combining Figs. 7 and 8, we conclude that the dynamic

snap-through instability may emerge during vibration of
DE. In contrast to the static snap-through behavior, occurring
suddenly and being accomplished immediately, the dynamic
snap-through behavior occurs more gently, and is accom-
plished in a short period. In addition, when applied voltage
amplitude is small, the vibration is stable and without
snap-through behavior. This is for the reason that a voltage

of small amplitude cannot attain the critical value that enables
snap-through behavior to emerge. Furthermore, under the
same excitation condition, a DE with a larger value of Jlim is
more susceptible to snap-through instabilities and electro-
mechanical failures.

C. Control dynamic snap-through instability
by tuning tensile force

In the previous subsection, the dynamic snap-through
behavior of DE under sinusoidal voltage is analyzed

FIG. 9. Under the fixed dimensionless voltage amplitude ofΦ0 ¼ 1 and different mechanical tensile forces, the dynamic responses (a),
(d), (g), (j); phase paths (b), (e), (h), (k); and Poincaré maps (c), (f), (i), (l) of DE with the limiting stretch of Jlim ¼ 20. Four different
diemnsionless tensile forces are used in the calculation: P=ðμLHÞ ¼ 1 for (a), (b), (c); P=ðμLHÞ ¼ 2 for (d), (e), (f); P=ðμLHÞ ¼ 3 for
(g), (h), (i); P=ðμLHÞ ¼ 5 for (j), (k), (l).
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without mechanical tensile forces applied. As is well
known, in statics, mechanical prestretch and tensile load
can eliminate the snap-through instability [14,15,19].
However, as actuators, the DEs are always connected to
the external environment and undergo mechanical forces.
In this case, the DEs can do work to external environment
and avoid the occurrence of wrinkling and buckling when
the prestretch is adopted. Therefore, in this subsection, we
explore the property of dynamic snap-through instability by
incorporating mechanical tensile forces. The DE with the
limiting stretch of Jlim ¼ 20 is utilized in this calculation
case. The dimensionless amplitude of sinusoidal voltage is
set as Φ0 ¼ 1.
Figure 9 reveals the dynamic responses, phase paths, and

Poincaré maps of DE under four groups of tensile forces.
When the dimensionless tensile force is small, such as
P=ðμLHÞ ¼ 1, the stretch vibrates in two regions in the
time domain, as presented in Fig. 9(a). The two regions in
time domain correspond to the two main orbits in the phase
path in Fig. 9(b). The Poincaré map [Fig. 9(c)] under
P=ðμLHÞ ¼ 1 is disordered and does not form a closed
loop, indicative of an aperiodic vibration. With the increase
of tensile force, e.g., P=ðμLHÞ ¼ 2, the snap-through
behavior emerges gradually, and the vibration centers on
the large value of stretch, as illustrated in Fig. 9(d). The
phase path [Fig. 9(e)] and Poincaré map [Fig. 9(f)] under
this condition suggest that the DE undergoes an aperiodic
vibration. If the mechanical force is enlarged to
P=ðμLHÞ ¼ 3, the snap-through behavior weakens and
the two regions in time domain seem to appear, as plotted in
Fig. 9(g). According to the phase path [Fig. 9(h)] and
Poincaré map [Fig. 9(i)], the DE under P=ðμLHÞ ¼ 3 also
experiences an aperiodic vibration. When the mechanical
force increases to P=ðμLHÞ ¼ 5, the snap-through behav-
ior disappears and the vibration becomes relatively stable,
as shown in Fig. 9(j). The phase path [Fig. 9(k)] of DE
under P=ðμLHÞ ¼ 5 is ordered, and the Poincaré map
[Fig. 9(l)] forms a closed loop, demonstrating a quasiperi-
odic vibration.
Overall, tuning the tensile force can control the dynamic

snap-through instability of DE. With the increase of tensile
force, the dynamic snap-through behavior initially does not
emerge during vibration, then accompanies the vibration,
and disappears eventually. The stability of vibration also
evolves from aperiodic to quasiperiodic. Hence, in practical
application, the dynamic snap-through instability can be
avoided by tuning the mechanical tensile force based on the
selected workhorse DE material.

V. CONCLUSIONS

In this article, we develop a dynamics model to
investigate the dynamic snap-through instability of
DEs with different limiting stretches. Static snap-through
instability, dynamic snap-through instability under
triangle and sinusoidal voltages, and the method to

control the dynamic snap-through instability are studied,
respectively. The main conclusions can be summarized as
follows. In statics, a critical value of the limiting stretch
exists, which determines the occurrence of snap-through
instability. When the limiting stretch of DE material is
below the critical value, the snap-through behavior is
suppressed; while the limiting stretch of DE material
exceeds the critical value, the snap-through behavior
appears. When the DE is under a triangle voltage or a
sinusoidal voltage, the snap-through behavior may
emerge during the response in time domain, which is
also determined by the value of the limiting stretch of
DE material. A DE with a large value of limiting stretch
is susceptible to dynamic snap-through instability. By
tuning the mechanical tensile force, the occurrence of
dynamic snap-through instability can be controlled. With
the increase of tensile force, the dynamic snap-through
behavior initially does not emerge during vibration, then
accompanies the vibration, and disappears eventually.
That is, the dynamic snap-through instability can be
eliminated by tuning the external tensile force. The
research results can be utilized to optimize the vibration
of the practical DE oscillator and obtain a stable response
without dynamic snap-through instability. However, vis-
coelasticity, an inherent property of macromolecular
polymers, strongly affects the dynamic actuation perfor-
mance of DEs. The dynamic snap-through behavior may
be also altered by this inherent nature of DEs, which
should be explored in future work.
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