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A challenge for constructing large circuits of superconducting qubits is to balance addressability,
coherence, and coupling strength. High coherence can be attained by building circuits from fixed-
frequency qubits; however, leading techniques cannot couple qubits that are far detuned. Here, we
introduce a method based on a tunable bus which allows for the coupling of two fixed-frequency qubits
even at large detunings. By parametrically oscillating the bus at the qubit-qubit detuning we enable a
resonant exchange (XX þ YY) interaction. We use this interaction to implement a 183-ns two-qubit iSWAP

gate between qubits separated in frequency by 854 MHz, with a measured average fidelity of 0.9823(4)
from interleaved randomized benchmarking. This gate may be an enabling technology for surface-code
circuits and for analog quantum simulation.
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I. INTRODUCTION

Superconducting qubits are a promising implementation
for fault-tolerant quantum computing [1]; however, the
proposed circuits will be large—a logical qubit in the surface
code could require up to 104 physical qubits [2]. Building
these large circuits requires highly coherent and strongly
interacting physical qubits to achieve high-fidelity gates. At
the same time, unwanted interactions which undermine the
fault tolerance built into the surface codemust beminimized.
These divergent conditions on coherence, interaction, and
cross talk have led to twomainqubit architectures, depending
on which condition is given highest priority.
In the first approach, the qubit frequencies are tunable and

interactions are controlled by dynamically tuning pairs of
qubits into and out of specific resonance conditions [3,4].
Although this tunability enables fast gates with relatively
high on-to-off ratios, these qubits are susceptible to dephas-
ing noise from the tunability channel—typically, flux noise
—which lowers coherence [5]. Furthermore, this approach is
sensitive to frequency crowding; as a pair of qubits tune into
resonance, theymust avoid crossing through resonanceswith
other qubits. Utilizing longitudinal interactions (see, e.g.,
Refs. [6–11]) may alleviate these crowding issues, but
interactions of this type have yet to be implemented.
The second approach is to use fixed-frequency qubits,

which have demonstrated superior coherence properties
in circuits implemented using two- [12] and three-
dimensional [13,14] architectures. A number of gates
have been proposed and realized for fixed-frequency
qubits by applying one or more microwave drives
[15–19]. For example, the cross-resonance gate [20,21]

has demonstrated fidelities greater than 0.99 [12].
However, similar to many drive-activated gates, it is only
effective when the qubits are closely spaced compared to
the anharmonicity (the detuning between the qubit tran-
sition and the transition to the next excited state). For the
transmon qubit, used here and in a plurality of experi-
ments, this constraint on cross resonance limits the
frequency spacing to approximately a few hundred mega-
hertz. For large circuits, this close spacing is challenging
for fabrication, cross talk, and addressability.
Ideally, we would like to combine the best aspects from

both approaches: the flexibility and scalability of tunable
qubits with the coherence and fidelity of fixed-frequency
qubits. This combination is possible when transferring
tunability from the computational qubits to the coupling
degree of freedom, thereby reducing sensitivity to noise.
There are two implementations of a tunable coupler, direct
and indirect. A direct tunable coupler is realized by a
tunable circuit element between qubits, e.g., a flux-tunable
inductor [22–26]. Alternatively, an indirect tunable cou-
pling is realized by a fixed coupling to a tunable resonator.
When the qubits are far detuned from the resonator—i.e., in
the dispersive limit of the circuit-quantum-electrodynamics
architecture—this arrangement realizes a tunable bus and
the exchange coupling between the qubits can be tuned by
changing the qubit-bus detuning [27–32]. Interactions can
also be modulated by frequency-tuning constructive or
deconstructive interference between different coupling
paths [33]. Direct couplers are more compact, but qubits
connected to the coupler are more sensitive to noise on the
tuning degree of freedom; there is instrinsic protection from
tuning noise for a tunable bus when we operate in the
dispersive limit. Tunable couplers of both varieties have
been realized in several experiments: between two tunable*dcmckay@us.ibm.com
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qubits [24,29], between a qubit and a resonator [26,33], and
between resonators [25,30,34].
In this work, we realize a tunable bus between high-

coherence fixed-frequency qubits with a relative detuning
much larger than the anharmonicity. To turn on the inter-
action between the qubits, wemodulate the tunable bus at the
qubit difference frequency (as theoretically proposed in
several papers [22,27,35]) which causes a parametric oscil-
lation of the qubit-qubit exchange coupling and activates a
resonant XX þ YY interaction [36,37]. The exchange inter-
action causes a two-qubit oscillation between states with one
excitation j10i and j01i—i.e., qubit 1 (Q1) in the excited
state, qubit 2 (Q2) in the ground state, and vice versa.
Applying this interaction for 183 ns, we demonstrate a
universal two-qubit gate—the iSWAP gate—with a 0.982
average gate fidelity. Unlike drive-activated gates, the
exchange-interaction strength does not decrease when the
qubit-qubit detuning is larger than the anharmonicity. For
example, for the detunings of the device in this work,
854 MHz, the leading gate for fixed-frequency qubits,
cross-resonance [12], would not be viable. Although we
demonstrate the gate between a single pair of qubits,multiple
qubits can, in general, be coupled to a single bus since the
interaction is resonant in the detuning between specific qubit
pairs. Therefore, the iSWAP gate is promising for implement-
ing larger circuits where a range of qubit frequencies is
needed to avoid cross talk and addressing errors. In addition,
the tunable-bus architecture enables analog quantum-
simulation schemes requiring controllable interactions.
Specifically, with this type of coupling, ZZ and XX-YY
two-photon interactions can also be activated by adjusting
the modulation frequency. Moreover, the tunable bus can be
used to more efficiently realize surface-code implementa-
tions requiring iSWAP gates [38].
Our paper is organized as follows. In Sec. II A, we

discuss the theory of the tunable-bus device and, in
Sec. II B, we introduce our two-qubit device. In
Sec. III, we show two-qubit iSWAP oscillations using
our device and prepare and characterize a Bell state. In
Sec. IV, we present our universal two-qubit iSWAP gate
and characterize the gate using randomized benchmark-
ing and quantum-process tomography. We conclude with
a discussion in Sec. V.

II. TUNABLE BUS

A. Theory

The tunable-bus circuit that we consider in this paper
consists of several fixed-frequency qubits dispersively
coupled to a frequency-tunable bus; a circuit schematic
is shown in Fig. 1(a). Because the bus is in the ground
state and dispersively coupled, it suffices to keep only
the first two levels of the bus. In terms of N bare qubits
coupled to a tunable bus, the standard circuit-QED
Hamiltonian is

H
ℏ
¼

XN
i¼1

�
−
ωiσ̂

Z
i

2
þ giðσ̂þi σ̂−TB þ σ̂−i σ̂

þ
TBÞ

�

−
ωTBðΦÞσ̂ZTB

2
; ð1Þ

where σ̂Z is the Pauli-Z operator and σ̂þ (σ̂−) is the
raising (lowering) operator. The tunable bus (TB) tunes
with flux Φ as [5]

ωTBðΦÞ ¼ ωTB;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cosðπΦ=Φ0Þj

p
; ð2Þ

where Φ0 is the flux quantum. In the dispersive regime,
i.e., jgi=ðωi − ωTBÞj ≪ 1, we can adiabatically eliminate
the TB,

H
ℏ
¼

XN
i

−
~ωiðΦÞσ̂Zi

2
þ
XN
j>i

JijðΦÞðσ̂þi σ̂−j þ σ̂−i σ̂
þ
j Þ; ð3Þ

thus realizing a flux-tunable coupler. In Eq. (3), ~ω is the
dressed qubit energy and Jij is the exchange coupling
between qubits i and j, which depend on the flux as

~ωi ¼ ωi þ
g2i

ΔiðΦÞ
; ð4Þ

Jij ¼
gigj
2

�
1

ΔiðΦÞ
þ 1

ΔjðΦÞ
�
; ð5Þ

where ΔiðΦÞ ¼ ωi − ωTBðΦÞ. To interact the qubits via
the tunable coupler, we apply a sinusoidal fast-flux-bias
modulation of amplitude δ so that the total flux applied
to the tunable bus is ΦðtÞ ¼ Θþ δ cosðωΦtÞ. Expanding
~ωi in the parameter δ cosðωΦtÞ to second order where
δ ≪ 1, we obtain

~ωi½ΦðtÞ� ≈ ~ωΦiðΘÞ þ
∂ ~ωi

∂Φ
����
Φ→Θ

δ cosðωΦtÞ

þ 1

2

∂2 ~ωi

∂Φ2

����
Φ→Θ

½δ cosðωΦtÞ�2; ð6Þ

¼
�
~ωiðΘÞ −

δ2

4

∂2 ~ωi

∂Φ2

����
Φ→Θ

�

þ ∂ ~ωi

∂Φ
����
Φ→Θ

δ cosðωΦtÞ

þ δ2

4

∂2 ~ωi

∂Φ2

����
Φ→Θ

cosð2ωΦtÞ: ð7Þ

Since the relation between qubit frequency and flux is
nonlinear, there is a second-order dc shift and an oscillat-
ing term at 2ωΦ; a similar expansion holds for Jij. Typical
values for these expansion terms are shown in Fig. 1(b).
In the frame rotating at the qubit frequencies for δ ¼ 0
(the measurement frame), oscillating σ̂Z terms and dc
exchange-coupling terms time average to zero. Therefore,
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updating Eq. (3) to include all other expansion terms, the
Hamiltonian becomes

H
ℏ
¼

XN
i

−
�
~ωi −

δ2

4

∂2 ~ωi

∂Φ2

�
σ̂Zi
2

þ
XN
j>i

�
δ
∂Jij
∂Φ cosðωΦtÞ −

δ2

4

∂2Jij
∂Φ2

cosð2ωΦtÞ
�

× ðσ̂þi σ̂−j þ σ̂−i σ̂
þ
j Þ; ð8Þ

where all values are evaluated at Φ ¼ Θ. Because there is
a drive-induced qubit shift, all N qubits will acquire a
phase during the flux-modulation pulse. This phase may
be compensated for by applying single-qubit Z gates. In a
frame rotating at the qubit frequencies (including the drive-
induced shift), the Hamiltonian is

H
ℏ
¼

XN
i;j>i

�
δ
∂Jij
∂Φ cosðωΦtÞ þ

δ2

4

∂2Jij
∂Φ2

cosð2ωΦtÞ
�

× eiΔij;δtðσ̂þi σ̂−j þ σ̂−i σ̂
þ
j Þ; ð9Þ

where Δij;δ ¼ ð ~ωi − ~ωjÞ þ ðδ2=4Þ½ð∂2 ~ωj=∂Φ2Þ − ð∂2 ~ωi=
∂Φ2Þ�. When ωΦ is resonant with Δij;δ, the
Hamiltonian is

H
ℏ
¼ δ

2

∂Jij
∂Φ ðσ̂Xi σ̂Xj þ σ̂Yi σ̂

Y
j Þ; ð10Þ

which is a resonant exchange interaction between qubits i
and j only. There can also be a resonance condition when
2ωϕ ¼ Δij;δ with a different exchange coefficient. The
interaction described by Eq. (10) couples any states in the
same excitation manifold. For two qubits, this coupling
involves only the set of states fj10i; j01ig. Applying this
interaction for certain periods of time can generate
entanglement and be used as a two-qubit gate. This effect
will be explored in Secs. III and IV.

(a)

(b)

FIG. 1. (a) Schematic of an N qubit, one-bus device. (b) Size of
the expansion terms for ω and J versus the dc flux tuning the bus.
Calculations are for the device parameters given in Sec. II B.

FIG. 2. (a) Optical image and (b) schematic of our circuit
consisting of two fixed-frequency transmon qubits (Q1, Q2)
coupled via a third tunable bus qubit (“tunable bus,” TB). Q1 and
Q2 have individual readout resonators (RR1, RR2). The TB is
tuned by a dc-bias coil and a high-speed flux line (HSFL).
Spectroscopy of (c) TB and (d) Q1, Q2 frequency versus dc flux;
Q1 tunes more strongly with flux because it is closer in frequency
to the TB.We fit these tuning curves (the solid lines) using Eq. (4)
to extract the Hamiltonian parameters for Eq. (1).
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B. Experimental device

Our experimental implementation of a two-qubit,
one-bus device is shown in Fig. 2. By varying the dc flux,
we can use Eqs. (2) and (4) to extract the bare Hamiltonian
parameters g1ðg2Þ=2π ¼ 100.0ð71.4Þ MHz, ω1ðω2Þ=2π ¼
5.8899ð5.0311Þ GHz, ωTB;0=2π ¼ 7.445 GHz by fitting
to the measured frequencies ωTB, ~ω1, and ~ω2 as shown
in Fig. 2. These transmon qubits have anharmonicity
α=2π ¼ −324ð235Þ MHz, where α is the detuning between
the j1i → j2i transition and the qubit transition j0i → j1i.
One trade-off of the tunable-bus design is that the dressed
qubits are susceptible to flux noise since the frequencies are
flux tunable. However, compared to a directly tunable
qubit, the flux noise sensitivity is lowered by a factor of
ðg=ΔÞ2. This noise has a minimal effect on our 23-ns
single-qubit gates. At the flux-bias point used to implement
the two-qubit gate, T1 ¼ 26.3ð7Þ½50ð3Þ� μs and T2 ¼
12.1ð4Þ½28ð1Þ� μs for Q1 (Q2) and the single-qubit fidelity
measured from randomized benchmarking is 0.99909(2)
[0.99949(1)] (see the Supplemental Material [39] for
benchmarking data and coherence measurements).

III. TWO-QUBIT iSWAP OSCILLATIONS

To experimentally measure the exchange interaction, we
perform a π pulse to prepare the state j10i (or j01i) and then
apply sinusoidal flux-modulation pulses of strength δ and
drive frequencyωϕ in a range around 854MHz to couple the
states and drive exchange oscillations. The flux-pulse shape
is shown in Fig. 3(a) and sample oscillations are illustrated in
Fig. 3(b). In order to effectively drive these oscillations, the
tunable bus must be dc flux biased (Θ ¼ −0.108Φ0) since
the strength of the exchange rate is proportional to the slope
of the bus tuning curve, Eq. (10). The slope is not purely
linear, so we also get a sizable dc shift of the bus frequency,
which in turn shifts the qubit frequency as given by Eq. (8).
We can measure the qubit shift during the oscillation by
performing a Ramsey interferometric experiment: starting in
the state j00i, we apply a π=2 pulse to the qubit, then
exchange for time t (at a given flux-modulation amplitude),
reverse the exchange for time t (flip the flux-modulation
pulse phase by 180°) to return to the original state, then apply
a final π=2 to the qubit. The fringe frequency measures the
induced shift on the qubit frequency. The qubit shift versus
the exchange rate is plotted in Fig. 3(c). Using the bare-qubit
parameters, we construct a no-free-parameter-theory curve
(the solid line).
These qubit shifts have two important consequences

for constructing a gate. For one, they are equivalent to
applying single-qubit Z gates, which, therefore, need to
be compensated for. Second, as we increase the exchange
rate, the coupler moves into closer resonance with the
qubit. As discussed above, this change in detuning reduces
the protection to flux noise [i.e., ðg=ΔÞ2 increases].
Additionally, increasing the drive strength can lead to
leakage out of the computational basis into the higher

transmon levels and/or into the bus. Consequently, there is
a trade-off between coherence, leakage, and exchange rate
which puts an effective upper bound on how fast we can
operate a two-qubit gate.

A.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
Bell state

Specific flux-modulation pulse lengths in Fig. 3 re-
present primitive two-qubit gates that can be used to

FIG. 3. (a) Flux-modulation pulse of strength δ. The pulse
envelope (the gray dashed line) is a square pulse with Gaussian
turn on and off with σ ¼ 8.3 ns and the turn on or off time is 3σ.
(b) Exchange oscillations between j10i and j01i as a function of
the flux-pulse length and the drive frequency ωϕ (with respect to
the detuning between the qubits when δ ¼ 0, Δ12;δ¼0≈
854 MHz). These data are taken at a dc flux bias of Θ ¼
−0.108Φ0 with a constant flux-pulse height δ ¼ 0.153Φ0. The
flux modulation induces a dc shift of the tunable bus, so the
resonance frequency (the dotted line) of the exchange oscillation
is shifted down from Δ12;δ¼0 by approximately 3 MHz. (c) Qubit
shifts during the flux-modulation pulse as a function of the drive
strength (the procedure is described in the main text). The drive
strength is plotted in terms of the measured exchange rate (the
bottom axis) and the flux-modulation strength δ in units of Φ0

(the top axis) calculated theoretically from this exchange rate.
The solid lines are no-free-parameter numerical calculations of
the exchange rate and shift given a certain flux modulation by
solving Eq. (1).
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construct a universal gate set for quantum computing. As
indicated by the arrows in Fig. 4(a), there are certain
locations, Ωt ¼ πð1=4þ n=2Þ (with Ω being the exchange
rate), where the excitation is equally shared between both
qubits. At these points, a maximally entangled Bell state
can be generated. At the first such crossing, it is possible
to realize a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate, or iSWAP π=2. Applying affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iSWAP
p

gate to either the state j10i or j01i generates a
maximally entangled Bell state. We perform state tomog-
raphy on such a state and measure a fidelity of 0.974, as
illustrated in Fig. 4(b).

IV. iSWAP GATE

The
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate is not in the Clifford group and so is

not suitable for randomized benchmarking or as an error
correction primitive. By extending the modulation pulse so
that Ωt ¼ π=2, we realize the iSWAP gate (iSWAP π), which
is in the Clifford group. This gate swaps the states j10i, j01i
with a 90° phase with respect to the j00i, j11i states which
are unchanged (see the inset of Fig. 6). The fidelity of this
gate is sensitive to parasitic ZZ-type interactions (e.g., a
controlled phase). However, because the detuning between
our qubits is large, the ZZ interaction is only 66 kHz.

A. Gate optimization and simulation

To first optimize the iSWAP gate, we compare the gate
error from two-qubit randomized benchmarking (RB) (see
Sec. IV B) and simulation versus the gate length for
Θ ¼ −0.108Φ0. For the numerics, we model the system
as Duffing oscillators (truncated to three levels in the
calculation), as given by the Hamiltonian

HN ¼
X2
i¼1

�
ωia

†
i ai −

αi
2
ð1 − a†i aiÞa†i ai

�

þ ωTB½ΦðtÞ�a†TBaTB −
αTB
2

ð1 − a†TBaTBÞa†TBaTB

þ
X2
i¼1

giða†i þ aiÞða†TB þ aTBÞ; ð11Þ

which is the transmon generalization of Eq. (1). Here, we
define creation (annihilation) operators for the ith fixed
frequency qubit a†i (ai), with (0–1)-level transition energies
ωi and anharmonicities αi. Similar definitions are given for
the tunable bus, with operators a†TB (aTB), and the time-
dependent frequency ωTB½ΦðtÞ�. The bus frequency as a
function of flux is given by Eq. (2) and the time-dependent
flux pulse is the same shape as in the experiment, as shown
in Fig. 3(a). For the calculation, we work in the measure-
ment basis obtained by numerically diagonalizing Eq. (11)
when ωTB½ΦðtÞ� ¼ ωTBðΘÞ. The unitary transformation to
the measurement basis from HN;0 is given by UN;0. In a
rotating frame at the dressed qubit frequencies, the dynam-
ics of the time-dependent flux pulse are described by the
interaction Hamiltonian,

HIðtÞ ¼ UIfωTB½ΦðtÞ� − ωTBðΘÞga†TBaTBU†
I ; ð12Þ

UI ¼ e−iðU
†
N;0HN;0UN;0ÞtUN;0: ð13Þ

For both the experiment and the simulation, we calibrate δ
and ωΦ for a fixed pulse length. Experimentally, ωϕ is
calibrated by optimizing the oscillation contrast and δ by
minimizing the error in the two-qubit rotation angle via
error-amplification techniques. The simulation parameters
are calibrated numerically by evolving the state j01i by HI
for a fixed gate time to state jΨi and optimizing the overlap
jhΨj10ij2 (1 for a perfect iSWAP gate), as a function of the
drive amplitude δ and the drive frequency ωΦ. The addi-
tional phases on the qubits in the measurement frame are
also numerically and experimentally calibrated.
Using these procedures, we calibrate the gate experi-

mentally and numerically for different gate times.
Decoherence effects are included numerically by solving
a master equation for the density matrix of the system

FIG. 4. (a) On-resonance SWAP oscillations between the
qubits. We first apply a π pulse to Q1, then perform a
variable-length flux-modulation pulse on the tunable bus with
ωϕ=2π ¼ 850.6 MHz and δ ¼ 0.155Φ0. The excitation oscillates
between the two qubits and, at special evolution times (indicated
by arrows), entangled states are generated. (b) State tomography
of the first entangled state in the Pauli representation, with a
fidelity of 0.974. Single-qubit terms are illustrated in blue and
two-qubit terms in red. The outlined bars show the ideal
state, jΨi ¼ ðj10i − ij01iÞ= ffiffiffi

2
p

.
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_ρ ¼ −i½HI; ρ� þ
X2
i¼1

�
Γdc
−;iD½σ−i �ρþ

Γdc
ϕ;i

2
D½σZi �ρ

�
: ð14Þ

The superoperator D½Ô�ρ is defined in the standard
way, D½Ô�ρ¼ð2ÔρÔ†−Ô†Ôρ−ρÔ†ÔÞ=2. The effective
damping and Z operators σ−i , σZi are defined in the
measurement basis for the first two levels of the transmon
qubits. For each gate time, we compute the average gate
fidelity,

F ¼
Z

dΨhΨjU†
iSWAPρjΨiUiSWAPjΨi; ð15Þ

where ρjΨi is the resulting density matrix after evolving
Eq. (14) with input state jΨi, and UiSWAP is the ideal
iSWAP gate. There may be additional sources of error in the
actual experiment such as 1/f flux noise and coupler
losses, which are not considered in this calculation. Both
the experimental and theoretical results for the gate error
1 − F are shown in Fig. 5(a). Numerically, we observe an
optimal gate time of around 150 ns. For shorter gate times,
the error rate increases substantially (likely due to leakage,
which will be discussed next), while, for longer times,
decoherence imposes a lower bound on the gate error.
Note that there are two sets of experimental measurements
of the gate error; one set is obtained by measuring the
ground state of qubit 1 (tracing over qubit 2) and the other
by measuring the ground state of qubit 2. It should be
emphasized that these measurements are from the same
experiment, i.e., we perform a set of two-qubit Clifford
gates using the iSWAP gate as a primitive and then measure
the average state of both qubit 1 and qubit 2 simultaneously
through independent readouts. RB theory predicts that these
measurements should give the same value for the fidelity
since the random Clifford sequences mix errors equally to
both qubits. However, we see a slight discrepancy between
these two measurements that increases as we go to shorter
gate times; e.g., at a gate length of 155 ns, the error per gate
differs by 4.4 × 10−3. The source of said discrepancy is an
ongoing investigation. Nevertheless, both measures of
fidelity show the same trend and are consistent with the
numerical data. The optimal fidelity for the experimental
data suggests a slightly longer gate of approximately 180 ns
and, for further gate characterization (Sec. IV B),we select a
gate time of 183 ns.
Increased error for short times is likely due to leakage out

of the computational subspace. There are primarily two
paths for leakage with this type of gate. The first path is a
direct sideband drive from Q1 or Q2 to the tunable bus.
This process is first-order but is strongly off resonance by
ensuring that jΔi;TBj ≫ jΔ12j. The second path is from
j11i → j20i; j20i because our physical qubits are trans-
mons, and the resonant exchange interaction can also
couple the set of states fj11i; j20i; j02ig. The detuning
of this transition compared to the wanted SWAP transition is

j2ω1=2 þ α1=2 − ðω1 þ ω2Þj − jΔ12j; ð16Þ

jΔ12=21 þ α1=2j − jΔ12j: ð17Þ

For a large detuning compared to the anharmonicity, this
transition is off resonant by the anharmonicity, which is
large compared to the swap rate. For example, in our
sample, jΔ12j=2π¼ 854MHz, jΔ12 þ α1j=2π ¼ 530 MHz,
and jΔ21 þ α2j=2π ¼ 1089 MHz. From the numerics, we

FIG. 5. Optimization and simulation of the iSWAP gate. (a) Gate
error versus pulse width measured experimentally (the triangles)
versus the numerical calculation (the circles), including levels
outside the computational basis and decoherence. (b) Calculated
leakage versus pulse width for different levels outside the
computational basis. (c) Leakage measured experimentally by
proxy by tracing over the computational states (leakage RB).
These data are for the standard gate length 183 ns. (Inset) The
leakage metric (the asymptote of the RB data) versus the pulse
width. Because the leakage metric is flat versus the pulse width,
we are not in the high-leakage regime seen in the numerics (b).
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can directly estimate leakage by evolving according to HI ,
starting in the four basis states j00i, j01i, j10i, j11i and
calculating the population in higher excited states after the
gate. At short gate times, leakage is a considerable issue,
but it becomes negligible as the gate time increases past
approximately 140 ns. The simulation results are shown in
Fig. 5(b).
To characterize leakage experimentally, we perform a

variation of the RB process. First, we perform standard
two-qubit RB and measure the average state of both qubits.
The value measured on qubit 1 (normalized so that j0i is 1
and j1i is 0) is ρ00 þ ρ01 þ ξ1, where ξ1 represents leakage.
Next, we repeat the same experiment with a π pulse at the
end so that the measured state is now ρ10 þ ρ11 þ ξ1, where
ρ is the density matrix just before the π pulse and ξ is
unchanged by the pulse. Adding the qubits and measure-
ments together, we get

ðρ00 þ ρ01 þ ξ1Þ þ ðρ00 þ ρ10 þ ξ2Þ
þ ðρ10 þ ρ11 þ ξ1Þ þ ðρ01 þ ρ11 þ ξ2Þ

¼ 2½TrðρÞ þ ξ1 þ ξ2�: ð18Þ

The exact values of ξ1, ξ2 are unknown because they
depend on the leakage states; however, under the
assumption that they cause a deviation in the measurement
signal, we can look at this measure as a function of the RB
sequence length to observe leakage trends. In Fig. 5(c), we
illustrate a representative leakage measurement for a 183-ns
gate. Typical data asymptote from one, and we can define
the asymptotic value to represent a leakage metric. Plotting
the leakage metric versus the gate length [the inset of
Fig. 5(c)], we see that there is no strong evidence of
increasing leakage as we decrease the gate length. We
conclude that we are not in the strong-leakage regime
predicted by numerics and that leakage is not our limiting
error.

B. Gate characterization

Finally, we perform full characterization of our optimal
gate-length iSWAP of 183 ns with both RB [40] and
quantum-process tomography. When composing two-
qubit Clifford gates for RB from this gate set, there are,
on average, 1.5 iSWAP gates per Clifford. The ground-state
population of Q2 as a function of the number of Clifford
gates is shown in Fig. 6(a). If we assume that the error per
Clifford gate is predominantly due to the iSWAP gate;
i.e., the single-qubit gates are effectively perfect, the error
per gate averaged over eight independent RB runs of
20 random seeds is 2.77ð1Þ × 10−2. A more-direct error
measurement is obtained by interleaved RB [41], as is
also shown in Fig. 6(a). Comparing the decay of the
interleaved curve to the standard RB curve, we extract
an error of 1.77ð4Þ × 10−2 (with systematic error bounds of
[0,0.08]). The measured error differs by approximately

2 × 10−3 whether we fit to the average ground-state
population of Q1 or Q2 (these quantities are measured
in the same experiment). Here, we have quoted the more
conservative of the two values. We also perform full
quantum-process tomography (QPT) on the gate, as shown
in Fig. 6(b). For this measurement, we use 8000 measure-
ments with a readout fidelity of 0.70 (0.73) for Q1 (Q2).
The fidelity from QPT is 0.949 from maximum-likelihood
estimation and 0.96 from the raw linear inversion. While
QPT gives a full description of the gate in terms of the Pauli
transfer matrix, it is susceptible to state preparation and
measurement errors.
The estimated gate error from simulation is 1.5 × 10−2,

which is slightly lower than the measured error. To confirm
that the discrepancy between the measured and calculated
error rates is not due to coherent gate errors, e.g.,
calibration, we perform purity RB [42], as shown in
Fig. 6(a). For purity RB, we measure the trace of ρ2 (ρ
is measured from state tomography) after the RB sequence;

FIG. 6. (a) Standard, interleaved, and purity randomized
benchmarking (RB) of the two-qubit iSWAP gate, with the state
transformation shown in the inset. For standard and interleaved
RB, the ground-state population of qubit 2 is plotted as a function
of the number of Clifford gates for a sample RB run consisting of
20 random seeds (14 seeds for the purity RB). The error numbers
quoted in the main text are averaged over eight such independent
runs. For purity RB, we plot the trace of ρ2 versus the number of
Clifford gates. (b) Pauli transfer matrix of the iSWAP gate
measured from quantum-process tomography.
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these sequences are the same as the ones used for the
standard RB measurement. Assuming a pure depolarizing
noise γ, the density matrix after n Clifford gates (starting in
the ground-state density matrix ρ0) is

ρðnÞ ¼ γnρ0 þ ð1 − γnÞ I
d
; ð19Þ

ρ2ðnÞ ¼ γ2nρ20 þ ð1 − γnÞ2 I
d2

þ 2γnð1 − γnÞ ρ0
d
; ð20Þ

Trðρ2½n�Þ ¼ γ2n þ ð1 − γnÞ2
d

þ 2γnð1 − γnÞ
d

; ð21Þ

¼
�
1 −

1

d

�
γ2n þ 1

d
: ð22Þ

Therefore, we fit the data to Aγ2n þ B and label the quantity
ϵ ¼ 3

4
ð1 − γ2=3Þ as the purity error (per the iSWAP gate).

This procedure gives ϵ ¼ 2.2 × 10−2, comparable to our
gate error, demonstrating that our gate is dominated by
incoherent errors.

V. DISCUSSION

In this paper, we demonstrate a high-fidelity universal
two-qubit gate by parametric modulation of a tunable
bus. The strength of the gate is not a strong function of
the detuning between the qubits Δij. By contrast, drive-
activated gates couple between manifolds, so the higher-
level states are invariably coupled to the computational
basis by the drive. As a result, the strength of the two-qubit
terms decreases when Δij is larger than α because, from the
perspective of one qubit, the other qubit appears to be
increasingly harmonic. For the device presented in this
work, Δ12;δ¼0=2π ¼ 854 MHz, the leading drive-activated
gate, cross-resonance, would not be viable [21]. As
quantum circuits scale up, it is important to have qubits
far apart in frequency to prevent addressability errors and
cross talk. For example, calculations on the cross-resonance
gate with several qubits coupled to the same bus indicate
that there are a number of unwanted resonant detuning
conditions between pairs which will be difficult to avoid
with qubits spaced closer than α [43,44].
There is room for improvement in the gate error we

measured. Since the error is effectively coherence limited,we
could decrease the gate time or increase the coherence.
Decreasing the gate time may be difficult because of the
leakage issues observed in simulation. Increasing the
exchange coupling by increasing the qubit-bus coupling g
may also be difficult; this process could also increase leakage
and will certainly increase the parasitic ZZ interaction.
Optimizing the gate time is an area for more consideration.
Increasing coherence is less problematic and, for coherences

measured in comparable devices at IBM, T1 ¼ T2 ¼ 80 μs
[45], gate errors should be < 5 × 10−3 and also competitive
with the best reported two-qubit gate errors9 × 10−3 [12] and
6 × 10−3 [46].
As discussed in Sec. II A, there is no fundamental limit to

the number of qubits that can be coupled via a tunable bus
since the coupling occurs resonantly at the detuning
between pairs. Understanding the role of noise, cross talk,
and operability with multiple qubits coupled to the same
tunable bus is, therefore, an important open question for
this architecture. In particular, four qubits coupled through
a single tunable bus could serve as a surface-code unit cell.
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