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Over the past decade, spiking neural networks (SNNs) have emerged as one of the popular architectures
to emulate the brain. In SNNs, information is temporally encoded and communication between neurons is
accomplished by means of spikes. In such networks, spike-timing-dependent plasticity mechanisms require
the online programing of synapses based on the temporal information of spikes transmitted by spiking
neurons. In this work, we propose a spintronic synapse with decoupled spike-transmission and programing-
current paths. The spintronic synapse consists of a ferromagnet–heavy-metal heterostructure where the
programing current through the heavy metal generates spin-orbit torque to modulate the device
conductance. Low programing energy and fast programing times demonstrate the efficacy of the proposed
device as a nanoelectronic synapse. We perform a simulation study based on an experimentally
benchmarked device-simulation framework to demonstrate the interfacing of such spintronic synapses
with CMOS neurons and learning circuits operating in the transistor subthreshold region to form a network
of spiking neurons that can be utilized for pattern-recognition problems.
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I. INTRODUCTION

Brain-inspired computing models have emerged as one of
the most powerful tools for pattern-recognition and classi-
fication problems over the past few decades [1]. Such
schemes attempt to develop abstract models of the commu-
nication and functionalities involved in the neurons and the
synapses in the human brain in order to construct computing
tools efficient at recognition and cognitive tasks. However,
implementation of such non–von Neumann computing
schemes on general-purpose supercomputers have not been
able to harness the energy efficiency of the human brain. The
sequential fetch, decode, and execute cycles involved in
traditional vonNeumann computing are in complete contrast
to the parallel, event-driven processing involved in the
mammalian cortex. For instance, the IBMBlue Brain project
[2] utilized the Blue Gene supercomputer to simulate brain
activity in animals and consumed orders of magnitude more
energy than the brain, even at neuron firing ratesmuch slower
than the biological time scale.
Custom CMOS analog and digital VLSI neurocomput-

ing platforms have been also utilized to implement neuron
and synapse functionalities. BrainScaleS [3], SpiNNaker
[4], and IBM TrueNorth [5] are instances of such neuro-
computers based on conventional CMOS technology.
However, the significant mismatch between the neurosci-
ence mechanisms involved in the brain and the CMOS
transistors have limited the capability of such computing
technologies to achieve the area or power efficiency of the
brain. For example, four 8-T static random-access memory

(SRAM) cells (32 CMOS transistors) are required to
implement the functionality of a single 4-bit synapse in
a digital CMOS implementation [6].
Recently, neurocomputing architectures based on emerg-

ing post-CMOS technologies have gained popularity, as
they offer a direct mapping to many of the neuroscience
mechanisms involved in biological synapses [7–11] and
neurons [12–14]. In order to achieve an integration density
similar to the brain’s, neuromorphic-computing architec-
tures aim to achieve a FAN-OUT of 10 000 for each neuron,
thereby requiring orders of magnitude more synapses than
neurons. Additionally, unsupervised learning using spike-
timing-dependent plasticity (STDP), or other Hebbian
learning rules, requires online programing of synapses
during spike transmission. Hence, a nanoelectronic device
emulating synaptic functionalities is an essential compo-
nent of spiking neuromorphic architectures.
In this work, we propose a ferromagnet–(FM–)heavy-

metal (HM) multilayer structure where spin-orbit torque
induced by the programing current flowing through the HM
is the main underlying physical mechanism for generating
synaptic plasticity. The ferromagnet is part of a magnetic-
tunneling-junction (MTJ) structure where spike voltage
transmitted through the MTJ gets modulated by the MTJ
conductance. The proposed three-terminal device structure
offers the advantage of decoupled spike-transmission and
programing-current paths, thereby leading to an efficient
implementation of on-chip learning. Furthermore, the
proposed synapse can be programed at low current magni-
tudes and small programing-time durations, and it thereby
consumes orders of magnitude lower programing energy in
comparison to other state-of-the-art emerging synaptic*asengup@purdue.edu
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devices. We discuss a comprehensive framework for
simulating such spintronic synapse-based spiking neural
systems from the device (including calibration to exper-
imental results) to the system level for performing recog-
nition tasks.

II. SPIKING NEURAL NETWORKS:
PRELIMINARIES

A. Neuron and synapse dynamics in
spiking neural networks

A synapse is a junction connecting two neurons. The
transmitting neuron is termed as the preneuron, while the
receiving neuron is termed as the postneuron. The preneuron
transmits a train of voltage spikes which may be represented
by a set of Dirac-δ functions at the time instants tf,

Vpre ¼
X
f

δðt − tfÞ: ð1Þ

The synapse response to such a spike train is modeled by

τpost
dIpost
dt

¼ −Ipost þ w
X
f

δðt − tfÞ; ð2Þ

where Ipost is the postsynaptic current produced by the
synapse characterized by weight w, and τpost is the time
constant of the postsynaptic current. Hence, the postsynaptic
current increases by an amount modulated by the synapse
conductance (theweight) at each spike instant and then starts
decaying exponentially. The temporal dynamics of the leaky
integrate-and-fire neuron in response to such a postsynaptic
current is given by

τ
dVmem

dt
¼ −Vmem þ Rmem

X
i

Ipost;i; ð3Þ

where Vmem is the membrane potential, Rmem is the mem-
brane resistance, Ipost;i is the postsynaptic-current input from
the ith neuron, and τ is the membrane time constant. Figure 1
shows the temporal characteristics of the neuron and the
synapse in response to a series of voltage spikes transmitted
from the preneuron. When the neuron’s membrane potential
Vmem crosses the threshold V thres, the membrane potential
gets reset to Vreset and does not vary for a time duration
termed as the refractory period.

B. Learning: STDP

According to the theory of Hebbian learning [15],
synaptic weight or conductance is modulated depending
on the spiking patterns of the preneuron and the post-
neuron. STDP, a form of Hebbian learning, states that the
weight of the synapse increases (decreases) if the pre-
neuron spikes before (after) the postneuron. Intuitively, this

postulate signifies that the synapse strength should increase
if the preneuron spikes before the postneuron, as the
preneuron and the postneuron appear to be temporally
correlated. The relative change in synaptic strength
decreases exponentially with the timing difference between
the preneuron and postneuron spikes. The STDP character-
istics have been formulated in a mathematical framework
based on measurements for rat hippocampal glutamatergic
synapses [16],

Δw ¼ Aþ exp

�
−Δt
τþ

�
; Δt > 0

¼ −A− exp
�
Δt
τ−

�
; Δt < 0: ð4Þ

Here, Aþ; A−; τþ, and τ− are constants andΔt ¼ tpost − tpre,
where tpre and tpost are the time instants of pre- and
postsynaptic firings, respectively. We refer to the case of
Δt > 0 (Δt < 0) as the positive (negative) time window for
learning.

C. Spike-frequency adaptation

In order to model spike-frequency-adaptation mecha-
nisms observed in biological neurons, an additional slowly
varying adaptation parameter a is introduced in the
temporal dynamics of the neuron as

τ
Vmem

dt
¼ −Vmemð1þ aÞ þ Rmem

X
i

Ipost;i: ð5Þ

The adaptation parameter a increases every time the neuron
spikes; otherwise, it decays exponentially. This model
implies that, in a case where a neuron starts spiking at a
high frequency, the leak parameter starts to increase to
reduce its spike frequency.

Post-synaptic
current

time

Pre-synaptic
spike train

time

Postneuron spikes

time 
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Vpre
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Vmem
Vthres

Vreset

Post-synaptic 
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FIG. 1. Neuron and synapse dynamics in response to a spike train.
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D. Network connectivity

Figure 2 shows the network connectivity of spiking
neurons utilized for pattern-recognition problems. Such a
network topology has been shown to be efficient in several
pattern-recognition problems, such as digit recognition [17]
and sparse encoding [18]. The input image pixels are
encoded as Poisson spike trains with an average rate
directly proportional to the pixel intensity. These input
spike trains are received by all neurons in an excitatory
layer through synapses whose weights are learned using
STDP. Each neuron in the excitatory layer is connected to a
corresponding neuron in an inhibitory layer such that a
spike in the excitatory neuron triggers a spike in the
corresponding neuron in the inhibitory layer. Each neuron
in the inhibitory layer is connected to all neurons in the
excitatory layer except for the neuron from which it
received the input. This connectivity helps us to implement
lateral inhibitory connections in the excitatory layer, such
that when one neuron starts to spike in response to some
input pattern, it prohibits the other neurons from spiking.
However, in order to prevent a particular neuron from
dominating the spiking pattern due to lateral inhibitory
connections, a spike-frequency-adaptation mechanism is
also implemented in each neuron. The neurons in the
excitatory layer are assigned classes based on their highest
response (spike frequency) to input training patterns.

III. SPINTRONIC SYNAPSE

A. Spin-orbit torque-driven motion of
Dzyaloshinskii domain walls

In this section, we provide a brief discussion on the
underlying physical phenomena involved in current-
induced domain-wall motion in HM-FM-insulator (I)
multilayer structures.
Recent experiments on magnetic nanostrips of

Pt=CoFe=MgO and Ta=CoFe=MgO have revealed high

domain-wall velocities due to charge-current densities that
are 2 orders of magnitude lower than that achievable by
conventional spin-transfer torque (STT) [19]. Additionally,
domain-wall motion is observed to be against the direction
of electron flow (i.e., in the direction of current flow) in
multilayer structures with Pt as the underlayer, thereby
suggesting that current-induced spin-orbit torque is the
main mechanism of domain-wall motion in such multilayer
structures (with a negligible contribution from conventional
STT) [19]. In such magnetic heterostructures with high
perpendicular magnetocrystalline anisotropy, spin-orbit
coupling and broken inversion symmetry leads to the
stabilization of homochiral domain walls through the
Dzyaloshinskii-Moriya exchange interaction (DMI) [20].
We restrict our analysis for Pt=CoFe=MgO multilayer
structures in this work due to the possibility of achieving
high domain-wall velocities (approximately 400 m=s)
[21–23]. However, the analysis can be easily extended to
other magnetic heterostructures with different underlayers.
Such an interfacial DMI at the FM-HM interface leads to

the formation of a Néel domain wall with left-handed
chirality for Pt=CoFe=MgO multilayer structures
[19,21–23]. The DMI strength in such structures with
HM underlayers has been observed to be sufficiently strong
to impose a Néel-wall configuration in FMs where conven-
tional magnetostatics would have yielded a Bloch configu-
ration [19]. When an in-plane charge current is injected
through the HM, a transverse spin current is generated due
to the deflection of opposite spin polarizations on the top
and bottom surfaces of the HM. This phenomenon is
termed as the spin Hall effect [24] and arises as a
consequence of spin-orbit torque. The accumulated spins
at the FM-HM interface lead to DMI-stabilized Néel-
domain-wall motion. The direction of domain-wall motion
is in the direction of charge-current flow, and the final
magnetization of the ferromagnet is given by the cross
product of the direction of the injected spins at the FM-HM
interface and the magnetization direction of the FM at the
domain-wall location.

B. Device proposal for spintronic synapse

Such spin-orbit torque-driven domain-wall motion in
FMs due to charge-current flow through a HM underlayer
leads to the possibility of a device structure that canmanifest
decoupled spike-transmission (read) and programing-
current (write) paths. We propose a three-terminal device
structure consisting of a FM lying on top of a HM (Fig. 3).
The FM is part of a MTJ structure where the FM is
separated from a pinned layer (a magnetic region whose
magnetization is fixed) by a tunneling-oxide barrier (MgO).
The FM has two additional pinned layers on either side to
ensure that the domain wall stabilizes at the extreme
locations of the FM for sufficiently large values of the
programing current. While the spike current flows through
the MTJ structure between terminals T1 and T3, the

Input images
(MNIST data set)

Excitatory layer Inhibitory layer

Lateral inhibitory 
connections

Input poisson 
spike train

FIG. 2. Network connectivity utilized for pattern recognition.
Neurons with lateral inhibitory connections receive input Poisson
spike trains with an average rate proportional to the pixel
intensity.
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programing current flows through the HM layer between
terminals T2 and T3. Note that a preliminary synaptic-
device proposal based on Bloch-domain-wall motion due to
spin-orbit torque was explored previously in Ref. [25].
However, an external magnetic field is required to modulate
the device conductance during learning. Furthermore, the
magnet width is not scalable beyond 100 nm to ensure
Bloch-wall orientation. The current device proposal based
on Néel-wall motion is not only more energy efficient but
requires no external magnetic field for domain-wall motion
due to the inherent interfacial DMI. Furthermore, this work
provides a synergistic device-circuit-system perspective for
the implementation of STDP in spiking neural networks
(SNNs) utilizing the proposed spintronic device as the core
building block.
The location of the domain wall in the FM encodes the

resistance of the device lying in the path of the spike current
between terminals T1 and T3 and thereby implements the
synaptic functionality. On the other hand, the programing-
current path is completely decoupled (between terminals
T2 and T3) and the resistance in the path of the programing
current is mainly determined by the HM resistance. It is
worth noting here that, although some amount of spike
current will flow through the HM, the magnitude of
this current can be maintained to sufficiently low values
below the domain-wall depinning current since the syn-
apses are required to drive CMOS neurons operating in the
subthreshold regime.

C. Synaptic-plasticity mechanism

Programing current flowing from terminal T2 to terminal
T3 results in domain-wall motion in the same direction, so
the þz domain in the FM starts to expand, and vice versa.
For a given duration of the programing-current pulse, the
domain-wall displacement is directly proportional to the
magnitude of the programing current.
On the other hand, the device conductance between

terminals T1 and T3 varies linearly with the domain-wall
position. Let us denote the conductance of the device when

the entire FM magnetization is parallel (antiparallel) to the
Pinned layer as GP ðGAPÞ; i.e., the domain wall is at the
extreme right (left) of the FM. Thus, for an intermediate
position of the domain wall at a position x from the left
edge of the MTJ, the device conductance between terminals
T1 and T3 is given by

Geq ¼ GP
x
L
þ GAP ·

�
1 −

x
L

�
þ GDW; ð6Þ

where L denotes the length of the MTJ excluding the
domain-wall width and GDW represents the conductance of
the wall region. It is worth noting here that L;GDW; GP and
GAP are all constants (for a constant voltage drop across
the MTJ). Owing to such a linear relationship between the
domain-wall position and the device conductance, the
programing current is directly proportional to the change
in device conductance (which encodes the synaptic weight)
for a fixed duration of the programing signal.

D. Spiking neuromorphic architecture based
on spintronic synapse

Figure 4 represents a possible arrangement of a spin-
tronic synapse with access transistors MA1 −MA4 to
decouple the programing- and spike-current paths. The
access transistors act as switches for selecting the appro-
priate terminals of operation for the device. The operating
mode of the synapse—i.e., the spike-transmission mode or
the programing mode—is accomplished by the control
signal POST. The POST signal is activated during the
programing mode of operation of the synapse.
The PRE line is used to pass the necessary amount of

programing current required for the corresponding weight
change involved due to the delay between the preneuron
and postneuron spikes. A negative (positive) current should
flow through the HM for the negative (positive) time
window duration. Since the programing-current amplitude
is directly proportional to the amount of weight change, the
current signal flowing through the HM should vary in a
similar fashion as the STDP learning curve (exponentially)
with the time delay between the preneuron and postneuron
spikes.

L HM

W HM

L MTJ W MTJ

PinnedPinned Pinned 
Tunneling oxide

HM (Pt)

FM

t

t

HM

FM

Programming current

Spike current MTJ

T 1

T 2 T3

FIG. 3. Device structure for a spintronic synapse with de-
coupled spike-transmission and programing-current paths. Spike
current flows through the MTJ structure between terminals T1
and T3. Programing current flows through the HM between
terminals T2 and T3.

PRE

V
spike

GND

Postneuron 
CMOS circuit
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Programming current Spike current

V
dd
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timing 
window
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MA1 MA2
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FIG. 4. Spintronic synapse with access transistors to decouple
the programing- and spike-current paths.
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For simplicity, let us discuss the case for the positive
time window. The exponential variation of current through
the HM can be obtained by a transistor operating in the
subthreshold regime since the current flowing through the
transistor will vary exponentially with the gate-to-source
voltage. Thus, for a linear increase of voltage of the PRE
line with time, the transistorMSTDP will be driven from the
cutoff to the saturation regime when the POST signal is
activated, and an appropriate programing current should
flow through the HM. It is worth noting here that the HM
resistance equals approximately a few hundred ohms and
the maximum programing current required is approxi-
mately a few tens of μA, thereby leading to a very small
voltage drop across the device when the POST signal is
activated. Figure 4 shows the interface circuits involved in
the synapse programing for the positive time window. A
similar approach can be adopted to program the synapses
for the negative time window (by utilizing an NMOS
operating in subthreshold saturation driven by a linearly
increasing gate voltage to pass the programing current
from terminal T3 to terminal T2) and the two learning
circuits for the negative and positive timing windows have
to be activated sequentially every time the preneuron
spikes. Since the time duration involved in programing
is approximately a few nanoseconds—in comparison to
learning time constants used in this work of, approximately,
microseconds—the POST signal essentially samples the
necessary amount of programing current from the PRE line
(the programing-current magnitude determined by the
MSTDP transistor).
In our proposed programing scheme, we program the

synapses only when the postneuron spikes. Hence, in order
to account for the negative and positive time windows
involved in STDP learning, the POST signal should be
activated with a delay corresponding to the time duration
of the negative timing window in order to sample the

programing-current contributions from the learning circuits
for both of the timing windows.
An arrangement of synapses in an array fashion (as

shown in Fig. 5), interfaced with CMOS neurons, can lead
to dense spiking neuromorphic architectures. Please note
that the access transistors MA2 and MA4 for terminal T3 of
the device (Fig. 4) can be shared across the row such that
the corresponding horizontal line connecting terminals T3
for the devices in a particular row are driven to ground (the
POST signal is high) or the postneuron circuit (the POST
signal is low). Details of the CMOS circuits involved in the
programing scheme and neuron implementation are dis-
cussed in Sec. IV.

IV. CMOS LEARNING AND NEURON CIRCUITS

A. Subthreshold circuit for STDP learning

The circuit involved in generating the PRE signal is
discussed in this section. Figure 6 shows the subthreshold
CMOS circuit used to generate the PRE signal for pre-
neuron A connecting to postneurons C and D. We discuss
the mechanism for generating the signal for the positive
time window. A similar design can be used to generate
the programing current for the negative time window. The
circuit was originally proposed in [26] as a reset and
discharge synapse. However, it failed to emulate the
postsynaptic dynamics of biological synapses, as the circuit
response depends only on the previous input spike [27]. In
this work, we employ this circuit to implement STDP
learning in our proposed device.
The transistor Mp acts as a switch. When the positive

time window starts, the transistor Mp receives a low-active
pulse and gets turned on. As a result, the node PRE, A is set
to the bias voltage Vw. After the transistor Mp is switched
off, the transistor Mt, operating in the subthreshold satu-
ration regime, provides a constant current to linearly charge
the capacitor Cp at a rate It=Cp. Hence, if the transistor
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POST, C

POST, C
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PRE, B

Postneuron C / 
GND

Postneuron  D /
GND

PRE, A

V
dd

V
dd

V
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V
dd

FIG. 5. Possible arrangement of synapses in an array interfaced
with CMOS neurons and programing circuits. Shown are
synapses connecting preneurons A and B to postneurons C
and D.
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FIG. 6. Subthreshold CMOS circuit utilized for generating the
programing current involved in STDP learning (the circuit for the
positive time window shown) for preneuron A, connecting to
postneurons C and D.
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MSTDP is operated in subthreshold saturation, exponential
dynamics will be observed in the output current ISTDP. The
current flowing through transistorMSTDP for an input pulse
at time t ¼ tn is given by (if the POST signal is active)

ISTDP ¼ I0e
−UTCpðt−tnÞ

kIt ; ð7Þ
where k is the subthreshold slope factor and UT is the
thermal voltage. Hence, whenever the preneuron spikes,
the circuits for generating the STDP characteristics for the
negative and positive time windows are activated sequen-
tially. When learning starts for the positive timing window,
a short pulse is applied to the gate of the transistor Mp so
that the circuit is reset and the node PRE, A is charged to
Vw. When the postneuron does not spike, the transistor
MSTDP is in cutoff since the POST signal is deactivated and
the access transistors for programing are turned off. Once
the postneuron spikes, the programing-current path gets
activated and the transistor MSTDP switches to the sub-
threshold saturation regime and transmits the necessary
amount of programing current through the device. Note that
apart from the transistor MSTDP (one transistor for each of
the positive and negative timing windows), the entire
learning circuitry can be shared across the column of the
crossbar array.
The operation is discussed in detail in Fig. 7. Let us first

describe the case for the positive timing window, i.e.,
postneuron spiking after the preneuron [Fig. 7(a)]. −Δ
(þΔ) represents the duration during which the learning
circuit for the negative (positive) timing window is acti-
vated sequentially for the corresponding preneuronal firing
event. The control signal POST is activated after a duration
(Δ) when the postneuron spikes. As described in the figure,
magnitude of the programing pulse is determined by the
current being passed by the programing transistor MSTDP
(the value of the PRE voltage when the POST signal is

active), and the duration is determined by the duration of
the POST signal. Since the PRE signal varies in an
approximately microsecond time scale and almost does
not change during the programing-time duration (an
approximately nanosecond time scale), it ensures that the
programing-current magnitude is almost constant and is
equal to the sampled value from the exponential STDP
dynamics corresponding to the appropriate spike-timing
difference. As mentioned previously, since the programing
current magnitude is directly proportional to the amount of
change in the MTJ conductance, exponential STDP char-
acteristics are implemented in the spintronic device. Similar
discussions are valid for the negative timing window
[Fig. 7(b)] where the postneuron spikes before the pre-
neuron. In this case, the POST signal is activated during the
negative window (−Δ) and the NMOS transistor passes an
appropriate amount of programing current in the opposite
direction through the device. Circuit-level simulations
confirming the proposal are demonstrated in Fig. 11(b).

B. Differential-pair-integrator circuit for
postsynaptic current generation

The differential-pair-integrator (DPI) circuit has been a
popular mechanism for generating synaptic dynamics [28],
and integration of such DPI circuits with memristor
synapses was recently proposed [29]. Figure 8(a) shows
how such DPI circuits can be integrated with our proposed
spintronic synapses to generate exponential postsynaptic
currents in response to input spikes. Assuming all tran-
sistors are in subthreshold saturation and using the trans-
linear principle [28,29], it can be shown that the output
current Isyn exhibits temporal dynamics of the form

τsyn
dIsyn
dt

þ Isyn ¼
IwIth
It

; ð8Þ

PRE POST

1- duration 
control signal

t

t

t

tEvents

POST 
signal

PRE 
voltage

Programming 
current

(a) Potentiation (Positive Timing Window)

1-    duration programming current  
(magnitude varying exp with time) 

POST PRE

1- duration 
control signal

t

t

tEvents

POST 
signal

PRE 
voltage

Programming 
current

(b) Depression (Negative Timing Window)

1- duration programming current 
(magnitude varying exp with time) 

t

FIG. 7. Detailed timing diagrams demonstrating the implementation of (a) potentiation (positive timing window) and (b) depression
(negative timing window) in the spintronic synapse. POST is the control signal that is activated during programing, while PRE is the gate
voltage of theMSTDP transistor that implements synaptic plasticity. Duration of the programing current is determined by the duration of
the POST signal, while the magnitude is determined by the value of the PRE signal when the POST signal is high.
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where τ ¼ ðCUT=kItÞ. The above relationship is valid if the
circuit is operated in the linear region (It ≪ Iw). The bias
voltage Vw acts as a scaling gain factor for the postsynaptic
current. On the arrival of an input spike, the current Iw gets
modulated by the MTJ conductance and thereby causes Isyn
to increase by an amount governed by the synaptic weight.
When there is no spike transmission, Isyn decreases expo-
nentially, thereby emulating the synaptic dynamics discussed
earlier. The access transistors driven by the POST signal
are not shown in Fig. 8 but are present in the design to ensure
that the programing-current path is deactivated when the
spike-transmission path is enabled.

C. Subthreshold CMOS neuron

CMOS circuits operating in subthreshold [Fig. 8(b)]
have been shown to replicate a wide range of temporal
dynamics observed in biological neurons like spike-
frequency adaptation and refractory-period generation
[28,30,31]. When operated in the subthreshold regime,
the main mechanism of carrier transport in CMOS tran-
sistors is diffusion, thereby emulating the mechanism of ion
flow in biological-neuron channels [28].
Iin represents the input current provided to the neuron.

Using the translinear principle and assuming all transistors
in subthreshold saturation, it can be shown that the
temporal dynamics of Imem is given by [28]

τmem
dImem

dt
þ Imem

�
1þ Ia

It

�
¼ IinIth

It
; ð9Þ

where τ ¼ ðCmemUT=kItÞ. The above relation is again valid
when the DPI circuit operates in the linear region
(i.e., It ≪ Iin).
We would like to conclude this section by relating the

computing models discussed in Sec. II to the circuit

implementations discussed in Sec. IV. Postsynaptic and
neuron dynamics [referred to in Eqs. (2) and (5)] can be
directly mapped to the DPI circuit and the subthreshold
CMOS neuron circuit [referred to in Eqs. (8) and (9)],
respectively. Readers are referred to Ref. [28] for details on
neuromorphic chips utilizing such analog CMOS neurons
and interfacing such circuits with post-CMOS synaptic
crossbar arrays. Our proposal in this work includes the
implementation of plasticity mechanism [referred to in
Eq. (4)] in the spintronic-device structure utilizing the
device concepts (presented in Sec. III) and the learning-
circuit primitives (presented in Sec. IVA).

V. SIMULATION RESULTS

A. Simulation framework

In order to simulate the SNN implementation based on the
proposed spintronic synapse, a hierarchical simulation
framework is utilized. Device-level simulations of the
spin-orbit torque-induced domain-wall motion is performed
in MUMAX [32], a graphics-processing-unit-accelerated
micromagnetic simulation tool. A behavioral model of the
device is developed for the subsequent simulation of such
synapses interfaced with CMOS neurons and learning
circuits. The circuit-level simulations are performed in
HSPICE using a standard cell library in commercial 45-nm
CMOS technology. The device and circuit simulations are
utilized to generate models of the plastic synapses and
spiking neurons to perform system-level simulations of a
network of spiking neurons using the BRIAN simulator [33].

B. Device-level simulations

The magnetization dynamics of the ferromagnet can be
described by solving the Landau-Lifshitz-Gilbert equation
with an additional term to account for the spin-orbit torque
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generated by the spin Hall effect at the FM-HM interface
[21,34],

dm̂
dt

¼ −γðm̂ ×HeffÞ þ α

�
m̂ ×

dm̂
dt

�
þ βðm̂ × m̂P × m̂Þ;

ð10Þ

where m̂ is the unit vector of the FM magnetization at each
grid point, γ ¼ ð2μBμ0=ℏÞ is the gyromagnetic ratio for
electron, α is Gilbert’s damping ratio, Heff is the effective
magnetic field, β ¼ ðℏθJ=2μ0etMsÞ [where ℏ is Planck’s
constant, J is the input charge current density, θ is the spin
Hall angle [21], μ0 is the permeability of the vacuum, e is the
electronic charge, t is the FM thickness, and Ms is the
saturation magnetization], and m̂P is the direction of
the input spin current. The effective field Heff also includes
the field resulting from the DMI and is given by

HDMI ¼ −
2D
μ0Ms

�∂mz

∂x x̂þ ∂mz

∂y ŷ −
�∂mx

∂x þ ∂my

∂y
�
ẑ

�
:

ð11Þ

Here, D represents the effective DMI constant and
determines the strength of the DMI field in such multilayer
structures. A positive sign of D implies right-handed
chirality, and vice versa. In the presence of DMI, the
boundary conditions at the edges of the sample are given by

∂m̂
∂n ¼ D

2A
m̂ × ðn̂ × ẑÞ; ð12Þ

whereA is the exchange correlation constant and n̂ represents
the unit vector normal to the surface of the FM. The
simulation parameters are given in Table I and are used
for the rest of this work, unless otherwise stated. The
parameters are obtained experimentally frommagnetometric
measurements of Tað3 nmÞ=Ptð3 nmÞ=CoFeð0.6 nmÞ=
MgOð1.8 nmÞ=Tað2 nmÞ nanostrips [22]. Current density
is estimated by assuming that the current flow is mainly
through the FM-HM layers in the stack structure [22].
Figure 9(a) shows the domain-wall displacement in a

CoFe sample with a cross section of 160 × 0.6 nm for a
charge-current density of J ¼ 0.1 × 1012 A=m2. The grid
size is taken to be 4 × 4 × 0.6 nm3. Figure 9(b) depicts the
variation of the domain-wall velocity with the input charge-
current density. The velocity increases linearly with the
current density and ultimately reaches a saturation velocity.
The graphs are in good agreement with the results illus-
trated in Ref. [21] for the same multilayer structure
described in this section. Figure 9(c) illustrates the fact
that the domain-wall displacement is directly proportional
to the magnitude of the programing current (for domain-
wall velocities below the saturation regime). For a duration
of 1 ns, a maximum current of approximately 80 μA is
required to displace the domain wall from one edge of the
FM to the other.
A nonequilibrium-Green’s-function- (NEGF-)based

transport-simulation framework [35] is used to model the
variation of the MTJ resistance with the oxide thickness
[Fig. 10(a)] and the applied voltage [Fig. 10(b)], respectively.
In order to determine the MTJ resistance for a FM with a
domainwall separating two oppositely polarizedmagnetized
domains, the NEGF-based simulator [35] is modified by
considering the parallel connection of three MTJs. The
magnetization directions of the FLs of the three MTJs are
considered parallel, antiparallel, and perpendicular (domain
wall) to the pinned-layer magnetization. The length of the
first two MTJs is varied according to the position of the
domain wall, while the width of the third MTJ is taken to be
equal to the domain-wall width. Figure 11(a) depicts the

TABLE I. Device-simulation parameters.

Parameters Value

Ferromagnet dimensions 320 × 20 × 0.6 nm3

Grid size 4 × 1 × 0.6 nm3

Heavy-metal thickness 3 nm
Domain-wall width 7.6 nm
Saturation magnetization, Ms 700 KA=m
Spin Hall angle, θ 0.07
Gilbert-damping factor, α 0.3
Exchange-correlation constant, A 1 × 10−11 J=m
Perpendicular magnetic anisotropy 4.8 × 105 J=m3

Effective DMI constant, D −1.2 × 10−3 J=m2
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variation of the device conductance with the domain-wall
position (with an origin at the middle of the FM). In order to
ensure proper synaptic functionality, it is also essential that
the device resistance (for a particular position of the domain
wall) does not vary with the voltage drop across the device.
This proper functionality is ensured by appropriately inter-
facing the device with the DPI circuit discussed earlier to
generate the synaptic dynamics. The range of synapse
resistances are in the MΩ range, while the current flowing
through the MTJ is in the range of a few nanoamperes.
Hence, the voltage drop across the MTJ should be approx-
imately a few millivolts (< 100 mV). It is apparent from
Fig. 10(b) that the operating range of VMTJ is low enough to
ensure a negligible variation of the device conductance
against the device voltage drop for a particular domain-wall
position. As explained previously, such a linear variation of

the device conductance against the domain-wall position
results in the programing current being directly proportional
to the relative conductance (weight) change involved.Hence,
the temporal profile of the necessary programing current also
follows the STDP characteristics.

C. Circuit-level simulations

The programing and neuron circuits are simulated using
a standard cell library in 45-nm commercial CMOS
technology. Although biological time scales are in the
range of milliseconds, it is not essential to limit the
processing speed of the circuit to such slow time constants
for implementing pattern-recognition systems [6]. The
circuits are designed to operate at time constants in the
range of microseconds.
Figure 11(b) shows the response of the programing

circuit for the case where the programing-current path is
active throughout the simulation time. The gate voltage of
the transistor MSTDP increases linearly and is reset at each
input pulse, leading to exponential subthreshold current
dynamics. The average power consumption of the circuit is
0.46 μW for the entire positive time window. The duration
of the time window can be varied by changing the
capacitance value. Further, this programing circuit can
be shared by synapses in a particular column. It is worth
noting here that this power consumption does not include
the power consumed in theMSTDP transistor, as current will
flow through it only when the programing-current path is
activated for 1 ns. The supply voltage for MSTDP transistor
is maintained at 600 mV; hence, the maximum amount of
energy consumption involved in synapse programing
is approximately 48 fJ (600 mV × 80 μA × 1 ns) per
synaptic event.
Figure 12 depicts the response of the CMOS neuron to a

constant input current. As explained earlier, the spike-
frequency adaptation scheme reduces the spike frequency
to a steady-state value. For a membrane capacitance of
50 fF, the average power consumption of the circuit is
approximately 5.7 pJ=spike.

D. System-level simulations

The device and circuit behavioral models are used to
simulate a SNN for digit-recognition problems. The input
images (28 × 28 pixels) used for training is taken from the
MNIST data set [38]. The images are rate encoded, and an
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array of 100 excitatory neurons is used to simulate the self-
learning functionality of synapses in SNNs. Figure 13(a)
demonstrates the SNN topology used for the recognition
problem arranged in a crossbar array. Synapses present at
the cross points joining the inputs to the excitatory neurons
can be programed depending on the temporal spiking
patterns of the pre- and postneurons. Note that a synapse
is absent at the cross point joining the excitatory to the
inhibitory neuron. Inhibitory neurons are exactly similar to
the excitatory neurons except that the output voltage spikes
are negative.
Figures 13(b) and 13(c) depict synapse weights plotted

in a 28 × 28 array (same as for the input images) for each of
the 100 neurons used for recognition purposes. Initially, all
of the weights are random. However, as learning pro-
gresses, the synapses of each neuron start learning generic
representations of the various digits. Thus, a particular
neuron becomes more sensitive to the digit whose generic
representation is being stored in its synapse weights since it
will fire more if input spike trains are received at the pixel
locations corresponding to high synaptic weights. The
various system-level simulation parameters are outlined
in Table II. The parameters are tuned to achieve learning
ability in the synapses. The units of the time constants are
given with respect to the duration of each time step in the
simulation. For this work, the circuits are designed to

operate in a microsecond time scale, as mentioned before.
It is worth noting here that the manner in which the time
constants and the other parameters can be tuned in the
circuit-level simulations were discussed in Sec. IV. Each
number in parentheses represents the value corresponding
to the inhibitory neuron.
Additionally, we would like to mention here that such

neuromorphic systems are significantly robust to impreci-
sion due to device mismatch, variability, and noise effects
owing to the adaptive nature of such computations involv-
ing plasticity, homeostasis, and feedback mechanisms [28].
Furthermore, Querlioz et al. [39] demonstrated the immun-
ity of such single-layer SNNs based on crossbar arrays of
resistive synapses with lateral-inhibition and homeostasis
effects to variations and nonidealities in typical resistive
synaptic devices and CMOS neuron circuits. Specifically,
we perform an analysis of the impact of variations in the
oxide thickness or equivalently the MTJ synaptic conduc-
tances on the classification accuracy of the system. Almost
no degradation in classification accuracy is observed for the
100-neuron network, even with a 25% variation in the
resistances of the spintronic synapses.

VI. CONCLUSIONS

Prior proposals have investigated monodomain spin-
tronic devices for implementing spiking neurons [40]
and short-term plasticity effects [41]. Here we propose a
hybrid spintronic-CMOS SNN design with self-learning
(from the device to the system level) based on a three-terminal
multidomain spintronic-synapse-device structure consist-
ing of decoupled spike-transmission and programming-
current paths. This design is advantageous for the
implementation of neuromorphic systems capable of on-
chip learning since the programing-current path is inde-
pendent of the read-current path. Interface CMOS circuit
design for self-learning is highly simplified since the

78
4 

in
pu

ts
 fo

r 
28

×2
8 

im
ag

es

Inputs
Inhibitory inputs

100 neurons in excitatory or inhibitory layer

La
te

ra
l i

nh
ib

ito
ry

 
in

pu
ts

Excitatory neuron
Inhibitory neuron

(a) (b) (c)

0

1

FIG. 13. (a) SNN topology used for digit recognition arranged in a crossbar array. (b) Initial random synapse weights plotted in a
28 × 28 array for 100 neurons in the excitatory layer. (c) Representative digit patterns start getting stored in the synapse weights for each
neuron after 1000 learning epochs.

TABLE II. System simulation parameters.

Parameters Value

No. of excitatory or inhibitory neurons 100
Probability of input spike per time step 0–0.06375
Number of time steps per image 350
STDP time constants 100 (1)
Neuron time constants 10 (10)
Postsynaptic-current time constants 1 (2)
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resistance in the programing-current path is constant
and determined mainly by the HM resistance and is
independent of the synapse conductance.
Table III provides a comparative analysis of our spin-

tronic synapse (calibrated to experiments performed in
Ref. [22]) with other proposed synaptic devices. Synaptic
device structures based on emerging post-CMOS technol-
ogies [7,8,11] are usually two-terminal devices and do not
offer decoupled programing and read-current paths.
Additionally, they are usually characterized by relatively
high programing energies. In contrast, our proposed syn-
apse offers low programing energy and requires very little
programing time. A maximum programing energy of
approximately 48 fJ is consumed per synaptic event due
to the highly-energy-efficient spin-orbit torque-induced
synaptic plasticity. Three terminal synaptic devices based
on ferroelectric field-effect transistor (FeFET) [10] and
floating-gate transistors [9] have also been proposed.
However, the programing in such devices is usually
accomplished through the gate terminal, and a high gate
voltage is usually applied across a very thin oxide [9,10],
leading to reliability issues, in addition to associated high
power consumption. Programing is also relatively slow in
such three-terminal synaptic devices [9,10]. It is worth
noting here that the current flowing through the oxide in the
MTJ structure for our proposed synapse is the read current,
which is in the range of nanoamperes and drives sub-
threshold CMOS circuits. Static-random-access-memory-
(SRAM-)based synapses have been also proposed for
digital CMOS-based SNN designs [6]. However, for
implementing 1 bit of the synapse, an 8-T SRAM cell

has to be used, thereby leading to significant area overhead
for implementation of a single synapse [6]. In addition,
learning circuits involve multiple digital counters and are
more area and power consuming than our proposed design.
Please see Ref. [43] for a discussion on the practical

implementation of arrays of such spintronic devices inter-
faced with CMOS transistors. The size limitation of cross-
bar arrays of such spintronic devices is determined by the
driving capabilities of rows of the array by input voltages in
the presence of parasitics. In addition, sneak paths also
become a potential issue for large crossbar arrays in order
to implement on-chip learning. These concerns are equally
valid, in general, for spin devices and other memristive
technologies. However, it is worth noting here that com-
putation occurring in a large crossbar can be distributed
easily among smaller crossbar arrays by simply replacing
the large unit by an equivalent number of smaller crossbar
units using peripheral-control circuitry.
In conclusion, in this work, we formulate a device, circuit,

and algorithm cosimulation framework calibrated to exper-
imental results to validate the functionalities and the
performance of the proposed hybrid spintronic-CMOS–
based SNNdesignwith on-chip learning.We propose circuit
primitives for generating STDP in the proposed synapse and
demonstrate how such synaptic devices could be arranged in
a crossbar fashion leading to an area- and power-efficient
SNN implementation that is capable of recognizing patterns
in input data. Simulation studies indicate the efficiency of
the proposed hybrid spintronic-CMOS–based SNN design
as an ultralow-power neuromorphic-computing platform
capable of online learning.

TABLE III. Comparison with other proposed synapses.

Device Dimensions
Programing energy/
operating voltage

Programing
time Terminals Programing mechanism

GeSbTe memristor [7] 40-nm mushroom
and 10-nm pore

Average 2.74 pJ=event 60 ns 2 Programed by Joule
heating (phase change)

GeSbTe memristor [11] 75-nm electrode
diameter

50 pJ (reset) and
0.675 pJ (set)

10 ns 2 Programed by Joule
heating (phase change)

Ag=AgInSbTe=Ag
chalcogenide
memristor [42]

100 μm × 100 μm Threshold voltage:
0.3 V

5 μs 2 Programed by Joule
heating (phase change)

Ag-Si memristor [8] 100 nm × 100 nm Threshold voltage:
2.2 V

300 μs 2 Movement of Ag ions

FeFET [10] Channel length:
3 μm

Maximum gate
voltage: 4 V

10 μs 3 Gate-voltage modulation
of ferroelectric polarization

Floating-gate
transistor [9]

1.8 μm=0.6 μm
(0.35 μm; CMOS
technology)

Vdd − 4.2 V and
tunneling
voltage: 15 V

100 μs (injection)
and 2 ms
(tunneling)

3 Injection and tunneling
currents

SRAM synapse [6] 0.3 μm2

(10 nm; CMOS
technology)

Average 328 fJ
(4-bit synapse)

� � � � � � Digital-counter-based
circuits

Spintronic synapse Ferromagnet
dimensions:
320 nm × 20 nm

Maximum 48 fJ=event 1 ns 3 Spin-orbit torque
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