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We propose and demonstrate the use of a pair of detuned acoustic resonators to efficiently absorb narrow-
band sound waves in a terminated waveguide. The suggested configuration is relatively simple and
advantageous for usage at low frequencies, since the dimensions of the resonators are very small compared to
the wavelength. We present a theoretical description based on lumped parameters to calculate the absorption
coefficient, which agrees very well with experimental data. The experimental results verify that the anechoic
(reflection approximately −38 dB) narrow-band (Δf=f ∼ 0.1) termination with deeply subwavelength
(<λ=10) sizes can be realized at a target frequency, suggesting thereby applications for noise control and
sensing. As an illustration of possible applications for sound absorption in a room, we demonstrate by use of
numerical simulations that a given axial resonant excitation in a room can be practically eliminated. Thus,
a reduction of approximately 24 dB in the average acoustic energy is achieved in the room when using only
four Helmholtz resonators. We also discuss various scenarios of noise control in rooms.
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I. INTRODUCTION

The absorption of low-frequency sound is a challenging
problem because it normally implies the use of bulky
elements with dimensions of the order of the corresponding
wavelength. The approach chosen for sound absorption can
vary between different application domains. In rooms, for
example, acoustic resonators are often used for attenuation
of acousticmodes [1–4], although the achieved absorption is
normally quite limited. To reduce the propagation of noise
along waveguides, for example, in ventilation ducts, the use
of active control is considered an appropriate option for low
frequencies [5–8]. In recent years, acoustic metamaterials
have been proposed as a promising alternative to deal with
this problem [9–12], and subwavelength systems for effi-
cient narrow-band sound absorption at low frequencies in
waveguides have attracted growing attention [13–17].
In this paper, we propose and experimentally demon-

strate an approach to efficient noise control at low frequen-
cies in waveguides, with the anechoic termination in a
narrow frequency band being realized with subwavelength
elements. We begin with a theoretical description assuming
an acoustic subsystem to be attached as a side branch to a
waveguide that ends in a rigid wall at a certain distance
from the subsystem position. This allows us to obtain
optimal values of the subsystem (internal) absorption,
inherent transmission, and reflection, which ensure the
anechoic termination. We then suggest that a single
Helmholtz resonator or a pair of detuned Helmholtz
resonators can be used as the optimal acoustic subsystem,

noting that the latter represents a much simpler solution.
Because of a rather fast variation of the response phase of
Helmholtz resonators, the anechoic termination can be
realized in a very narrow frequency band. The effect of the
distance between the position of the optimal acoustic
element and the closed end is also considered and found
that practically total absorption can also be achieved for
small values of this distance. We present experimental
results with a pair of detuned Helmholtz resonators
demonstrating the anechoic (reflection approximately
−38 dB) narrow-band (Δf ∼ 90 Hz) termination with
deeply subwavelength (<λ=10) sizes realized at the target
frequency of 925 Hz. Finally, we show numerical results to
illustrate the application of the method in a small rectan-
gular room, in which an axial room mode with eigenfre-
quency equal to 57.2 Hz is completely suppressed by using
four resonators. In this way, the absorption of sound on one
wall of the room is maximized.
A system formed by two detuned Helmholtz resonators

at the same axial position as the one considered in this
paper has very recently been studied [18], achieving a
maximum absorption coefficient of 0.5 for an incident
(from one side) wave in an infinite waveguide and
predicting total absorption for two mutually symmetric
incident waves, one from each of the two sides of the
infinite waveguide. Our approach is more general; we show
below that total absorption can be achieved also when the
two waves are not mutually symmetric or with only one
Helmholtz resonator.

II. THEORY

Let us assume an infinite straight waveguide with a
constant cross-sectional area S, which has an acoustic
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subsystem attached as side branch. Take the x direction
along the axis of the waveguide and the origin at the
position of the center of the branch to the acoustic
subsystem.
Assume an incident harmonic sound wave, pi ¼

Ai exp½jðωt − kxÞ� in x < 0, with angular frequency ω
and complex amplitude Ai, and consider that the wave-
length is much larger than the transversal dimensions
of the waveguide that only plane waves propagate.
Thus, at x ¼ 0, part of the acoustic energy is reflected
as a wave represented by Ar exp½jðωtþ kxÞ�, and the
other part of the acoustic energy continues along the
pipe giving the transmitted wave At exp½jðωt − kxÞ�.
The pressure reflection coefficient can be expressed
as [19]

R ¼ Ar

Ai
¼ − Z

Z þ 2Zb
; ð1Þ

where Zb is the input acoustic impedance of the acoustic
subsystem, Z ¼ ρc=S, with ρ being the density of the
medium, and c the sound speed. In addition, the
pressure transmission coefficient is given by [19]

T ¼ At

Ai
¼ 2Zb

Z þ 2Zb
: ð2Þ

Now let us assume a semi-infinite waveguide, which has
a hard termination at x ¼ L and the rest of the conditions
are the same as before. Here, the acoustic field inside the
pipe in steady state can be determined by following the
propagation of the original incident wave and taking into
account all the multiple reflections and transmissions
(“subwaves”) that occur at the position of the acoustic
subsystem (x ¼ 0) and all the multiple reflections at the
hard end. Consider that there is no absorption on the walls
of the pipe.
We can determine the resulting acoustic wave reflected

at x ¼ 0 by adding the infinite number of subwaves
propagating in the semispace x ≤ 0 as follows:

pr ¼ AiejðωtþkxÞ½Rþ T2e−j2kLð1þ Re−j2kL

þ R2e−j4kL þ � � �Þ�

¼ AiejðωtþkxÞ
�
Rþ T2e−j2kL 1

1 − Re−j2kL

�
: ð3Þ

By adding all the subwaves moving in the positive x
direction in the space 0 ≤ x ≤ L, we get

pþ ¼ Aiejωt½Te−jkx þ TRe−jkðxþ2LÞ þ TR2e−jkðxþ4LÞ

þ TR3e−jkðxþ6LÞ þ � � ��

¼ AiTejðωt−kxÞ
1

1 − Re−j2kL
: ð4Þ

The resulting wave propagating in the negative x
direction in the interval 0 ≤ x ≤ L is given by

p− ¼ Aiejωt½Tejkðx−2LÞ þ TRejkðx−4LÞ þ TR2e−jkðx−6LÞ

þ TR3e−jkðx−8LÞ þ � � ��

¼ AiTejðωtþkxÞe−j2kL 1

1 − Re−j2kL
: ð5Þ

The superposition of the two waves given by Eqs. (4) and
(5) results in a standing wave described by

pþ þ p− ¼ 2AiT cos½kðL − xÞ� e−jkL
1 − Re−j2kL

: ð6Þ

For an anechoic termination in the waveguide, the
reflected wave in Eq. (3) has to be zero, which means that

T2 ¼ −Rej2kLð1 − Re−j2kLÞ: ð7Þ

In addition, since the sound pressure has to be a
continuous function in space, the complex pressure ampli-
tude of the standing wave described by Eq. (6) has to be
equal to Ai at x ¼ 0. This condition implies that

T
e−jkL

1 − Re−j2kL
2 cosðkLÞ ¼ 1. ð8Þ

By combining Eqs. (7) and (8), we obtain the optimal
values of the inherent pressure reflection and transmission
coefficients of the acoustic side-branch acoustic subsystem
with which we achieve an anechoic termination in the
waveguide, respectively, given by

Rop ¼
1

e−j2kL − 4cos2ðkLÞ ð9Þ

and

Top ¼ − 2ejkL cosðkLÞ
e−j2kL − 4cos2ðkLÞ : ð10Þ

Consider the simple cases kL ¼ 0 and kL ¼ π, which
are mutually equivalent. Here, Rop ¼ −1=3 and Top ¼ 2=3.
These optimal values can be realized, for instance, with a
Helmholtz resonator as the side-branch acoustic subsystem.
For this case, the acoustic impedance of the resonator is
given by Zb ¼ Ra þ jðωM − K=ωÞ, where Ra, M, K are,
respectively, the acoustic resistance, inertance, and stiff-
ness. In addition,M ¼ ρLef=Sres and K ¼ ρc2=V, where V
is the volume of the resonator, Sres is the cross-sectional
area of the neck, and Lef its effective length. The acoustic
resistance of the Helmholtz resonator arises from the
thermoviscous losses on its walls and the radiated acoustic
energy. The former is normally the main contribution and
can be reduced by increasing the cross-sectional area of the
resonator.
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At the resonance frequency of the Helmholtz resonator,
its input acoustic impedance is equal to its acoustic
resistance (Zb ¼ Ra). If we make a resonator for which
Ra ¼ Z at that frequency, substitution in Eqs. (1) and (2)
gives R ¼ −1=3 and T ¼ 2=3, which are the desired
optimal values.
Therefore, to obtain an anechoic termination, we have to

construct a Helmholtz resonator with Ra ¼ Z and the target
resonance frequency. However, both the resonance fre-
quency and the acoustic resistance of the resonator depend
on its geometric parameters. Another simpler option to
create an acoustic subsystem with the optimal inherent
values is to use a pair of detuned Helmholtz resonators.
These two acoustic resonators can be combined in a similar
way as two electrical loads connected in parallel, and they
can be represented as an equivalent single acoustic sub-
system attached as a side branch to the waveguide. It has
been demonstrated that two detuned Helmholtz resonators
side attached to an acoustic pipe produce an induced
transparency effect in a narrow frequency band (see, for
instance, Refs. [20–24]). The energy transmitted in this
band of induced transparency depends on the difference
between the two resonance frequencies. As a result, the
values of the transmitted and reflected pressure acoustic
coefficients T and R can easily be changed by the value of
the detuning, which can just be modified by adjusting only
the volumes of the resonators.

III. RESULTS

A. Waveguide with anechoic termination

We start with two identical resonators for which the neck
has a diameter of 4.4 mm and a length of approximately
1 mm (Fig. 1). As awaveguide, we use a 4-m-long pipewith
an inner diameter of 2 cm and a wall 5 mm thick. A driver
from a horn loudspeaker is attached to one end of the pipe

to generate a sound wave, and a half-inch-measurement
microphone is placed at the other end. The two resonators
are mounted as side branches to the pipe, one in front of
the other, and approximately in the middle between the two
ends of the waveguide. We determine experimentally the
spectrum of transmission for this pair of detuned reso-
nators following the same procedure that we describe in a
previous paper [20]. By trial and error, we adjust the
volume of each resonator by means of a movable piston
until we produce a maximum energy transmission of
approximately 4=9 at about 1 kHz in the transparency
window [see Figs. 2(a) and 2(b)].
It is interesting to observe that the individual behavior of

each of the two resonators used in our experiment is very
different from the effect of induced transparency [see
Figs. 2(c) and 2(d)]. The resonance frequency of the first
resonator is 891 Hz, at which the transmission is equal to
0.014; for the second resonator, the resonance frequency is
1124 Hz, and the minimum transmission is 0.020. The
average ambient temperature in the laboratory is 28 °C,
from which we estimate the sound speed to be 347.8 m=s.
From the measured transmission spectra, we also determine
the following parameters for the first resonator: Lef ¼
4.69 mm, V ¼ 12.51 cm3, and Ra ¼ 211.2 Pam=s. The
calculated values for the second resonator are Lef ¼
4.47 mm, V ¼ 8.26 cm3, and Ra ¼ 263.1 Pam=s. We
use these values in our mathematical model based on
lumped parameters [20] to calculate the theoretical curves
in Fig. 2. It can be observed that the theoretical curves
match very well the corresponding experimental curves of
the transmission spectrum and the phase of the transmitted
wave for each of the individual resonators. The agreement
between the theoretical and experimental curves in
Figs. 2(a) and 2(b) is also quite good, with slight expected
deviations due to the interaction between the two reso-
nators, which is not included in our mathematical model.
The behavior of one resonator is slightly affected by the
presence of the other, but in our model, we neglect this
effect.
With the parameters of the resonators mentioned in the

previous paragraph and kL ¼ π, our model predicts near
total sound absorption at 1012 Hz. If L ¼ 3λop=8, where
λop is the wavelength at 1012 Hz, the efficient absorption
occurs at 1034 Hz (see Fig. 3); for L ¼ 5λop=8, the
reflection is practically zero at 992 Hz. Thus, small
variations from the desired value of L ¼ λop=2 result in
slight frequency shifts for the target value. Nevertheless,
one can also observe that all the energy is reflected at the
target frequency of 1012 Hz if L ¼ λop=4. As predicted,
L ¼ 0 gives practically the same result as L ¼ λop=2 about
the frequency of 1012 Hz. In the particular cases kL ¼ 0
and kL ¼ π, we have the equivalent to two symmetric
incident waves arriving at the position of the detuned
resonators from the sides of an infinite waveguide as
studied in Ref. [18], and the results are the same.

FIG. 1. Illustration of the experimental setup. The red and blue
lines indicate the interior of the two Helmholtz resonators. To
determine the transmission spectra shown in Fig. 2, the two short
parts of the waveguide seen in the picture are substituted by two
long pipes of 2 m each, and a half-inch microphone is attached at
the right end of the waveguide instead of the probe microphone.
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To verify experimentally the result for L ¼ λop=2 shown
in Fig. 3, we use a short waveguide (the one seen in Fig. 1).
The distance between the mouth of the driver and the
position of the openings of the resonators is 20 cm, and the
section of the pipe from the position of the resonators to
the hard end is equal 17.48 cm, which corresponds to half
of the wavelength of the target frequency of 995 Hz. At this
frequency, the maximum transmission in the transparency
window of the experimental curve in Fig. 2(a) is obtained.
The driver is excited with white noise to determine the

incident and reflected waves as a function of frequency by
using the two-microphone method [25]. We measure the

sound pressure inside the pipe at the positions x ¼
−71.5 mm and x ¼ −126.5 mm using a probe microphone
with an outer diameter of 2 mm. The frequency response
function between the input white noise fed to the driver and
the output signal from the microphone is determined for
each of the two positions. Each of these frequency response
functions is obtained by the average of 960 sampled spectra
taken in a measurement time of 1 min.
The results show that the pair of detuned resonators

actually works as an efficient sound absorber in a narrow
frequency band as predicted (Fig. 4). The experimental
curve of the energy reflection coefficient has a very small
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value equal to 0.002 at the frequency of 990 Hz. In
addition, there is quite good agreement between the
experimental results and the theoretical predictions.
However, the minimum reflection appears at a slightly
higher frequency in the theoretical curve. This difference is
explained by the interaction between the resonators, which
is not included in our model.
We also carry out an experiment with the hard termi-

nation of the waveguide placed just after the edge of the
mouths of the two resonators. In our theoretical model, we
set the value L equal to the radius of the neck of the
resonators, 2.2 mm; the result gives a very high absorption
of the incident wave at almost the same frequency as in the
case kL ¼ π. It should be taken into account that the
presence of the wall slightly increases the effective length
of the neck of each resonator. Therefore, the resonance
frequencies of the resonators are shifted to lower values. It
is interesting to observe that the experimental curve of
reflection obtained with the hard termination just after the
edge of the mouths of the resonators has a pronounced
trough of approximately −38 dB at 925 Hz (Fig. 4). This
result confirms that two detuned Helmholtz resonators
placed on a hard end of a waveguide can behave almost
as a perfect sound absorber, which can provide a more
convenient array for practical applications.
Helmholtz resonators are used at low frequencies to

damp individual and distinct modes of a large enclosure at
low frequencies; however, the total sound absorption is
relatively small due to the strong effect of the enclosure
resonance on the acoustic resistance of the mouth of the
resonators. The interaction of a Helmholtz resonator and
one mode of a room, with the resonator tuned to the same
frequency of the mode, normally creates two new coupled
modes with natural frequencies different from the original
natural frequency of the mode. As a result, the absorbed
acoustic power is limited to about 6 dB [1]. Therefore, it is
interesting to study if higher sound absorption can be
obtained with Helmholtz resonators placed on a wall of a
slightly damped room by an appropriate adjustment of their
acoustic resistance.

B. Sound absorption in a room

The method described in this paper can be used in more
complex situations, for instance, to efficiently absorb the
acoustic energy of standing waves between two parallel
surfaces in a room. In this section, we present an illustrative
example of the use of the method, in which one axial mode
of a small rectangular room is practically eliminated.

1. The model

Consider a slightly damped rectangular room with
dimension Lx ¼ 6 m, Ly ¼ 4.45 m, and Lz ¼ 2.8 m.
The sound speed is assumed to be 343 m=s, and the mean
density equal to 1.2 kg=m3. The purpose in this example is
to suppress the second axial mode in the x direction, which

corresponds to a frequency of 57.2 Hz, when the room is
excited by means of a sound source located in one of the
corners of the room (Fig. 5). The results are obtained by
means of numerical simulations using the program Comsol

Multiphysics. In the model, the sound source is implemented
as a point monopole with a constant reference free-space
acoustic power equal to 10 mW. For simplicity, we assume
that all the hard boundaries of the room have characteristic
acoustic impedance 500 times larger than the characteristic
impedance of air and that this impedance is independent
of frequency, which is a good approximation in the low-
frequency interval of interest.
We want the energy of the axial mode at 57.2 Hz to be

efficiently absorbed by means of a set of Helmholtz
resonators. We analyze the simple case of four resonators,
each of them placed near one of the corners of the wall of
the room perpendicular to the x axis. To determine the
optimal values of the parameters of the resonators, first we
consider an infinite waveguide with a cross section of
4.45 × 2.8 m2 and hard surfaces. A part of the waveguide
with a length of 12 m is modeled. We start with four
identical Helmholtz resonators attached to the waveguide as
side branches at the same axial position x ¼ 0, as shown in
Fig. 6. To simplify the model, the losses of acoustic energy
in the resonators are introduced by assuming that their
necks are filled with poroacoustic material, for which the
Delany-Bazley-Miki model implemented in Comsol is
used. In this way, the energy losses in the resonators are
set by means of the flow resistivity of the poroacoustic
material model.
An incident plane wave with a frequency of 57.2 Hz and

amplitude of 1 Pa is modeled in the waveguide approaching
the resonators from the left. The parameters of the
resonators are adjusted to obtain a resonance frequency
of approximately 57.2 Hz and a transmitted wave with an

FIG. 5. Spatial distribution of the sound pressure amplitude in a
rectangular room corresponding to its second x-axial mode. The
sound field is generated by a point monopole source located in the
corner at ð − 6;−2.2;−1.4Þ m.
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amplitude of 2=3 Pa at the same frequency, which gives the
desired optimal value of the transmission coefficient (see
Fig. 6). The optimal values of the parameters of the
resonators are radius of the neck ¼ 15 cm, length of the
neck ¼ 9 cm, a cubic volumewith a side length of 57.1 cm,
and a flow resistance in the neck of 46 Pa s=m2.

2. Effect of the optimal Helmholtz resonators

With the introduction of the optimal resonators in the
room model, the characteristic standing wave pattern of
the axial model at 57.2 Hz disappears (Fig. 7). In addition,
the sound pressure amplitude is distributed in a more
homogeneous way compared to the case without the
resonators, and the amplitude of the sound pressure is

significantly lower. It is interesting to observe that the
highest values of the sound pressure amplitude are located
around the position of the sound source and also inside the
resonators. Therefore, sound is efficiently absorbed by the
four resonators.
The cross-sectional area of the necks of the resonators

has a significant effect on the coupling between the room
and the resonators. As an illustration, we carry out
simulations by using a second set of larger resonators,
which have a neck radius of 31.1 cm. We again use four
identical resonators and follow the same procedure men-
tioned above to determine the optimal parameters that
produce a transmitted plane wave with amplitude equal to
2=3 Pa with the resonators attached as side branches to an
infinite waveguide. As the optimal parameters of the
resonators, we obtain the length of the neck equal to
10 cm, a cubic volume with a side length of 76.9 cm, and a
flow resistance in the neck of 302 Pa s=m2. To evaluate the
global response of the room, we determine the average
value of the square of the sound pressure amplitude over the
volume of the room as a function of frequency. As can be
observed in Fig. 8, the high peak of the axial mode of
57.2 Hz is removed by means of the set of four small
resonators discussed above, and improved results are
achieved with the set of four large resonators. The average
square sound pressure at 57.2 Hz is reduced by approx-
imately 24 dB by means of the small resonators. Since the
potential acoustic energy is proportional to the square

FIG. 7. Distribution of the sound pressure amplitude on the
surfaces of a rectangular room with four Helmholtz resonators
used to efficiently absorb the acoustic energy impinging on the
wall at x ¼ 0 for a sound wave of 57.2 Hz.

FIG. 6. Propagation of a plane wave along an infinite wave
guide with a rectangular cross-sectional area of 4.45 × 2.8 m2

and four identical Helmholtz resonators attached to the wave-
guide as side branches at x ¼ 0. Only a section of the waveguide
is used in the model. The incident plane wave moves in the
positive x direction.
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sound pressure, the result implies that the average potential
acoustic energy stored in the room is decreased by a factor
of about 251 due to the absorption of energy in the
resonators. A new small peak appears in the curve
corresponding to the small resonators near the frequency
of 59 Hz due to the coupling of the resonator and the room;
however, this peak is only about 6 dB higher than the value
without the resonators. Two more new peaks can also be
observed at approximately 51 and 56 Hz, but the ampli-
tudes of these peaks are lower than the respective values in
the room without resonators. Nevertheless, there are no new
peaks in the curve obtained with the set of large resonators.
One can also observe in Fig. 8 that the resonance
frequencies of other modes in the room are shifted when
the resonators are used, and the stored energy of those
modes is also reduced.
As mentioned before, the process to obtain the optimal

acoustic resistance in the resonators can be simplified in a
practical situation by using detuned resonators; in this case,
one needs to adjust only the individual resonance frequen-
cies of the resonators until the optimal combined value of
the acoustic losses at the target frequency is obtained. With
detuned resonators, the dimensions of the necks and the
acoustic absorbent material can be kept fixed, and only the
volumes of the resonators can be adjusted. As an example,
we consider two pairs of detuned resonators for the
absorption of the second x-axial mode presented in this
example. The necks of the four resonators have the same
dimensions: a radius of 31.11 cm and a length of 10 cm.
Their resonance frequencies are adjusted by changing the
volumes of the resonators.
To determine the optimal parameters in the resonators,

we again model the propagation of a plane wave in an
infinite waveguide similar to the one in Fig. 6. We identify a
transparency window in the transmission vs frequency
curve and change the volumes of the resonators until the
maximum transmission in the transparency window is
equal to 4=9. To simplify the identification of the maximum
value of transmission in the transparency window, a flow
resistance equal to 43.14 Pa s=m2 is assumed in the necks
of the two resonators with the low resonance frequency and
a flow resistance of 274.54 Pa s=m2 for the two resonators
with high resonance frequency. The resonators are placed
in a similar distribution as in the previous cases, near the
four corners of the wall at x ¼ 0. The two resonators
located near the corners at (0; 2.2;−1.4) and (0;−2.2; 1.4)
are the ones with the small volumes (high frequencies). The
final volumes of the resonators are two parallelepipeds with
cross-sectional area of 76.9 × 76.9 cm2 and a length of
77.67 cm for the resonators with low frequency and
67.13 cm for the resonators with high frequency. As can
be seen in Fig. 8, this set of two pairs of detuned resonators
also gives a significant reduction of the acoustic energy at
57.2 Hz. It should be mentioned that it is not possible to use
detuned resonators with smaller neck diameters under the

studied configuration since a clear transparency window is
not observed.
The optimal value of the flow resistance in the neck of

the resonators provides a good approximation to the
configuration that gives the maximum sound absorption
at the target frequency in the room. If the flow resistance in
the necks of the resonators is changed, the sound absorption
at the target frequency is reduced (see inset in Fig. 8). With
lower flow resistance, the mechanical coupling between the
resonators and the room increases, which is reflected as the
generation of new peaks in the curve of the acoustic energy
stored in the room. High flow resistance reduces the
mechanical coupling, but the sound absorption is also
decreased. In this case, the original resonance frequencies
of the room are only slightly shifted.

IV. DISCUSION

In the work described in this paper, a waveguide with a
closed end is used to have zero transmission for practical
purposes. However, a pair of detuned resonators can be
used for narrow-band acoustic noise absorption in a wave-
guide with an open termination. A Helmholtz resonator
with low internal acoustic resistance placed as a side branch
on a waveguide behaves almost as a perfect reflector at its
resonance frequency. Therefore, one can use a Helmholtz
resonator to simulate a rigid surface in a waveguide and
place a pair of detuned resonators to efficiently absorb the
acoustic energy of the incident wave. In this way, the flow
of air will not be blocked, and the proposed configuration
can be used in air ventilation and heat-exchange systems to
reduce noise.
It should be noted that if the transversal dimensions of

the waveguide are very small compared with the wave-
length, most of the acoustic energy is reflected at an open
termination. By using the considered pair of detuned
resonators and adjusting the distance L to compensate
for the phase shift of 180°, one can also obtain a very
efficient sound absorption.
It should be mentioned that the example of the sup-

pression of a room mode is presented as an illustration of
the idea of sound absorption. In a practical application, a
more appropriate solution can be explored, for instance,
using more than four resonators with much smaller size,
distribution of resonators in a more uniform way on a wall,
or use of several pairs of slightly separated detuned
resonators. In addition, the absorption of sound in a room
is a more complex problem than the case of a waveguide,
and it deserves further investigation, particularly, the use of
pairs of detuned resonators and the absorption of the energy
of other modes different from the axial ones.

V. CONCLUSIONS

In summary, we demonstrate that a pair of detuned
Helmholtz resonators can be used as an efficient acoustic
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absorbent device with a narrow frequency band in a
waveguide. The resonators have to be tuned to obtain
the appropriate value of each resonance frequency, but this
can be done in an easy way by adjusting their volumes. A
theoretical description is provided, which agrees very well
with experimental results. The proposed method of sound
absorption can be used to attenuate noise generated by
motors since very commonly they produce noise with a
narrow frequency band. Another application can be for
sensing purposes, where a change in the frequency of the
sound of a device, for instance, generated by a malfunction,
can produce a large transmission. We further emphasize
that the narrow-band anechoic termination can be realized
with very small distances between the rigid-wall termina-
tion and the (opposite side-branched) detuned resonators.
This remarkable feature suggests interesting possibilities
for sound attenuation of distinct modes in rooms. It should
also be mentioned that the studied pair of detuned reso-
nators can be used as a unit for the elaboration of acoustic
metamaterials [20,21]. We conduct further research in
this area.

[1] F. J. Fahy and C. Schofield, A note on the interaction
between a Helmholtz resonator and an acoustic mode of an
enclosure, J. Sound Vib. 72, 365 (1980).

[2] D. Li, L. Cheng, G. H. Yu, and J. S. Vipperman, Noise
control in enclosures: Modeling and experiments with
T-shaped acoustic resonators, J. Acoust. Soc. Am. 122,
2615 (2007).

[3] O. Inácio, L. Henrique, and J. Antunes, Design of duct cross
sectional areas in bass-trapping resonators for control
rooms, Noise Control Engineering Journal 55, 172 (2007).

[4] A. Doria, Control of acoustic vibrations of an enclosure by
means of multiple resonators, J. Sound Vib. 181, 673
(1995).

[5] N. Han and C. Wang, Time-domain simulation for active
noise control in a two-dimensional duct, Noise Control
Engineering Journal 63, 59 (2015).

[6] P. Gardonio and J. Rohlfing, Modular feed-forward active
noise control units for ventilation ducts, J. Acoust. Soc. Am.
136, 3051 (2014).

[7] Y.-J. Chan, L. Huang, and J. Lam, Effects of secondary
loudspeaker properties on broadband feedforward active
duct noise control, J. Acoust. Soc. Am. 134, 257 (2013).

[8] M. Kato, Active noise control in a duct by an analog neural
network circuit, Appl. Acoust. 72, 732 (2011).

[9] J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng,
Dark acoustic metamaterials as super absorbers for low-
frequency sound, Nat. Commun. 3, 756 (2012).

[10] J.-P. Groby, W. Huang, A. Lardeau, and Y. Aurégan, The use
of slow waves to design simple sound absorbing materials,
J. Appl. Phys. 117, 124903 (2015).

[11] F. Ma, J. H. Wu, and M. Huang, One-dimensional rigid
film acoustic metamaterials, J. Phys. D 48, 465305
(2015).

[12] G. Ma, M. Yang, Z. Yang, and P. Sheng, Low-frequency
narrow-band acoustic filter with large orifice, Appl. Phys.
Lett. 103, 011903 (2013).

[13] G. Ma, M. Yang, S. Xiao, Z. Yang, and P. Sheng, Acoustic
metasurface with hybrid resonances, Nat. Mater. 13, 873
(2014).

[14] M. Yang, C. Meng, C. Fu, Y. Li, Z. Yang, and P. Sheng,
Subwavelength total acoustic absorption with degenerate
resonators, Appl. Phys. Lett. 107, 104104 (2015).

[15] P. Wei, C. Croëenne, S. T. Chu, and J. Li, Symmetrical and
anti-symmetrical coherent perfect absorption for acoustic
waves, Appl. Phys. Lett. 104, 121902 (2014).

[16] V. Romero-García, G. Theocharis, O. Richoux, A. Merkel,
V. Tournat, and V. Pagneux, Perfect and broadband acoustic
absorption by critical coupling, arXiv:1501.0019.

[17] J. R. Piper, V. Liu, and S. Fan, Total absorption by
degenerate critical coupling, Appl. Phys. Lett. 104,
251110 (2014).

[18] A. Merkel, G. Theocharis, O. Richoux, V. Romero-García,
and V. Pagneux, Control of acoustic absorption in one-
dimensional scattering by resonant scatterers, Appl. Phys.
Lett. 107, 244102 (2015).

[19] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders,
Fundamentals of Acoustics (John Wiley & Sons, New York,
2000), p. 291.

[20] A. Santillan and S. I. Bozhevolnyi, Acoustic transparency
and slow sound using detuned acoustic resonators, Phys.
Rev. B 84, 064304 (2011).

[21] A. Santillan and S. I. Bozhevolnyi, Demonstration of
slow sound propagation and acoustic transparency with a
series of detuned resonators, Phys. Rev. B 89, 184301
(2014).

[22] E. H. El Boudouti, T. Mrabti, H. Al-Wahsh, B. Djafari-
Rouhani, A. Akjouj, and L. Dobrzynski, Transmission gaps
and Fano resonances in an acoustic waveguide: Analytical
model, J. Phys. Condens. Matter 20, 255212 (2008).

[23] W. Tan, C. Z. Yang, H. S. Liu, Z. G. Wang, H. Q. Lin, and H.
Chen, Manipulating classical waves with an analogue of
quantum interference in a V-type atom, Europhys. Lett. 97,
24003 (2012).

[24] A. Mouadili, E. H. El Boudouti, A. Soltani, A. Talbi, B.
Djafari-Rouhani, A. Akjouj, and K. Haddadi, Electromag-
netically induced absorption in detuned stub waveguides:
A simple analytical and experimental model, J. Phys.
Condens. Matter 26, 505901 (2014).

[25] J. Y. Chung and D. A. Blaser, Transfer function method of
measuring in-duct acoustic properties. I. Theory, J. Acoust.
Soc. Am. 68, 907 (1980).

SANTILLÁN, ÆRENLUND, and BOZHEVOLNYI PHYS. REV. APPLIED 6, 054021 (2016)

054021-8

http://dx.doi.org/10.1016/0022-460X(80)90383-1
http://dx.doi.org/10.1121/1.2783122
http://dx.doi.org/10.1121/1.2783122
http://dx.doi.org/10.3397/1.2435461
http://dx.doi.org/10.1006/jsvi.1995.0165
http://dx.doi.org/10.1006/jsvi.1995.0165
http://dx.doi.org/10.3397/1/376307
http://dx.doi.org/10.3397/1/376307
http://dx.doi.org/10.1121/1.4900571
http://dx.doi.org/10.1121/1.4900571
http://dx.doi.org/10.1121/1.4808079
http://dx.doi.org/10.1016/j.apacoust.2011.04.001
http://dx.doi.org/10.1038/ncomms1758
http://dx.doi.org/10.1063/1.4915115
http://dx.doi.org/10.1088/0022-3727/48/46/465305
http://dx.doi.org/10.1088/0022-3727/48/46/465305
http://dx.doi.org/10.1063/1.4812974
http://dx.doi.org/10.1063/1.4812974
http://dx.doi.org/10.1038/nmat3994
http://dx.doi.org/10.1038/nmat3994
http://dx.doi.org/10.1063/1.4930944
http://dx.doi.org/10.1063/1.4869462
http://arXiv.org/abs/1501.0019
http://dx.doi.org/10.1063/1.4885517
http://dx.doi.org/10.1063/1.4885517
http://dx.doi.org/10.1063/1.4938121
http://dx.doi.org/10.1063/1.4938121
http://dx.doi.org/10.1103/PhysRevB.84.064304
http://dx.doi.org/10.1103/PhysRevB.84.064304
http://dx.doi.org/10.1103/PhysRevB.89.184301
http://dx.doi.org/10.1103/PhysRevB.89.184301
http://dx.doi.org/10.1088/0953-8984/20/25/255212
http://dx.doi.org/10.1209/0295-5075/97/24003
http://dx.doi.org/10.1209/0295-5075/97/24003
http://dx.doi.org/10.1088/0953-8984/26/50/505901
http://dx.doi.org/10.1088/0953-8984/26/50/505901
http://dx.doi.org/10.1121/1.384778
http://dx.doi.org/10.1121/1.384778

