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Three-qubit quantum gates are key ingredients for quantum error correction and quantum-information
processing. We generate quantum-control procedures to design three types of three-qubit gates, namely
Toffoli, controlled-NOT-NOT, and Fredkin gates. The design procedures are applicable to a system
comprising three nearest-neighbor-coupled superconducting artificial atoms. For each three-qubit gate,
the numerical simulation of the proposed scheme achieves 99.9% fidelity, which is an accepted threshold
fidelity for fault-tolerant quantum computing. We test our procedure in the presence of decoherence-
induced noise and show its robustness against random external noise generated by the control electronics.
The three-qubit gates are designed via the machine-learning algorithm called subspace-selective self-
adaptive differential evolution.
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I. INTRODUCTION

Quantum computing requires a universal set of low-error
quantum gates to enable fault-tolerant quantum computing
[1], and characterization is typically performed using
average fidelity from which the gate error rate can be
inferred [2]. A universal set of single- [3] and two-qubit [4]
gates can be employed to decompose [5] multiqubit gates
into a series of single- and two-qubit gates. In practice, this
decomposition-based approach is undesirable because it
leads to quantum circuits [6,7] with a long operation time.
We employ the recently proposed machine-learning

technique, which we name subspace-selective self-adaptive
differential evolution (SUSSADE) [8], to generate proce-
dures (i.e., a set of instructions that determine the control
parameters, and hence the effectiveness of the control
scheme) for designing single-shot high-fidelity three-qubit
gates without any need to resort to a decomposition. We test
our procedure [9] in the presence of decoherence-induced
noise and demonstrate its robustness under the effect of
random control noise. The three-qubit gates that we
consider here are Toffoli [10–12] (which was discussed
in Ref. [8] and which we give a review of here for
completeness), Fredkin [13,14], and controlled-NOT-NOT
or CXX [15] gates, which are typical three-qubit gates
employed for quantum-information processing.

The three-qubit gates that we consider in this study
are key ingredients for quantum algorithms and error
correction. A quantum Toffoli gate is necessary for (non-
topological) quantum error correction [6,7] and a key
component for reversible computing [16]. The Toffoli gate
and the single-qubit Hadamard gate comprise a universal
set of quantum gates [17,18]. The Fredkin gate enables
reversible computing [16], and it also forms a universal set
along with the Hadamard gate [19]. The CXX gate appears
in the syndrome operator measurement circuit [20] for
quantum error-correction algorithms, such as the Steane
code [21] and the surface code [15]. Although the Fredkin
and CXX gates can be decomposed into three and two CX

(i.e., CNOT) gates, respectively [4], we avoid the decom-
position-based approach and generate a procedure for
designing these three-qubit gates that achieve the same
gate action over a shorter time scale.
Thus far, Toffoli and Fredkin gates have been achieved

by decomposition into single- and two-qubit gates [22–24]
in various physical systems, yet none of these efforts have
achieved the threshold fidelity [4]. Recently, we proposed
a quantum-control scheme (called SUSSADE) for designing
a single-shot high-fidelity (> 99.9%) Toffoli gate for a
system comprising three nearest-neighbor-coupled super-
conducting artificial atoms [8]. In this work, we show that
this machine-learning technique enables the design of
other three-qubit gates, as well as ones for the same
physical model. For all of the three-qubit gates considered
in this work, we show that the gates operate as fast as a
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two-qubit-entangling controlled-Z (CZ) gate under the same
experimental constraints.
Recent progress in superconducting artificial atoms

[25–27] has made them appealing for quantum-information
processing, especially for gate-based quantum computing
[28]. An avoided-crossing-based CZ gate [29] has already
been achieved for a system comprising coupled super-
conducting artificial atoms. The idea of avoided-crossing-
based gates is to vary the energy level of artificial atoms
such that energy levels approach each other but avoid
degeneracies. These avoided crossings mix population and
dynamical phases at the corresponding levels such that the
final evolution of the system gives the required phase and
population for the target gates.
Our strategy to design the three-qubit gates is also based

on the avoided level crossings. We employ an open-loop
quantum-control approach to generate optimal external
pulses for the frequencies of the superconducting artificial
atoms. We employ machine learning as a quantum-control
tool to generate successful procedures and show that our
procedure can also be implemented in an open quantum
system where external noise is also acting on the system.
Other approaches exist for designing quantum gates for a

network of superconducting transmon systems, where one
can couple each transmon with a microwave generator [30]
or couple the transmons via tunable couplers [31] and
control these external circuit elements to evolve the system
toward a specific unitary operation. These approaches
require more resources (that is, additional circuit elements)
compared to our approach [8], where we control only the
transmon frequency via a quantum-control scheme [32,33]
and evolve the system’s dynamics toward the target gate.
Machine learning [34] is concerned with the construction

of algorithms that can learn from data and make predictions
on data. Typical machine-learning algorithms tend to be
greedy [35,36], as they need less resource and computa-
tional time to complete the learning task and also converge
faster (in comparison to nongreedy approaches [37,38]).
However, we observe that greedy machine-learning tech-
niques failed to generate a successful procedure for design-
ing high-fidelity three-qubit gates, which motivates us to
employ the nongreedy machine-learning technique. Our
learning algorithm is based on an enhanced version of the
differential evolution (DE) algorithm [39]; hence, the name
we assigned: SUSSADE [8].
The rest of the paper is organized as follows. In Sec. II,

we explain the physical model that we use to design the
three-qubit gates. In Sec. III, we discuss the avoided-
crossing-based gates for two- and three-qubit gates.
Specifically, we review the current theoretical framework
for designing an avoided-crossing-based CZ gate and also
discuss why taking the same theoretical approach is
challenging for avoided-crossing-based three-qubit gates.
In Sec. IV, we discuss our quantum-control scheme
and show how we translate the problem of designing a

three-qubit gate into a learning algorithm. In Sec. V, we
discuss the noise model. In Sec. VI, we discuss each
individual three-qubit gate and its effect on a quantum state.
Section VII presents the results. The significance of the
results is outlined in Sec. VIII, and we conclude our work
in Sec. IX.

II. PHYSICAL MODEL

We consider a system comprising three nearest-
neighbor-coupled superconducting artificial atoms [4] with
parameters appropriate for the transmon system [40,41].
Each transmon is capacitively coupled to its nearest
neighbor, where the location of each transmon is labeled
by k ¼ 1, 2, 3. The frequency εkðtÞ, in the rotating frame,
can be tuned via superconducting control electronics. The
anharmonicities of the second and third energy levels are
represented by η and η0.
We approximate η0 ¼ 3η, which is valid for the cubic

approximation of the potential for the transmon system [29].
The transmons are coupled capacitively, which yields an
XY interaction between adjacent transmons (in the rotating
frame) with a coupling strength g. The Hamiltonian for
three capacitively coupled transmons is, thus [29],

ĤðtÞ
h

¼
X3
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0
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are the generalized Pauli operators [29].
The experimental constraints for the transmons require

specific values for each physical parameter in Eq. (1). The
transmon frequencies εkðtÞ are varied between 2.5 and
−2.5 GHz. We consider

η ¼ 200 MHz; g ¼ 30 MHz: ð2Þ
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Although the physical system considered for this work
consists of superconducting circuits, our quantum-control
scheme is, however, not limited to a specific system.
The Hamiltonian (1) generating the three-qubit gates acts

on a 43-dimensional Hilbert spaceH⊗3
4 . Under the rotating-

wave approximation, this Hamiltonian is a block-diagonal
matrix, with each block corresponding to a fixed number of
excitations. This block-diagonalization property permits us
to reduce the 43-dimensional Hamiltonian to a subspace
where—at most—three excitations are present, which is the
relevant subspace for three-qubit gates.
We define a projection operator Om that truncates the

Hamiltonian (1) up to the mth excitation subspace and, for
m ¼ 3 (which allows, at most, three excitations, which is
all that we need for three-qubit gates), the projected
Hamiltonian is given by

ĤpðtÞ ¼ O3ĤðtÞO†
3: ð3Þ

We observe that the unitary evolution of the system is
unaffected by this truncation, which is what we expect from
a block-diagonal Hamiltonian.
We evolve ĤpðtÞ such that the resultant unitary

operator is

UðΘÞ ¼ T̂ exp

�
−i

Z
Θ

0

ĤpðτÞdτ
�
; ð4Þ

with T̂ being the time-ordering operator [42]. Note that
UðΘÞ is a 20 × 20 unitary operator, whereas the three-qubit
gates reside in 23-dimensional computational subspace.
Therefore, we define another projection operator P, which
projectsUðΘÞ into the computational subspace of the three-
transmon system

UcbðΘÞ ¼ PUðΘÞP†; ð5Þ

where Ucb is the projected unitary operator.
Our goal is to achieve the specific three-qubit unitary

operation (Toffoli, Fredkin, or CXX) over the duration Θ,
such that the distance between UcbðΘÞ and the target three-
qubit gate is minimal. We evolve the system Hamiltonian
(4) such that the final time-evolution operator approaches to
the target three-qubit gate modulo some phases that can be
compensated for by local z rotations on each transmon.
This phase compensation [29,43] is performed via the
excursions of transmon frequencies and is trivial for
superconducting circuits.
To steer the systemdynamics toward a specific entangling-

gate operation, we define the equivalence class of a given
three-qubit gate Utarget under local z rotations as [29]

Utarget ≡ U0
target ¼ UpostUtargetUpre; ð6Þ

where

Upre;postðβ1; β2; β3Þ≡ Rzðβ1Þ ⊗ Rzðβ2Þ ⊗ Rzðβ3Þ: ð7Þ

Rz in (7) denotes a unitary single-qubit rotation about the
z axis. Equation (7) can be explicitly expressed in terms of
fβjg, which is the set of local phases acquired by the jth
transmon:

Upre;post ¼ diagð1; e−iβ3 ; e−iβ2 ; e−iðβ2þβ3Þ; e−iβ1 ;

× e−iðβ1þβ3Þ; e−iðβ1þβ2Þ; e−iðβ1þβ2þβ3ÞÞ: ð8Þ

WeuseUpre;post, which are diagonal8 × 8matrices operating
on 23-dimensional computational subspace of the three
qubits, to perform phase compensation in the numerical
simulation of each three-qubit gate.

III. AVOIDED-CROSSING-BASED GATES

In this section, we first discuss the avoided-crossing-
based technique in designing the two-qubit entangling CZ

gate. Such a scheme was first proposed for a system of two
coupled phase qubits [44], which was later adapted for a
system of resonator-coupled superconducting qubits [29].
We describe the avoided-crossing-based CZ gate for the
physical model of two capacitively coupled frequency-
tunable transmons, with η and g (≪ η) being the anhar-
monicity and the coupling strength, respectively. This
discussion is necessary to clarify why finding a theoretical
solution for three-qubit gates is challenging, which is, in
fact, the motivation for our quantum-control approach.

A. CZ gate based on avoided level crossing

CZ gate is a two-qubit entangling gate. It exerts a Pauli
z rotation on the second (target) qubit if and only if the first
(control) qubit is j1i. The CZ gate acts on the basis states
according to

j00i↦j00i; j01i↦j01i;
j10i↦j10i; j11i↦ − j11i; ð9Þ

which leaves three two-qubit basis states intact and imposes
a sign change on one basis state.
The energy levels of two capacitively coupled transmons

are shown in Fig. 1, where we fix the frequency of the
first transmon at ε1 ¼ 6.5 GHz and allow the frequency of
the second transmon ε2ðtÞ to vary from ωoff ¼ 7.5 GHz
(detuned frequency) to

ωon ¼ ε1 þ η ¼ 6.7 GHz: ð10Þ

We vary the frequency of the second transmon using a
time-dependent error function, with a switching time of
tramp and the gate operation time of tgate. This time-
dependent frequency is [29]
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ε2ðtÞ ¼ ωoff þ
ωon − ωoff

2

�
erf

�
4t − 2tramp

tramp

�

− erf

�
4t − 4tgate þ 2tramp

tramp

��
: ð11Þ

The avoided-crossing-based CZ gate works as follows:
Initially, we detune the transmon frequencies from each
other by setting the frequency of the second transmon
equal to ε2ðt ¼ 0Þ ¼ ωoff . This designation makes all the
eigenstates of the system nondegenerate. Then we tune
the second transmon to ωon for a time

ton ¼ tgate − 2tramp; ð12Þ

and, finally, we detune the second transmon again to the
frequency ωoff. During the time ton, the computational basis
state j11imixes with the two auxiliary levels j02i and j20i,
whereas all of the other eigenstates in the computational
basis (j00i, j01i, j10i) are detuned from each other. The
parameters of the control pulse are determined such that the
mixing among the j11i, j02i, and j20i states over the time
interval ton ensures the phase factors required for the CZ

gate, as shown in Eq. (9).
Depending on the time scale ton, two distinct regimes

exist in which a CZ gate can operate: the sudden-
approximation regime and the adiabatic regime. In the
sudden-approximation regime, we vary the second qubit
frequency fast enough that the switching time can be made
sudden with respect to g (but still adiabatic with respect
to η). For the sudden-approximation regime, the switching
time has an inverse relation with the coupling factor as

ton ¼
πffiffiffi
2

p
g
: ð13Þ

Under the sudden approximation, two parameters of the
pulse, ωon and ton, must be optimized to obtain a high-
fidelity CZ gate.
On the other hand, in the adiabatic regime, the switching

is adiabatic with respect to g (and, therefore, with respect to
η as well). In this regime, stronger coupling is required
between transmons to make the gate operate as fast as the
gates in the sudden-approximation regime. This increase of
g leads to residual errors in a multiqubit device, whereas the
advantage of operating the transmon in the adiabatic regime
is that it suffices to optimize only one parameter. One
parameter is sufficient because the adiabatic regime ensures
that the population of each energy level is preserved. A CZ

gate in the adiabatic regime is demonstrated in Ref. [45].

B. Avoided-crossing-based approach
for three-qubit gates

In either the sudden or the adiabatic regime, the idea of
engineering a pulse for the avoided-crossing-based gate in a
superconducting system remains the same: designing a
control pulse for the qubit frequency, such that the j11i
state mixes with the other states in the second excitation
subspace, while the states in zero- and single-excitation
subspaces remain detuned from each other. However, for
practical implementations, both sudden and adiabatic
regimes are unsuitable for obtaining the threshold fidelity
required for fault tolerance. Instead, advanced machine-
learning-based techniques can be employed to engineer
optimal pulses, which is the motivation for our work.
One idea for designing three-qubit gates is to couple three

transmons via a superconducting cavity, usually referred to
as the circuit-quantum-electrodynamics (CQED) architec-
ture [46], and tune the transmon frequencies in the dis-
persive regime such that the time-evolution operator gives
rise to the target three-qubit at the end of the operation. Such
an approach has already been used to demonstrate a Toffoli
gate [7]. We, however, do not consider the CQED hardware
in our work, as the architecture can contain only a few
transmons inside a superconducting cavity and, therefore, is
not scalable.
Instead, we consider a one-dimensional chain of three

transmons with nearest-neighbor coupling. To see if such
an approach is suitable for avoided-crossing-based three-
qubit gates, we first plot the energy spectrum of such a
three-transmon system in Fig. 2, where we fix the frequen-
cies of the first and third transmons to 4.8 and 6.8 GHz,
respectively, and vary the frequency of the second one from
4.5 to 7.5 GHz. We also set

g ¼ 30 MHz; η ¼ 200 MHz: ð14Þ

In contrast to the two-qubit case, the energy spectrum
of a three-transmon system is crowded with many level
crossings (or anticrossings, in the presence of an inter-
action). For this system, therefore, finding optimal pulses

FIG. 1. The energy (E) spectrum of the system Hamiltonian of
two capacitively coupled transmons. The frequency of the first
transmon is fixed at 6.5 GHz. The frequency ε2ðtÞ of the second
transmon varies from 7.5 to 6.5 GHz.
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theoretically for the transmon frequencies, such that the
j111i state mixes strongly with the other states in the third
excitation subspace, whereas all of the other states are
detuned from each other is a challenging task, which is why
we employ the quantum-control scheme and, specifically,
the machine-learning technique to devise a procedure for
designing such three-qubit gates [8].

IV. QUANTUM CONTROL

In this section, we first give the application of quantum
control and elaborate how a gate-design problem can be
transformed into a quantum-control problem. We introduce
supervised machine learning as a tool to generate proce-
dures for designing quantum gates. We explain the map
from a quantum-control problem to a learning problem in
the second part of this section, then show that generating a
successful procedure via the learning algorithm becomes a
feasibility problem for which optimization algorithms can
be employed. We discuss some existing optimization
algorithms that we employ to find feasible procedures,
discuss how these algorithms remain inadequate to yield
the required fidelity, and introduce an enhanced version of
the differential-evolution algorithm.

A. Quantum-gate design as a control problem

In the context of optimal-control theory, the main task of
quantum control is to investigate how to steer quantum
dynamics toward a specific quantum state or operation [33].
The emergence of new quantum technologies has resulted
in new applications for quantum control in various fields,
such as femtosecond lasers [47,48], nuclear magnetic
resonance and other resonators [49–53], laser-driven
molecular reactions [54,55], and quantum-gate synthesis
for quantum computing [56]. Specifically, we employ a
quantum-control scheme to design fast and high-fidelity
three-qubit gates.

As we explained earlier, a chain of three capacitively
coupled transmons constitute the physical model for the
three-qubit gates. This physical system evolves according
to Eq. (4), and our goal is to steer the evolution toward
the target three-qubit gate operation. In order to turn the
problem into a quantum-control problem, we need to
clarify what the control parameters are. In our control
scheme, control parameters are the qubit frequencies which
can be tuned via external pulses. The task of finding
the optimal shape for the external pulses can be performed
via quantum-control schemes. Machine learning can be
employed as a quantum-control tool to perform this task.

B. Supervised machine learning:
A quantum-control tool

The task of machine learning [57] is to develop algo-
rithms which can learn from system behavior and predict
the future behavior of the system based on their past
evolution. Machine-learning algorithms have already been
applied to various problems in quantum-information sci-
ence, such as phase estimation [9], asymptotic-state esti-
mation [58], and discriminating quantum-measurement
trajectories and improving readout [59]. One can classify
the machine-learning algorithms in three distinct catego-
ries, namely, supervised learnings, unsupervised learnings,
and reinforcement learnings [57]. Our focus is on super-
vised-machine-learning algorithm as a quantum-control
tool.
A supervised-learning task [60] is to infer a function

(hypothesis) from the labeled data (training set). The
training data comprises an input vector accompanied by
its corresponding output vector. A supervised-learning
algorithm trains the hypothesis on the training data to
construct an inferred hypothesis. This inferred hypothesis
can be further used to label novel data. Examples of
supervised-learning problems are regression or classifica-
tion problems [61,62]. The idea of supervised learning can
be generalized to develop quantum-control schemes that
deliver successful procedures for quantum-gate design.
In what follows, we describe the procedure for turning a
gate-design problem into a supervised-machine-learning
problem.
A quantum logic gate is a map between an input and an

output state. One can always represent the action of any
quantum logic gate on the basis elements in terms of a truth
table. There is a one-to-one correspondence between the
input and output elements in this truth table, as the quantum
logic gates are themselves reversible. In the context of a
supervised-learning problem, we consider the truth table as
the training set. Loosely speaking, we train our hypothesis
on the truth-table data as the training set.
Having clarified that the truth table represents the

training set, we now discuss what the hypothesis is. In
the context of quantum-gate design, the hypothesis is the
external pulses. Therefore, we train the parameters of the

4.5 5.5 6.5 7.5
0

8

16

24

32

40

FIG. 2. The energy (E) spectrum of three nearest-neighbor-
coupled transmons. The first and third transmon frequencies are
fixed at 4.8 and 6.8 GHz, respectively. The frequency of the
second transmon varies from 4.5 to 7.5 GHz.
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external pulses on the truth-table data to shape the external
pulses such that the system evolution approximates the
target gate. If the hypothesis is learned successfully, it
generates a procedure which determines the shape and
strength of the external pulses. We have explained the
training set and hypothesis in the context of quantum-gate
design. However, we still need to know how to measure the
success of our learning procedure, as well as the explicit
form of the hypothesis (the external field), which we
elaborate on in the next two subsections.

C. Control pulses as learning parameters

In an avoided-crossing-based gate, the energy levels of
the artificial atoms are varied using the external pulses to
steer the dynamics of the system toward the desired
operation. Our learning algorithm uses these external
pulses as the learning parameters. Although the quan-
tum-control approach can generate any type of pulses for
εkðtÞ, we consider only two types of pulses: piecewise
constant and piecewise error function.
In the case of the piecewise-constant function, we

discretize each transmon frequency, εkðtÞ, with k ∈
f1; 2; 3g and express it as a sum of N orthogonal constant
functions over the interval [0, Θ]. Each εk then can be
shown as

εk ≔

0
BBBBB@

εk1
εk2

..

.

εkN

1
CCCCCA; ð15Þ

with each εkl representing the magnitude of the kth pulse at
the lth time step. The time bins are chosen to be equally
spaced over the interval Θ and are, therefore, given by

Δt ¼ Θ
N − 1

: ð16Þ

The pulse generators for superconducting devices can
generate the piecewise-constant functions. However, such
rectangular-shaped pulses get distorted by the Gaussian
filters that bridge the control circuitry with the transmons.
More-realistic pulse shapes that can take such distortions
into account should, therefore, be considered.
In order to consider the distortion on the rectangular

pulses, we connect each control parameter in Eq. (15) by
including the following error-function coefficient [29] in

εkðtÞ ¼
εkl þ εklþ1

2
þ εklþ1

− εkl
2

erf

�
5

Δt

�
t −

tl þ tlþ1

2

��
ð17Þ

for tl ≤ t ≤ tlþ1, with tl being the lth time step. The
resultant smooth pulse expressed in Eq. (17) accounts

for the first-order distortion caused by Gaussian filters.
In Sec. VIII C 3 we explain how one can implement an
adaptive control loop to suppress the higher-order noise.
In general, designing smooth pulses is computationally

more expensive than computing for piecewise-constant
functions. Therefore, we choose less expensive piece-
wise-constant functions to analyze the gate fidelity against
various parameters, but we could incorporate other shapes
if the extra computational cost is warranted. We justify this
choice by showing that the gate fidelity depends not on the
type of the pulse, but on the number of learning parameters.

D. Confidence or fitness functional

The standard method to measure the performance of a
supervised-learning algorithm is to define a confidence for
the learned hypothesis. The confidence is the ratio of the
number of training data that are learned successfully to the
total number of training data. If the learning task is to
generate a procedure for designing a quantum gate, one can
define this confidence, F , by the distance between the
target and approximated unitary operators:

F ¼ ∥PUðΘÞP† − Utarget∥; ð18Þ

with ∥ • ∥ being the operator norm, so F is the trace
distance [63] between the target and actual evolution
operators projected to the computational subspace.
Our machine-learning algorithm uses an explicit form of

Eq. (18), where

F ¼ 1

8
jTr½U†

targetUcbðΘÞ�j: ð19Þ

Note that F ¼ 1 if UcbðΘÞ corresponds to the target three-
qubit gate Utarget (Toffoli, Fredkin, or CXX), and 0 ≤ F < 1

otherwise.
In the context of quantum-gate design, the confidence

functional F is called the intrinsic fidelity, which refers to
the fidelity between the unitary evolution of the closed
quantum system of Eq. (1) and the target operation when
the decoherence noise is ignored. We follow the standard
practice of gate design by first considering a closed
quantum system and generating a successful procedure
for the learning task, then evaluate the performance of the
generated procedure in the presence of noise. We call the
confidence of our learned hypothesis in the presence of
noise the average state fidelity F̄ [8], which is

F̄ ≔
1

8

X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhψkjρfinalk jψkij

q
; ð20Þ

where ρfinalk is the final density matrix of the system and
jψki is the kth basis state in the computational subspace.
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E. Machine learning and optimization algorithms

For a gate-design problem, one can turn the problem of
finding a successful procedure into a feasibility problem by
setting the fidelity between the obtained unitary operation
and the target gate to a fixed value that is acceptable by
fault-tolerant quantum computing. All procedures that
result in an error rate within the threshold value are called
feasible (successful) procedures. Various optimization
algorithms can be employed to tackle this feasibility
problem.
Greedy algorithms [35,36,64] are at the heart of the

machine-learning techniques. Given a quantum-control
system with no physical constraints, finding a feasible
procedure is a trivial task for greedy algorithms [65].
However, we have already shown [38] that reducing either
the gate operation time Θ or the number of control
parameters raises the difficulty of the quantum-control
problem. One might need to try different optimization
algorithms to generate procedures for designing quantum
gates under the constraints of operation time and exper-
imental resources.
We examine the existing quantum-control schemes,

including the quasi-Newton [66–70] and Nelder-Mead
[71] algorithms (greedy) as well as the DE [39] and
particle-swarm-optimization [72] algorithms (nongreedy).
We observe that all of these schemes fail to generate a
fidelity better than 99.5% (summarized in Table V), with
the best fidelity obtained by DE. We thus enhance DE by
introducing modifications into its standard version to
enable feasible procedures that lead to intrinsic fidelity
beyond 99.99%. We first give the details of the standard
version of DE, then discuss our machine-learning
approach, SUSSADE.

F. Differential evolution

Differential evolution is an evolutionary algorithm (EA).
Similar to other EAs, DE is inspired by biological
evolution. The robustness and effectiveness of DE have
already been studied by researchers in various fields, such
as machine learning [57], optimization [73], and image
classification [74].
DE is a population-based heuristic-search algorithm.

Each member of the initial population breeds with three
random members of the same generation to generate a
“daughter.” The fittest of the original member and the
daughter survive to the next generation. Three distinct
operations exist: mutation, crossover, and selection. These
operations form the mathematical structure of DE. We now
explain each of these operations in details.
For each initial population member Di, with i ∈

f1;…; Pg and P being the population size, the mutation
operation generates a trail vector Mi as follows:

Mi ¼ Dri1
þ μðDri2

−Dri3
Þ; ð21Þ

where

fri1 ; ri2 ; ri3g ∈ f1;…; Pg ð22Þ

represents discrete random numbers and the mutation rate μ
is a random number uniformly sampled from [0, 1]. The
mutation rate determines the step size on the control
landscape. A higher value of μ means that DE tends to
explore the unsearched region of the landscape, rather than
exploiting the current knowledge about the landscape.
For each initial population member Ci and trial vector

Mi, the crossover operation generates a target vector Ci,
such that

CiðjÞ ¼
�
MiðjÞ if rij < ξ

DiðjÞ otherwise;
ð23Þ

where j is the index denoting the dimension of each
population member. In our quantum scheme, the maximum
value of j is equal to the number of control parameters K.
rij is a uniform random number sampled from [0, 1]. ξ is
the crossover rate of the algorithm. A higher ξ means that
DE exploits the current knowledge about the quantum-
control landscape without spending too much time search-
ing for the unexplored area of the landscape.
The last operation of DE is the selection operation, where

we construct

D0
i ≔

�
Ci if fðCiÞ > fðDiÞ
Di otherwise;

ð24Þ

with fðCiÞ being any fitness function, which is the fidelity
function (19) in our case. In an iterative process, the
resultant new population at generation G replaces the
population in the previous generation, G − 1, and DE
continues with the new generation. The iterative process
aborts when either the threshold fidelity is reached or a
predefined number of generations is attained.
Similar to other EAs, a DE algorithm faces two obstacles

when applied to problems with a large number of dimen-
sions. First, finding the optimal algorithmic parameters
(i.e., μ and ξ) which lead to the best performance of DE is
computationally expensive. Second, DE converges slowly
to the promising region of the landscape where the optimal
solution exists. We address these two weaknesses of DE by
proposing the enhanced version, called SUSSADE.

G. Subspace-selective self-adaptive
differential evolution

There are two approaches for finding the optimal
algorithmic parameters for DE. One can run DE with
many initial guesses to find the optimal parameters. This
method is computationally expensive, as it needs many trial
runs of DE. This method also does not propose a general
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solution for the problem of finding the algorithmic param-
eters because a new set of trial runs is needed if the learning
problem is changed.
An alternative approach is to self-adaptively [75] change

the parameters at each generation G as follows:

μi;Gþ1 ¼
�
μl þ r1μu if r2 < κ1

μi;G otherwise
ð25Þ

and

ξi;Gþ1 ¼
�
r3 if r4 < κ2

ξi;G otherwise;
ð26Þ

where

rj; j ∈ f1; 2; 3; 4g ð27Þ

represents random numbers uniformly sampled from (0, 1],
and μl, μu, κ1, and κ2 are assigned to fixed values of 0.1,
0.1, 0.1, and 0.9, respectively, Using a self-adaptive version
of DE improves the obtained fidelity up to 0.993, but the
result is still subthreshold because of the high dimension-
ality of the learning problem. Therefore, the next step is
to enhance the self-adaptive DE using the cooperative-
coevolution (CC) approach [76].
CC decomposes a high-dimensional problem into prob-

lems over several subspaces and evolves each subcompo-
nent of the original high-dimensional problems using a
choice of EA. CC then cooperatively combines the solution
of each subcomponent to form the final solution. There are
several methods for decomposing the high-dimensional
problem into smaller subcomponents [76–79]. The easiest
method is to decompose a K-dimensional problem into K
one-dimensional problems and to evolve each component
using EA.
This approach has drawbacks originating from ignoring

the interdependencies between variables. One alternative
method is to split the problem dimension in two halves and
evolve each half over the course of the learning process.
However, if K is high, K=2 is also high and, therefore, the
problem of a large number of dimensions is not addressed
properly. Here, we take a different approach in decompos-
ing the high-dimensional problem. Our approach is
inspired by differential evolution with cooperative coevo-
lution (DECC-II) [80]. We first give a short description on
DECC-II, then explain the enhanced version of DE.
DECC-II decomposes a K-dimensional problem into m-

dimensional subspaces and runs the learning algorithm on a
subspace for a fixed number of cycles s, while keeping the
other subspaces unchanged. DECC-II combines CC with
self-adaptive DE with neighborhood search to address both
issues: the slow convergence of DE and ways to find the
optimal algorithmic parameters.

Using DECC-II in its original form does not improve the
fidelity, and the run-time and convergence of DE still
remains slow in our case, as evaluating the fitness function
is computationally expensive. We also find our result to be
influenced by the choice of s and m, and finding the
optimal values of these parameters demands additional
computational resources and trial runs. Even with this
overhead, the threshold fidelity is not achieved.
Inspired by the DECC-II algorithms, we set s ¼ 1 and

choose the dimension of subspace based on a random
projection over the m-dimensional subspace with
m ∈ f1; 2; 3; 4; 5g. Now, there is no need to look for the
optimal values of s andm to perform the optimization. This
new strategy, however, makes the convergence slower as, in
each generation, only a small part of the candidate solutions
are being selected for the optimization.
In order to enhance the convergence, our algorithm

randomly switches breeding between the subspace and
the whole space according to the value of an input switch
parameter S ∈ ½0; 1�, such that a uniformly distributed
random number rj ∈ ½0; 1� at generation j restricts breeding
to the subspace, if rj < S, and breeds in the whole space
otherwise. As our algorithm selects an m-dimensional
subspace at each generation and self-adaptively evolves
the mutation and crossover rates, which we refer to as
SUSSADE. For our purposes, we observe that choosing
m ¼ 1 suffices, which signifies that the selected subspace is
trivial. This extreme case is a one-dimensional manifesta-
tion of SUSSADE.

V. NOISE MODEL

In order to incorporate decoherence into our system’s
evolution, we model each transmon as a harmonic oscillator
suffering from the environmental effect [81]. The
decoherence of each harmonic oscillator is represented
by two damping rates, amplitude and phase damping, with
the corresponding amplitude relaxation time T1 and
dephasing time T2. In order to make the noise model
simpler, we assume T ¼ T1 ¼ T2, which is a valid
assumption for transmons with a tunable frequency [29].
Equation (4) expresses the system evolution in the

absence of decoherence. In the presence of noise, we
model the system evolution by the time-dependent density
matrix which is decomposed in terms of the sum of Kraus
matrices as Lk [82],

ρðtÞ ¼
Xn
k¼0

LkðtÞρð0ÞL†
kðtÞ; ð28Þ

with Kraus matrices satisfying the completeness relation

Xn
k¼0

L†
kLk ¼ 1 ð29Þ
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at each time step. We first discuss the construction of the
Kraus matrices for each transmon.
Constructing the Kraus-matrix representation for a sys-

tem comprising three capacitively coupled transmons will
then be straightforward by performing all of the possible
tensor products of three transmons. We also assume that
the decoherence only affects each individual transmon
separately.

A. Amplitude damping

The Kraus-matrix representation of amplitude damping
of a single qubit (treated as a truncated harmonic oscillator)
coupled to the environment can be modeled as multimode
oscillators [81]. One can easily generalize this approach to
represent the Kraus representation of amplitude damping of
a single transmon (modeled as a four-modal harmonic
oscillator) coupled to the environment modeled as multi-
mode oscillators, where

AlðtÞ ¼
X3
j¼l

ffiffiffiffiffiffiffiffiffiffi�
j
l

�s
ðe−ðt=T1ÞÞðj−lÞ=2ð1− e−ðt=T1ÞÞl=2jj− lihjj;

ð30Þ

with l ∈ f0; 1; 2; 3g labeling the Kraus matrices and
expð−t=TÞ representing the amplitude-damping factor,
which decays exponentially with the time scale T1.

B. Phase damping

We express the Kraus-matrix representation of the phase
damping of a single transmon (with four energy levels)
coupled to the environment [81] as

AlðtÞ ¼
X3
j¼0

exp

�
−

j2t
2T2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj2t=T2Þl

l!

r
jjihjj; ð31Þ

with l ∈ f1; 2; 3; 4g. Al is a Kraus matrix, and T2 indicates
the time scale for dephasing. Both in Eq. (30) and in
Eq. (31), we need to put an upper bound on the Kraus-
matrix index l to enable a numerical simulation of the
decoherence.
Such an upper bound would violate the completeness

relation (29). However, if the evolution time of the quantum
system t is much smaller than the coherence time T, the
higher-order terms in Eqs. (30) and (31) damp exponen-
tially with respect to t=T. As, in our case, t ≪ T, we
consider l only up to 3 for both amplitude and phase
damping, and we discard the higher-order terms in our
numerical calculation, as they have negligible effects.

VI. THREE-QUBIT LOGICAL GATES

In this section, we provide details on the Toffoli, Fredkin,
and CXX gates. We discuss the circuit model of each gate

and give the truth tables showing how the basis states
transform under the actions of these gates.

A. Toffoli gate

AToffoli gate is a three-qubit gate that applies a Pauli-X
operation on the third qubit if the quantum state of the first
two control qubits are j11i and does nothing otherwise. A
Toffoli gate is also called a controlled-controlled-NOT gate,
which is equivalent to a controlled-controlled-Z (CCZ) gate
up to a local Hadamard transformation on the target
qubit [8].

CCZ gate is a three-qubit gate that applies a Pauli-Z
operator on the third qubit if the quantum state of the first
two qubits are j11i and, otherwise, leaves the state of the
third qubit unchanged. In order to design the Toffoli
gate, we show how to implement the CCZ gate only
since the Hadamard gates are trivial for superconducting
circuits [3,83].
In our supervised-learning method, the truth table of the

CCZ gate represents the training set. One can define the
truth table of the CCZ gate based on its action on the three-
qubit basis states (see Table I).
To date, the design of a high-fidelity Toffoli gate has

been investigated in several physical systems, with the
achieved fidelities limited to 81% in a postselected pho-
tonics circuit [84], 71% in an ion-trap system [10], 68.5%
in a three-qubit circuit QED [11], and 78% in a four-qubit
circuit QED [7]. We recently proposed a quantum-control
approach to designing a high-fidelity (> 99.9%) Toffoli
gate for a system comprising three nearest-neighbor-
coupled transmons [8].

B. Fredkin gate

A Fredkin gate (see Fig. 3) is a three-qubit gate that
applies a SWAP operation between the second and third
qubits, if the state of the first qubit is j1i, and leaves the
state of the qubits unchanged otherwise. A Fredkin gate is
an excitation-number-preserving operation, where the out-
put state has the same number of excitations as that for the
input states. It is also a self-inverse operation, which means

TABLE I. The truth table for the CCZ gate. C1 and C2 denote the
control qubits and T represents the target qubit.

Input Output

C1 C2 T C1 C2 T

j0i j0i j0i j0i j0i j0i
j0i j0i j1i j0i j0i j1i
j0i j1i j0i j0i j1i j0i
j0i j1i j1i j0i j1i j1i
j1i j0i j0i j1i j0i j0i
j1i j0i j1i j1i j0i j1i
j1i j1i j0i j1i j1i j0i
j1i j1i j1i j1i j1i −j1i
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that applying two consecutive Fredkin gates generates
the identity operation. The Fredkin gate is universal for
a reversible-classical computation, as it can be used to
construct any other reversible-classical logic gates [85].
The truth table of the Fredkin gate is shown in Table II.

In this representation, C denotes the control qubit and T1

and T2 represent the target qubits. This truth table provides
the training set for Fredkin for supervised learning.
Proposals for implementing the Fredkin gate are mainly

restricted to the context of linear- and nonlinear-optical
systems, and there have been no proposals yet for a single-
shot Fredkin gate with superconducting circuits. Here, we
employ the quantum-control scheme to design a fast single-
shot high-fidelity Fredkin gate for a system comprising
three nearest-neighbor-coupled superconducting transmon
systems.

C. CXX

CXX is a three-qubit gate that applies Pauli-X operations
on the second and third qubits when the first qubit is j1i and

leaves the state of the qubits unaltered otherwise. CXX gate
is equivalent to controlled-Z-Z (CZZ) gate up to local
Hadamard operations on both the second and the third
qubits (see Fig. 4):

CXX ¼ ½1 ⊗ H ⊗ H�CZZ½1 ⊗ H ⊗ H�: ð32Þ

The CZZ gate is a three-qubit gate that applies a Pauli-Z
operation on the second and third qubits, if and only if the
first qubit is j1i. In order to design the CXX gate, we also
assume that the implementation of fast and high-fidelity
Hadamard gates are trivial for superconducting circuits
[3,83]; hence, we employ the quantum-control scheme to
design the high-fidelity CZZ gate.

CZZ gate can easily be constructed by consecutive
operations of two CZ gates. A high-fidelity CZ gate has
already been proposed with a gate time of about 26 ns [29].
Therefore, a high-fidelity CZZ gate decomposed into
two consecutive CZ gates can be readily designed with a
gate-operation time no longer than 52 ns. However, a
CZZ gate with a shorter operation time is more useful for
quantum error correction, which motivates us to employ the
quantum-control scheme for this problem.
The truth-table representation of a CZZ gate is shown in

Table III. In this table, C denotes the control qubit and T1

and T2 represent the target qubits. We use the truth-table
data as the training set to train the qubit frequencies (our
hypothesis).

VII. RESULTS

In this section, we first review the results for designing a
high-fidelity single-shot Toffoli gate from Ref. [8], then
present our analysis of performance of the Toffoli gate
against the effect of random noise on the learning param-
eters (not given in Ref. [8]). Next, we present the results for
designing single-shot high-fidelity Fredkin and CXX gates.
For each of these gates, we first give the optimal piecewise-
constant and piecewise-error-function pulses that steer the

FIG. 3. The quantum-circuit representation of Fredkin
(controlled-SWAP) gate. The horizontal solid back line is the
circuit wire, the filled circle denotes the control qubit, and the
large cross sign shows the SWAP gate which acts on the target
qubits (the second and third qubits).

TABLE II. The truth table representation of Fredkin gate. C
denotes the control qubit and T1 and T2 represent the target qubit.
The column under the output and input columns show the state of
the three qubits before and after applying the Fredkin gate.

Input Output

C T1 T2 C T1 T2

j0i j0i j0i j0i j0i j0i
j0i j0i j1i j0i j0i j1i
j0i j1i j0i j0i j1i j0i
j0i j1i j1i j0i j1i j1i
j1i j0i j0i j1i j0i j0i
j1i j0i j1i j1i j1i j0i
j1i j1i j0i j1i j0i j1i
j1i j1i j1i j1i j1i j1i

TABLE III. The truth-table representation of a CZZ gate. C
denotes the control qubit and T1 and T2 represent the target
qubits. The output and input columns show the states of the three
qubits before and after applying the CZZ operation.

Input Output

C T1 T2 C T1 T2

j0i j0i j0i j0i j0i j0i
j0i j0i j1i j0i j0i j1i
j0i j1i j0i j0i j1i j0i
j0i j1i j1i j0i j1i j1i
j1i j0i j0i j1i j0i j0i
j1i j0i j1i j1i j0i −j1i
j1i j1i j0i j1i −j1i j0i
j1i j1i j1i j1i j1i j1i
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system evolution toward the threshold fidelity. We then
investigate the dependence of intrinsic fidelities on the
coupling strength between transmons.
We test robustness of our optimal pulses for Fredkin and

CXX gates by applying uniformly distributed random noise
on each of the learning parameters and then calculating the
intrinsic fidelity in the presence of such noise. Finally, we
give the result for the average state fidelities in the presence
of decoherence-induced noise.

A. Toffoli

A set of piecewise-constant and piecewise-error-function
pulses are obtained via the SUSSADE algorithm for a
single-shot high-fidelity Toffoli gate, which operates over
26 ns (see Fig. 1 in Ref. [8]) and has the same number of
learning parameters for both pulses. The resultant fidelity
for the Toffoli gate is higher than 0.999, even in the
presence of decoherence (see Fig. 3 in Ref. [8]).
We also explore the dependence of the intrinsic fidelity

over the time of the system evolution by fixing the coupling
strength g to various values and running the SUSSADE
for the less-computationally-expensive piecewise-constant
pulses. The control pulses are discretized into equally

spaced time intervals of 1 ns, which give rise to learning
problems with different learning parameters. For each value
of g, we also show the dependence of intrinsic fidelity over
the gate-operation time [see Fig. 2(a) in Ref. [8]].
We study the robustness of the designed pulse against the

random noise on the learning parameters. In order to test
the robustness, we choose a sample optimal pulse for the
Toffoli gate and add random values [δε × randð−1; 1Þ] to
the learning parameters at each time bin, with δε varying
from 0 to 3000 kHz. We then use the distorted pulse to
calculate the intrinsic fidelity for each value of δε. Figure 5
shows the change in intrinsic fidelity originated from such
random noise on learning parameters.

B. Fredkin

We employ SUSSADE to design a high-fidelity
Fredkin gate for a system comprising three nearest-
neighbor-coupled superconducting transmons. The system
Hamiltonian evolves over 26 ns under the piecewise-
constant pulse [see Fig. 6(a)], where the final evolution
approximates a Fredkin gate with an intrinsic fidelity of
F ¼ 0.9999. We also show a more realistic piecewise-
error-function pulse in Fig. 6(b). The learning algorithm

FIG. 4. The quantum-circuit representation of the CXX gate (left
panel), which is equivalent to the CZZ gate up to local Hadamard
gates (right panel). The horizontal solid black lines are circuit
wires, the filled circle represents the control qubit, and the bun
symbol denotes the Pauli-X operator acting on the target qubit.
The boxes with Z and H denote the Pauli-Z and Hadamard
operations, respectively.
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× 10
−3

0.9992

0.9995

0.9997

0.9999

1

FIG. 5. Intrinsic fidelity of the Toffoli gate F as a function of δε
for the CCZ gate. The vertical red dotted line denotes the
threshold, such that F > 0.9999 on the left of the dotted line.

0 5 10 15 20 26
−2.5

0

2.5

0 5 10 15 20 26
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FIG. 6. Optimal pulses for designing a Fredkin gate with a
resultant fidelity better than 0.999 and a gate-operation time of
26 ns. System frequencies, εi, are varied from −2.5 to 2.5 GHz,
which are within the experimental requirements of transmon
implementation. The black dots denote the learning parameters
for SUSSADE. (a) The piecewise-constant pulses for each
transmon frequency. (b) The piecewise-error-function pulses
for each transmon frequency.
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uses the same number of learning parameters to shape the
transmon frequencies through the learning procedure.
In order to show that the efficacy of the quantum-control

approach does not depend on the type of the gate, we
conduct the same analyses on the Fredkin gate as we did for
the Toffoli gate. In Fig. 7(a), we analyze the change in
intrinsic fidelity with the gate-operation time for different
values of coupling strengths. In Fig. 7(b), we fix the
intrinsic fidelity at F ¼ 0.999 and compute the relation
between the coupling strength and the inverse of the gate-
operation time, where the points on the curve show the
actual numerical data, and the solid line is the cubic-fitted
interpolation plot.
Figure 8 shows the evolution of the system under the

decoherence. We set g ¼ 30 MHz and evolve the system
toward the Fredkin gate, with an intrinsic fidelity higher
than F ¼ 0.9999. Then we apply the noise model on each
transmon to analyze how the fidelity changes over the
coherence time, T, of each transmon. Under our noise

model, each transmon goes under amplitude and phase
damping, and we assume that T ¼ T1 ¼ T2 for tunable
transmons.
Figure 9 shows the effect of random noise on the learning

parameters of the Fredkin gate. We choose the optimal
pulse shown in Fig. 6 and apply random noise up to
3000 kHz on the learning parameters. We then use the
distorted pulse to investigate the change in the intrinsic
fidelity as a function of the applied random noise.

C. CZZ

Figure 10(a) shows the piecewise-constant pulse gen-
erating a high-fidelity CZZ gate in 31 ns with an intrinsic
fidelity higher than 0.9999. We have 31 learning param-
eters for each pulse (93 in total) to design the pulse shapes
for the transmon frequencies. Under the piecewise-error-
function pulse [shown in Fig. 10(b)], the system evolution
approximates a CZZ gate with a fidelity higher than 0.9999
in the same gate-operation time as the piecewise-constant
pulse. In designing the optimal pulses in Fig. 10, we
set g ¼ 30 MHz.

20 22 24 26 28
0.87

0.89

0.91

0.93

0.95

0.97

(a)

20 30 40 50
0.038

0.04

0.042

0.044
(b)

0.9999

FIG. 7. (a) The dependence of intrinsic fidelity of the Fredkin
gate on the evolution time τ of the system for various values of g.
The discretized values show the actual numerical data with the
triangles, squares, circles, and diamonds corresponding to the
following values of g: 20, 30, 40, and 50 MHz, respectively. A
cubic interpolation fits the curves to the data. (b) The relation
between the inverse of the gate-operation time and the coupling
strength between transmons, where the dots denote the actual
numerical results for various values of g: g ∈ f20; 30; 40; 50g. A
linear fit interpolates the points to the actual data.

20 30 40 50 60
0.9986

0.999

0.9994

0.9998

FIG. 8. Fidelity vs coherence time for the Fredkin gate. The
dots denote the actual numerical data and the red solid line shows
a cubic-fit interpolation on the actual data.
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FIG. 9. Intrinsic fidelity F vs random noise applied to the
optimal pulse of the Fredkin gate. The vertical red dotted line
denotes the threshold, such that on the left side of the line
F > 0.9999.
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We perform the same analysis on the dependence of
intrinsic fidelity on the gate-operation time as we did for
Toffoli and Fredkin gates. The analysis is performed
for various values of coupling strengths and is shown in

Fig. 11(a). The discrete points on the plot show the
actual data, and the curves are the cubic fit to the data.
Figure 11(b) represents the relation between the inverse of
the gate-operation time and coupling strength. The discrete
points on the plot show the actual numerical data, and the
solid line is the linear fit to data.
Figure 12 shows the decoherence-induced noise for the

CZZ gate. We plot the fidelity vs the transmon coherence
time. The actual discrete points are connected via a linear
interpolation. Similar to the Toffoli and Fredkin gates, the
decoherence appears in terms of the amplitude and phase
damping on the transmons. Here, the coupling strength
is g ¼ 30 MHz.
We follow the same procedure as with the Toffoli

and Fredkin gates to test the robustness of our designed
pulse for the CZZ gate. We employ the optimal pulse in
Fig. 10 and apply random noise on each learning parameter.
Figure 13 shows the effect of such random noise on
the intrinsic fidelity of the CZZ gate, which operates
in 31 ns.
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FIG. 10. Optimal pulses for designing a CZZ gate with a
resultant fidelity better than 0.999 and a gate-operation time
of 31 ns. System frequencies, εi, vary from −2.5 to 2.5 GHz,
which are within the experimental constraints of transmon
implementation. The black dots denote the learning parameter for
SUSSADE. (a) The piecewise-constant pulses for each transmon
frequency. (b) The piecewise-error-function pulses for each
transmon frequency.
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FIG. 11. (a) The dependence of the intrinsic fidelity of the CZZ

gate on the evolution time τ of the system for various values of g.
The discretized values show the actual numerical data, with the
diamonds, triangles, circles, and squares corresponding to the
following values of g: 20, 30, 40, and 50 MHz, respectively. A
cubic interpolation fits the curves to the data. (b) The relation
between the inverse of the gate-operation time and the coupling
strength between transmons, where the dots denote the actual
numerical results for various values of g: g ∈ f20; 30; 40; 50g. A
linear fit interpolates the points to the actual data.
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FIG. 12. Fidelity vs coherence time for the CZZ gate. The dots
denote the actual numerical data and the blue solid line shows a
cubic-fit interpolation on the actual data.
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FIG. 13. Intrinsic fidelity F vs δε for the CZZ gate. The vertical
red dotted line denotes the threshold, such that on the left side of
this line F > 0.9999.
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VIII. DISCUSSION

We employ a one-dimensional system comprising three
coupled superconducting artificial atoms to design single-
shot high-fidelity three-qubit gates, such as Toffoli,
Fredkin, and CXX gates. Our results include the optimal
pulses for each three-qubit gate, analysis of dependence of
the intrinsic fidelity on the physical-model parameters, and
analysis of performance of these gates under decoherence-
induced noise. Table IV shows a comparison among the
numerical simulation of optimal Toffoli, Fredkin, and CXX

gates for the same coupling strength, g ¼ 30 MHz. The
results indicate that the efficacy of SUSSADE is indepen-
dent of the desired quantum operations. In this section, we
discuss the results for all three gates. We first elaborate
on our choice of the control pulses. Then we discuss the
dependence of fidelities for three-qubit gates on the
physical-model parameters, discuss the effects of noise,
and, finally, compare the SUSSADE scheme to alternative
approaches.

A. Control pulses

To formulate the problem of designing the high-fidelity
quantum gates into a learning algorithm, we represent the
qubit frequency in terms of external control functions (the
hypothesis). The choice of the control function is ubiqui-
tous and we choose only two pulse profiles, piecewise
constant and error piecewise constant, which are relevant
for superconducting control electronics. The learning
algorithm shapes the external pulses to obtain high-fidelity
quantum gates. Each of these control pulses has its own
advantage and drawback in terms of the computational
resource and practical implementation.
The piecewise-constant control function is computation-

ally less expensive, and, on average, a single run of the
learning procedure using the square pulse takes an order of
magnitude less run-time than the piecewise-error-function
pulses. Piecewise-constant pulses are easy to generate
using the current superconducting control electronics.
However, the Gaussian filters connecting the control
electronics and the physical qubits cause distortion on
the square pulses. Transmons thus receive a distorted pulse.
A smooth pulse must, therefore, be generated to account for
the first order of distortion numerically.

The piecewise-error function connects the control
parameters smoothly such that the function approximates
the realistic control pulses for transmon system. In this way,
we overcome the problem of infinite bandwidth of the
square pulses, as well as the first-order distortion. We show
numerically (see Ref. [8] and Figs. 6 and 10) that the
learning procedure depends not on the shape of the control
pulse but on the number of learning parameters.
For designing each high-fidelity three-qubit gate, we

use the same number of learning parameters for both
the piecewise-constant and the piecewise-error-function
pulses. For the Toffoli and Fredkin gates, we use 3 × 26
parameters to design the gates, which operate on 26 ns
using either piecewise-constant or piecewise-error-function
pulses (see Ref. [8] and Fig. 6). The number of learning
parameters for designing a CZZ gate (Fig. 10), which
operates over 31 ns, is 31 × 3 for both piecewise-constant
and piecewise-error-function pulses.

B. Intrinsic fidelity

In Ref. [8] and Figs. 7(a) and 11(a), we plot the intrinsic
fidelity as a function of the gate-operation time for various
values of g: g ∈ f20; 30; 40; 50g MHz. Keeping the value
of g fixed, the fidelity is a monotonically increasing
function of the gate-operation time. This result is consistent
with the notion that increasing the evolution time of the
system increases the fidelity between the unitary evolution
and the target gate [8]. As the coupling strengths become
stronger, the gate-operation time to reach a threshold
fidelity becomes shorter. This result is consistent with
the idea of avoided-crossing-based gates (13). For smaller
values of g, the gate-operation time becomes longer and,
fixing the time bin to 1 ns, the number of learning
parameters increases. Our learning algorithm still delivers
the high-fidelity gates despite the increase of the learning
parameters.
In Ref. [8] and Figs. 7(b) and 11(b), we show that a linear

relation between the inverse of the gate-operation time
and the coupling strength exists. Providing a theoretical
framework to explain this relation is a challenging task
for three-qubit gates. However, from our discussion for
avoided-crossing-based CZ gates (Sec. III A), one can
intuitively expect a linear relation between the coupling
strength and the gate-operation time for a fixed intrinsic
fidelity, even for three-qubit avoided-crossing-based gates.
This linear relation also emphasizes the efficacy of the
learning algorithm to discover the correct relation between
the coupling strength and gate-operation time.

C. Noise

In this section, we explain the effect of noise on the
system evolution of each three-qubit gate in three parts. In
the first part, we discuss the effect of random noise on the
system and discuss the robustness of our procedure. In the
second part, we explain the effects of decoherence-induced

TABLE IV. Comparison of fidelities among various three-qubit
gates for g ¼ 30 MHz. Θ, F , T, and F̄ are the total gate time (in
ns), the intrinsic fidelity [defined by Eq. (19)], the coherence time
(in μs), and the average state fidelity, respectively.

Gates Θ (ns) F T (μs) F̄

Toffoli 26 0.9999 30 0.9992
Fredkin 26 0.9999 30 0.9991
CXX 31 0.9999 30 0.9990
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noise, which are caused by the environment. In the last part
of this section, we discuss how the higher orders of noise on
the generated procedure can be suppressed.

1. Robustness

We test the robustness of our procedure for designing the
three-qubit gates by applying random noise on the learning
parameters. Our analysis shows that the devised procedures
to design Toffoli, Fredkin, and CZZ gates are robust against
the external random noise (Figs. 5, 9, and 13) if the
magnitude of the random noise is lower than 800, 600,
and 1500 kHz, respectively, which are within the limit
of current state-of-the-art superconducting control elec-
tronics [86].

2. Decoherence-induced noise

The amplitude-damping and dephasing rates (T−1
1 and

T−1
2 ) determine the decoherence rate of our three-transmon

system. Assuming that T ¼ T1 ¼ T2 for all of the tunable
transmon devices, we can plot F̄ vs the coherence time of
the transmons (see Ref. [8] and Figs. 8 and 12). For a gate-
operation time that is much faster than the coherence time
of the transmons, i.e., T ≫ Θ, if the intrinsic fidelity is
much smaller than the fidelity, with this reduction caused
by decoherence-induced errors, we can approximate

F̄ ∼ 1 −
Θ
T
: ð33Þ

Equation (33) matches our numerical simulation of
decoherence in Ref. [8] and Figs. 8 and 12.
When the coherence time of the transmon is significantly

higher than the gate-operation time, i.e., T ≫ Θ, the error
from the intrinsic fidelity is the main source of noise. Under
this condition, the intrinsic fidelity must be high enough
that the resultant gate fidelity meets the threshold fidelity
for fault-tolerant quantum computing. With the long
coherence time (20–60 μs) of the state-of-the-art super-
conducting artificial atoms accompanied by the machine-
learning approach that delivers a gate with F̄ > 0.999, our
proposal enables the implementation of high-fidelity three-
qubit gates under current experimental conditions.

3. Distortion of control pulses

The learning algorithm can shape any type of external
pluses to design high-fidelity three-qubit gates. We employ
the piecewise-error-function pulse to resolve the infinite-
bandwidth problem of the square pulses and to account for
the first-order distortion on the pulse. However, higher
order distortions can change the optimal shape of the
designed pulse and can lead to a subthreshold fidelity.
For example, we ignore the weak dependence of g and η on
the transmon frequency.

This frequency dependence of physical parameters can
introduce small perturbations into the system Hamiltonian,
thereby distorting the optimal pulses. One viable option for
suppressing a higher degree of distortions on the learning
parameters is closed-loop learning control [87,88], which
can be used in conjunction with our control scheme.

D. Comparison against alternative approaches

Table V shows a comparison among various approaches
of generating the optimal pulse shapes for the three-qubit
Toffoli gate. F best denotes the best intrinsic fidelity, defined
by Eq. (19), obtained for the corresponding method. Note
that we have compared SUSSADE to both of the greedy
optimization algorithms (quasi-Newton and simplex), as
well as to the global optimization algorithms (DE). The
comparison data shown in Table V indicates the efficacy of
SUSSADE over the alternative approaches.

IX. CONCLUSION

In conclusion, in this paper, we transform the problem of
designing three-qubit gates into a quantum-control prob-
lem. The control problem is then mapped into a supervised-
machine-learning algorithm. In the context of supervised
machine learning, we use the truth-table data for each
quantum gate as the training data. The transmon frequen-
cies represent the hypothesis. The supervised-learning
algorithm then trains the qubit frequencies on the truth-
table data to generate procedures for designing high-fidelity
three-qubit gates. Our approach to defining a gate-design
problem as supervised machine learning can inspire the
application of other supervised-machine-learning methods,
such as support vector machines [89] and neural networks
[90] for designing quantum gates which act on more than
three qubits.
We previously introduced a quantum-control scheme

named SUSSADE while designing a high-fidelity Toffoli
gate [8]. Here, we employ the SUSSADE algorithm to
generate procedures for other three-qubit gates, such as the
Fredkin and CXX gates. The two three-qubit gates consid-
ered here operate as fast as the two-qubit-entangling CZ

gate under the same experimental constraints. The robust
performance of these gates against the decoherence
induced, as well as random errors, signifies the efficacy
and robustness of the SUSSADE scheme for optimizing
promising superconducting architectures. The system

TABLE V. Comparison with alternative approaches of design-
ing Toffoli gates for g ¼ 30 MHz and Θ ¼ 26 ns.

Method F best

Quasi-Newton 0.9912
Simplex 0.9221
DE 0.9931
SUSSADE 0.9999
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considered here comprises three nearest-neighbor-coupled
transmons that can serve as a module for any 1D or 2D
architecture, and, in fact, our three-qubit gates can be
realized in such multiqubit systems if the undesired
couplings are switched off. Our results here establish the
efficacy of SUSSADE as a machine-learning approach to
designing high-fidelity quantum operations.
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