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We consider properties of a fully superconducting variant of the superconducting quantum-interference
proximity transistor, a magnetic-flux sensor. We study the density of states in a finite-size superconducting
metal wire in the diffusive limit, and how it depends on the phase gradient of the order parameter. We
describe the dependence on the junction length and the interface transparency, and we discuss properties
relevant for using the structure in magnetic-flux-detection applications.
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I. INTRODUCTION

Superconductivity on the scale of the coherence length is
sensitive to its surroundings. This knowledge can be used to
modulate the density of states in a mesoscopic metal wire
via magnetic flux by imposing a phase gradient via
embedding the wire as a weak link in a superconducting
ring. Detecting the modulation with a tunnel-junction probe
attached to the weak link is the basis of the superconducting
quantum-interference proximity transistor (SQUIPT),
which can be used as a magnetic-field sensor [1–8].
Previous experiments mostly employed normal-state

metal wires [1]. For practical purposes, it, however, can
be advantageous if also the weak link is made of a
superconducting rather than normal-state material: sample
fabrication is simpler, quality of the contacts can be better,
and the quality of the energy gap can improve, resulting in
better sensitivity. The intrinsic superconductivity, however,
modifies the current-phase relation, which determines what
phase gradient can be imposed, and affects the detailed
form of the density of states.
The current-phase relation in S-S0-S junctions (see

Fig. 1) has been extensively studied in the past and is
largely understood [9–13]. The density of states (DOS) is,
moreover, well studied in the normal-state case [14–19].
The DOS in a phase-biased superconducting wire, which is
the case relevant for the fully superconducting SQUIPT,
appears to have received somewhat less comment [20–22].
In this work, we investigate the density of states and

other characteristics of a phase-biased superconducting
wire, such as those embedded as a part of a SQUIPT
structure, as depicted in Fig. 1. We approach the problem of
finding the current-phase relation and spectral character-
istics from a functional-minimization perspective. We
describe the evolution of the current-phase relation and
the density of states between short- and long-junction
limits. Finite-size effects in the DOS turn out to decay
as a power law with an increasing system length, rather than

exponentially as they do for the current-phase relation.
We discuss the effect of differing materials in the ring
and wire parts, the impact of interface transparency, and
some practical consequences for the tunnel-superconduct-
ing SQUIPT (SSQUIPT) application.

II. MODEL

We consider the SQUIPT setup depicted in Fig. 1, where a
mesoscopic conventional superconductor (S) metal wire of
length L and cross section A is embedded as a part of a
superconducting ring. The density of states in the wire is
probed by the current-voltage characteristics of a normal (N)
or superconducting tunnel junction. The critical temperature
of the ring material is Tc;R, and that of the wire material is
Tc;w, corresponding to the superconducting coupling con-
stants λR, λc and the zero-temperature valuesΔ0;R,Δ0;w of the
energy gap via the BCS relations. Possible dependence of the
superconducting coupling on the film thickness is included
in these parameters. We assume that the dimensions of the
wire are small compared to the ring, so that the presence of the
wire has a small effect on the superconductivity of the ring.
The superconducting properties in the diffusive limit at

equilibrium are conveniently described by the nonlinear σ
model [23–26]. The approach encompasses the well-known
quasiclassical Green’s-function theory [27] of diffusive super-
conducting systems as a special case, but it can also be used to
study, e.g., fluctuation effects. Here, we consider only equi-
librium properties of quasi-1D systems in the semiclassical
approximation—in this case, the advantage is in directly
specifying the problem in variational form. At the classical
saddle points, the free-energy contribution is δF ¼
AνF½Fb þ

R
L
0 dxF 0�, where the density reads (cf. Ref. [28])

F 0 ¼
jΔj2
λ

þ 2πT
X
ωn>0

�
Dð∂xχ − 2AÞ2

2
sin2 ~θ þDð∂x

~θÞ2
2

þ 2ωnð1 − cos ~θÞ − 2jΔj cosðχ − ϕÞ sin ~θ

�
: ð1Þ
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Here, ωn ¼ 2πTðnþ 1
2
Þ are Matsubara frequencies, νF the

DOS per spin at the Fermi level, and A the vector potential.D
is the diffusion constant and Δ ¼ jΔjeiϕ the order parameter.
Moreover, λ is the superconducting interaction constant. The
parameters χ and ~θ are real valued and, at saddle points related
to the quasiclassical anomalous Green’s function, fðx;ωnÞ ¼
eiχðx;ωnÞ sin ~θðx;ωnÞ [27]. Here and below, we use the units
kB ¼ e ¼ ℏ ¼ 1. For taking the weak-coupling limit λ → 0,
Δw;0 ¼ const, it is useful to add and subtract terms to eliminate
the implicit cutoffs,

F 0≃ jΔj2 ln T
Tc

þ 2πT
X
ωn>0

�jΔj2
ωn

þDð∂xχ − 2AÞ2
2

sin2 ~θ

þDð∂x
~θÞ2

2
þ 2ωnð1− cos ~θÞ− 2jΔjcosðχ −ϕÞ sin ~θ

�
:

ð2Þ

The dependence on λ is now contained inTc, assumed to be of
the BCS weak-coupling form.
The connection of the wire to the superconducting ring is

described via a tunneling boundary term [29,30],

Fb ¼
2πTD

r

X
ωn>0

X
j¼�

f1 − cos ~θðxjÞ cos ~θSj

− cos½χðxjÞ − χSj� sin ~θðxjÞ sin ~θSjg; ð3Þ

where r ¼ 2RIADνF is the ratio of interface resistance
RI to the resistance per length of the wire and ~θS∓ ¼
arctanðΔR=ωnÞ. χS− ¼ 0 and χSþ ¼ φ are the values inside
the ring at the left (x− ¼ 0) and right (xþ ¼ L) interfaces.
Requiring a variation of Eq. (2) vs ~θ and χ to vanish and

an analytical continuation to the real axis iω ↦ Eþ i0þ,
then defining θ≡ −i~θ produces the standard quasiclassical
real-time description of the system via the Usadel equa-
tion [27,31], which can be written in the form

D∂2
xθ ¼ −2iE sinh θ þDð∂xχÞ2

2
sinh 2θ

þ 2ijΔj cosðϕ − χÞ cosh θ; ð4Þ

D∂x · ð∂xχsinh2θÞ ¼ −2ijΔj sinðχ − ϕÞ sinh θ: ð5Þ

The self-consistency equation for the order parameter Δ is
obtained similarly,

jΔj ln T
Tc

¼ 2πiT
X
ωn>0

�
eiðχ−ϕÞ sinh θ −

jΔj
E

�����
E¼iωn

: ð6Þ

The boundary term generates the boundary conditions [29],

∓ r∂xχ ¼ sinðχ − χS∓Þ
sinh θS∓
sinh θ

; ð7Þ

∓ r∂xθ ¼ sinh θ cosh θS∓ − cosðχ − χS∓Þ cosh θ sinh θS∓;
ð8Þ

at the left (−) and right (þ) interfaces. In the clean-interface
limit r → 0, these boundary conditions reduce to the
continuity conditions χðx�Þ ¼ χS�, θðx�Þ ¼ θS�. Note
also that, in this case, Fb → 0 as r → 0.
The reduced density of states NðE; xÞ ¼ νðE; xÞ=

νF ¼ Re cosh θðE; xÞ and the current IðxÞ ¼ − δF
δA jA¼0 ¼

4πTADνF
P

ωn>0
∂xχ sin2 ~θ follow directly from the solu-

tions of the equation set.
It is well known that there are multiple classical

solutions, corresponding to different windings of the
superconducting phase along the superconducting wire.
In the numerical solution of the equation set, to handle this
situation and to obtain also the solutions along the unstable
branches, we use the pseudoarclength-continuation method
applied on the self-consistency equation. This method is
useful for tracing a continuous solution branch ðφ;ΔÞ
without requiring the existence of a single-valued function
ΔðφÞ (see Appendix A for details).
Within the approximations here, the configuration min-

imizing δF should be considered the stable solution. Along
a continuous solution branch, δF can also be evaluated via
a standard relation,

δF½X�ðφÞ;φ�−δF½X�ð0Þ;0�¼
1

2

Z
φ

0

dφ0I½X�ðφ0Þ;φ0�; ð9Þ

based on the current evaluated at a stationary point
X� ¼ ð~θ�; χ�; jΔ�j;ϕ�Þ. This result follows from Eqs. (2)
and (3) by noting the gauge transform F½~θ; χ; jΔj;ϕ;φ;A� ¼
F½~θ; χ − ξ; jΔj;ϕ− ξ;φ− ξðLÞ;0� for ξðxÞ ¼ 2

R
x
0 dx

0Aðx0Þ
and that δF=δXjX¼X� ¼ 0. Energy differences between
disconnected branches, however, need to be determined
from Eqs. (2) and (3).

FIG. 1. Superconducting quantum-interference proximity tran-
sistor, consisting of a superconducting (S0) weak link of length L
embedded in a superconducting (S) SQUID ring. The magnetic
flux Φ induces a difference of φ in the phase of the order
parameter across the junction, which, in the weak-link limit, is
φ ¼ 2πΦ=Φ0. The density of states in the weak link can be
probed with a normal or superconducting tunnel probe (T).
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III. DENSITY OF STATES AND CURRENT

The density of states in SSQUIPT is sensitive to the
phase point where the system is biased. To specify this
point, we need to comment on the supercurrent in the
junction. The form of the current-phase relation (CPR) in
superconducting strips is well studied under the approx-
imations outlined above [9–13]. CPRs computed from the
Usadel equation are illustrated in Fig. 2 for reference; see
also Refs. [11,33]. For junctions that are short in compari-
son to the coherence length, L ≪ ξw ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=ð2πTc;wÞ
p

, the
CPR is a (deformed) sinusoid, described by a known
analytical solution [9,32]. In long junctions, the CPR
becomes multivalued, corresponding to multiple winding
of the order-parameter phase. At temperatures close
to Tc, the form can be found from Ginzburg-Landau
equations [9,34]. For L ≫ ξGL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dπ=½8ðTc − TÞ�p
, one

expects a CPR I ¼ ½AσNπΔ2=ð4TLÞ�φ½1 − ðφξGL=LÞ2�, up
to the point φ < φmax ≈ L=ð ffiffiffi

3
p

ξGLÞ. After this point, the
solution transitions to a backward branch reaching to
φ ¼ π, I ¼ 0,

I ¼ AσNπΔ2

2TξGL
a

ffiffiffiffiffiffiffiffiffiffiffi
a − k

p
;

φ ¼ L
ξGL

ffiffiffiffiffiffiffiffiffiffiffi
a − k

p
þ 1

a
arcsin

ffiffiffi
k
a

r
; ð10Þ

for k ∈ ½0; 1=2�, a ¼ ðkþ 1Þ=3. The phase gradient
becomes more nonuniform, corresponding to the formation
of a phase-slip center in the middle of the junction [34,35].

In long junctions, the CPR allows several saddle-point
solutions for the current I when φ is fixed. The backward
solution branches are unstable and not directly accessible.
Which of the remaining multiple solutions are accessible
depends on the rate Γ of phase slips by which the system
can transition to lower-energy states [34,36]. The free-
energy barrier U in the thermal-activation rate Γ ∝ e−U=T

can be estimated from the difference between the unstable-
and metastable-branch energies in Fig. 2(d) and is of
the order U ∼ ℏΔ0;w=ðe2RξÞ, Rξ ≡ ξwRN=L [34–38]. The
quantum phase-slip rate in the nanowires is Γ ∝ e−aℏ=ðe2RξÞ,
with a ∼ 1 [36]. For a typical SSQUIPT cross section
100 × 30 nm and a high-conductivity material, Rξ ∼ 1 Ω,
so that both rates are effectively zero, except close to
φ ≈ φmax—where the CPR bends backward—or at high
temperatures. For low relaxation rates, the experimental
CPR has magnetic hysteresis, and the different branches
can be accessed by sweeping the magnetic flux.
In short junctions where the CPR is single valued, the

kinetic inductance of the wire decreases around φ ¼ π and
can become small compared to that of the ring, inducing
behavior similar to hysteretic rf SQUIDs [2]. To quantify
this result, we show in Fig. 3 the Josephson inductance
L ¼ ℏ=ð2e∂φIÞ at φ ¼ π for different temperatures and
wire lengths. In the short-junction limit L ≪ ξw, from the
known expression for the CPR [32], we have, after some
rewriting,

1

LðπÞ ¼ −
πΔR

ℏRN

Z
ΔR=ð2TÞ

0

dz
tanh z
z

: ð11Þ

For T ≲ ΔR=2, we have LðπÞ−1 ≃ πΔR
ℏRN

ln T
2Tc;R

. As shown in

Fig. 3, for L > ξw, the normalized inductance further
decreases, in general, from the short-junction value, regard-
less of the ratio of Tc;R and Tc;w. However, the value is
tunable by material choices.

FIG. 2. (a)–(c) Current-phase relation vs junction length and
temperature (T=Tc;w ¼ 0.1, 0.5, 0.9) for Tc;R=Tc;w ¼ 1.5. Here,
ξw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=ð2πTc;wÞ
p

. Analytical short-junction result (dashed
curves) [9,32] and the GL result discussed in the text (dotted
curves) are also shown. (d) Free-energy change corresponding to
the curves in (c), as obtained from Eq. (2) or (9). The backward
branches are shown with dashed lines.

FIG. 3. Normalized inductance of the superconducting wire
at φ ¼ π, for different Tc;R’s and L’s, at T=Tc;w ¼ 0.01, 0.1,
0.5 (from bottom to top). Solid lines denote the short-
junction limit (11).
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Let us now consider the DOS in the junction. Analytical
solutions to Eq. (4) providing access to the DOS are known
in the long-junction (L ≫ ξ) and short-junction (L ≪ ξ)
limits. In the short-junction limit, we have a well-known
result (see, e.g., Ref. [39]),

Nðx; EÞ ¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

E2 − Δ2
R cos

2 φ
2

s
cosh

�
2x − L

L

× arcosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ2

R cos
2 φ
2

E2 − Δ2
R

s 	
; ð12Þ

independent of the superconductivity of the wire itself. For
long wires (L ≫ ξw), on the other hand, the result con-
verges to the density of states of a bulk superconductor,
affected by depairing from the supercurrent flow
[12,13,20,40]. This result can be described as a depairing
rate [41], g2 ¼ Dð∂xϕÞ2, given a small enough constant
phase gradient ∂xϕ:

NðEÞ ¼ Re cosh θ0;

jΔj coth θ0 ¼ Eþ i
g2

2
cosh θ0: ð13Þ

For long junctions, the parameter can be estimated from
Ginzburg-Landau (GL) solutions [34] to be g2 ≈Dðφ=LÞ2
along the forward branch, and g2 ≲Dmaxð∂xϕÞ2≈
D½1þ ðL=ξ − 2

ffiffiffi
2

p Þ2=ðφ − πÞ2�=4 on the backward branch
close to φ ¼ π. The approximation in Eq. (13) is, however,
not expected to work as well along the backward branch, as
the phase gradient is not uniform due to the formation of the
phase-slip center.
The crossover from the short-wire to the long-wire

limit is illustrated in Fig. 4. We can observe that the
short-junction solution is fairly accurate up to L ∼ ξw,
except in narrow energy regions around the gap edges,
E ¼ Egðφ; LÞ. As the length increases, the DOS converges
towards that of a bulk superconductor affected by depairing
from the superflow (the dashed lines). However, the
peaks at the DOS gap edge vanish only rather slowly as
L=ξw → ∞ and are not present in the long-wire limit
described by Eq. (13). The crossover is not very rapid;
indeed, the rate of the decay is a power law rather than an
exponential, as shown in Fig. 5(a).
The physical mechanism giving rise to the finite-size

effects in the DOS are the Andreev reflections at the ring
interfaces, x ¼ 0, x ¼ L. In a normal metal wire, this effect
decoheres on a certain decay-length scale lðEÞ ∝ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏD=E
p

,
which can be understood to originate from energy-
dependent phase shifts between electrons and the
almost-retroreflected holes (cf., e.g., Ref. [42] for a review).
The possibility of Andreev reflections also inside the
superconducting wire itself, however, alters lðEÞ, e.g.,
inhibiting low-energy electrons from reaching the ring

boundary. Moreover, in a superconductor, the decay
length diverges around the gap edge, Eg [43], instead
of around E ¼ 0. This result can be seen by considering
small perturbations θ ¼ θ0 þ η, χ ¼ ϕþ α, jηj ≪ 1, and
jαj ≪ 1 around the uniform solution ðθ0;ϕÞ described by
Eq. (13). Substituting this ansatz into Eq. (4) and
linearizing around ðθ0; χ0Þ produces solutions of the
form η; χ ∝ e�x=l, where l represents the decay lengths.
Consequently, the factor e−L=ð2lÞ indicates how much
the boundary conditions affect the solution at
the center of the wire. The linearized equation can be
written here as ∂xð∂xη; η; ∂xα; αÞT ¼ Mð∂xη; η; ∂xα; αÞT ,
where the matrix M is

FIG. 4. Density of states in an S-S0-S junction at x ¼ L=2, for
different phase differences and junction lengths L. Here,
Tc;R ¼ 1.5Tc;w, and T=Tc;w ¼ 0.1. The dotted lines in (a) indicate
Eq. (12), and the dashed lines in (b)–(d) Eq. (13). (Insets)
Current-phase relation and the points corresponding to the
densities of states shown.

FIG. 5. (a) Maximum difference in density of states between
Eq. (13) and the solution in the S-S0-S configuration, assuming
ΔðxÞ ¼ jΔ0jeigx, with g ¼ 0.1. (b) Perturbation decay length l.
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M ¼

0
BBB@

0 l−2
0 g sinh 2θ0 0

1 0 0 0

−2g coth θ0 0 0 −2ijΔjcschθ0
0 0 1 0

1
CCCA;

ð14Þ

where l−2
0 ¼ −2ijΔjcschθ0 þ g2 sinh2 θ0. The longest

decay length is given by the eigenvalue with the smallest
real part, l−1 ¼ min jReλj. They are solutions to

λ4 þ ð5g2 cosh2 θ0 − g2 − 2l−2
0 Þλ2 ¼ 2ijΔjl−2

0

sinh θ0
: ð15Þ

The energy dependence of lðEÞ is shown in Fig. 5(b), with
a divergence clearly visible. From Eq. (13), it follows that
the gap edge is located at Eg ¼ Δ½1 − ðg2=2ΔÞ2=3�3=2 [41],
and θ0ðEgÞ¼−iπ

2
þarccosh½ð2Δg−2Þ1=3�. Consequently,

l−2
0 ðEgÞ ¼ 0, so that l−2ðEgÞ ¼ 0 also. Around the gap

edge, the length scale diverges as l ∝ ðE − EgÞ−1=4. As the
decay length is larger than L in an energy range of width
δE ∝ L−4, the deviations from Eq. (13) at the middle of a
long wire do not decay exponentially with an increasing L,
and the scaling of Fig. 5(a) can occur.

A. Interface resistance

Imperfect interface transparency in SQUIPT influences
both the CPR and the DOS. It particularly enables addi-
tional stationary solutions, where the phase drops across
the barriers at the interfaces. With an increasing interface
resistance r, the current-phase relation crosses over to
IðφÞ≃�Ic sinðφ=2Þ, that of two Josephson junctions in a
series [22,29]. For two identical Josephson junctions and
the superconducting wire in a series, with the phase drop ϕ1

at the interfaces, the free energy is

δFðφ;ϕ1Þ ∼ −2EJðrÞ cosðϕ1Þ − EJ;wire cosðφ − 2ϕ1Þ:
ð16Þ

For r → 0 [EJðrÞ ≫ EJ;wire], lowest-energy solutions have
ϕ1 ≈ 2πn and IðφÞ≈IwireðφÞ, whereas for r→∞ [EJðrÞ ≪
EJ;wire], ϕ1 ≈ φ=2þ πn and, consequently, IðφÞ≈
�IJ sinðφ=2Þ.
The crossover is illustrated in Figs. 6(a) and 6(b). A

nonzero but small r only effectively adds to the length of
the junction, as shown in Fig. 6(a), compared to Fig. 2(a).
A larger r splits the solution to disconnected branches, as
seen in Fig. 6(b), where there are three different solutions at
φ ¼ 0 yielding I ¼ 0. These correspond to (i) no phase
drop across the wire or interfaces, (ii) π phase drop at both
interfaces, and (iii) similar to the second solution but with a
smaller jΔj. As φ is varied continuously from 0 to 2π,
solution (i) transforms to (ii) and vice versa. Solution (iii) is

not connected to the two; instead, when φ varies from
0 to π, a phase-slip center forms in the center of the wire;
cf. also Ref. [22]. The evolution is somewhat more clear in
the free energy shown in Figs. 6(c) and 6(d). The energy
differences between the solutions in Fig. 6(d) must be
obtained from Eqs. (2) and (3) instead of Eq. (9), as not all
are continuously connected. Note that little qualitative
change occurs in the lowest-energy solution.
The proximity effect from the ring diminishes with an

increasing barrier height r, and controlling the properties of
the weak link via the superconducting ring becomes less
effective. This result is illustrated in Fig. 7, which shows the
modulation of the density of states for a long junction with
two different interface resistances. As r increases and the
critical current of the interfaces becomes small compared to

FIG. 6. (a),(b) CPR in an S-I-S0-I-S system for L=ξw ¼ 2.5,
T=Tc;w ¼ 0.1, and Tc;R=Tc;w ¼ 1.5. The dimensionless interface
resistances are r=ξw ¼ 5 (black), 7.5 (cyan) in the left panel, and
13 in the right. Higher-energy solutions may also exist, but they
are not shown. (c),(d) The corresponding free-energy contribu-
tion from Eqs. (2) and (3).

FIG. 7. DOS in an S-I-S0-I-S system for L=ξw ¼ 13 and
(a) r=ξw ¼ 2.5 or (b) r=ξw ¼ 5. Other parameters are as in Fig. 4.
(Inset) The position along the solution branch.
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that of the wire, the DOS approaches that of the bulk
superconductor.
For the SSQUIPT device application, a relevant metric is

how much the modulation of the superconducting gap is
suppressed. In Fig. 8, we show the smallest magnitude of
the energy gap achievable with phase biasing. Based on the
above discussion, the minimum is achieved at the point
φ ¼ φmax, where the CPR transitions to the backward
branch. In the lowest-energy state, the minimum gap is
achieved at φ ¼ π, which is also shown. We can note that,
in Fig. 8, the curves for different wire lengths L tend to
collapse onto a single curve for L≳ 2.5ξw. The interface
resistance in this case acts similarly as an extension of
the junction length by 2r, consistent with the increase in the
total resistance, although, at φ ¼ φmax, the behavior is
complicated by the crossover illustrated in Fig. 6.

IV. DEVICE PERFORMANCE

We can now discuss the performance of the S-S0-S
devices in a magnetometric measurement. In this mode, the
tunnel contact [(T) in Fig. 1] connected to the S0 wire is a
current biased to a working point I ¼ Ibias. The tunneling
current depends on the DOS,

IðV;ΦÞ ¼ 1

RT

Z
∞

−∞
dENðE;ΦÞNprobeðE − VÞ

× ½fðEÞ − fðE − VÞ�; ð17Þ

and the variation of the observed voltage VðIbias;ΦÞ as a
function of the fluxΦ can be used to inferΦ. The sensitivity
can be characterized by the flux-voltage transfer function

F ðΦÞ ¼ dV
dΦ

: ð18Þ

The resolution is intrinsically limited by the voltage noise
in the probe junction, which can be described by an
equivalent flux noise,

SΦ;T ¼ SV
F ðΦÞ2 ; ð19Þ

where SV ¼ ðdVdI Þ2SI and SI ¼ 2eI coth eV
2kBT

is the tunneling
shot noise. Preamplifier voltage noise will also give a
similar contribution.
The current-voltage characteristic IðV;ΦÞ is shown in

Fig. 9 for the short L ¼ 2.5ξw and long L ¼ 13ξw junction
cases. Here, we assume the tunnel probe is superconduct-
ing, with Tc;probe ¼ Tc;R. For the short device fixed at
I ¼ Ibias, the external flux corresponds to a single measured
voltage value in a wide bias range, shown in Fig. 10(a). The
long-junction device on the other hand has magnetic
hysteresis in the range jΦ − nΦ0j≳ 0.25Φ0, see Fig. 2,
where each flux value is associated with two possible V’s.
Which one is realized depends on the initialization of the
device. Note that this deduction assumes that the relaxation
rates ΓðΦÞ of metastable states are very low, as was
estimated in Sec. III. If ΓðΦÞ is not low compared to
measurement time scales, transitions can contribute addi-
tional voltage noise, which reduces the usefulness of the
device. We will not consider this case here.
The voltage response at different bias currents and the

corresponding transfer function are shown in Fig. 10(a) for
a short-junction device. The overall behavior and magni-
tude of F is relatively similar to an normal-metal SQUIPT
in this case [3]. For long-junction devices, as is also visible
in Fig. 9, we expect decreasing device sensitivity with
increasing system length, as the gap suppression depends
on the phase gradient which scales ∝ 1=L.
Calculated equivalent flux noise from the tunnel junction

is displayed in Fig. 10(b), where we choose representative
values for RT and Δ0;w. The tunnel junction noise is of

the order of S1=2Φ;T ∼ 10 nΦ0=
ffiffiffiffiffiffi
Hz

p
at bias currents of order

1 nA. Preamplifier voltage noise for a typical value of
S1=2V;pre ≈ 1 nV=

ffiffiffiffiffiffi
Hz

p
, on the other hand, yields S1=2Φ;pre ≳

500 nΦ0=
ffiffiffiffiffiffi
Hz

p
for the parameters of Fig. 10(b). The results

FIG. 8. Energy gap Eg achieved at φ ¼ φmax, where CPR starts
to bend back, and at φ ¼ π in the lowest-energy state. Wire
lengths and interface resistances are varied; other parameters are
as in Fig. 4.

FIG. 9. Predicted I-V characteristics of devices with L ¼ 2.5ξw
and L ¼ 13ξw junctions, at T=Tc;w ¼ 0.1 and Tc;R ¼ 1.5Tc;w.
For L ¼ 13ξw, the I-V characteristics have flux hysteresis for
jΦ − nΦ0j≳ 0.25Φ0.
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depend on the energy gap Δ0;w via S1=2Φ;T ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RT=Δ0;w

p
and

S1=2Φ;pre ∝ 1=Δ0;w, so that the performance is expected to
improve with larger-gap superconductors. Based on these
estimates, the performance of the device is, in practice,
expected to be mostly limited by the external ampli-
fier noise.

V. DISCUSSION AND CONCLUSIONS

For weak links that are short compared to the coherence
length, there is little difference between the normal and
superconducting cases, on the level of the present descrip-
tion. As the junction length increases, the change in the
current-phase relation starts to limit the maximum achiev-
able modulation of the density of states. This result is
reflected in the decrease of the voltage modulation
observed by the tunnel probe. Moreover, with increasing
length of the junction, the gap-edge singularities of the
BCS DOS transform to smaller peaks, in a way that is
sensitive to the finite size of the weak link.
The long perturbation decay length at gap edges has an

impact on how generic the results discussed here are in
practice, even within the mean-field approximations. In
reality, even if the superconducting wire is well described
by the quasi-1D equations used above, the boundary
conditions at x ¼ 0; L may not be as accurate. Namely,
the contact region often has a nontrivial 3D structure, and
the phase gradient also extends to the terminals. In such
cases, we expect that, in the interior of the wire, the results
will follow Eq. (13), but deviations appear at the gap edges,
which, in practice, are likely to be sensitive to the details
that are not necessarily described with a single parameter r.
In summary, we discuss the current-phase relation,

density of states, and free energy of superconducting wires,
focusing on points relevant for the SSQUIPT application.
The results point out that superconducting material is a
viable choice, provided that the junction length does not

significantly exceed the coherence length, in order to retain
sensitivity and avoid magnetic hysteresis.
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APPENDIX A: PSEUDOARCLENGTH
CONTINUATION

For completeness, we describe here the application of
pseudoarclength continuation on the self-consistency equa-
tion. The method generates a set of values ðΔk;φkÞ, tracing
a curve of solutions. The next point ðΔkþ1;φkþ1Þ is
generated from the previous by solving

F0½Δkþ1;φkþ1� ¼ 0; ðA1aÞ

s ¼ ð2 − θÞ _φkðφkþ1 − φkÞ
þθRe

R
L
0 dx _Δ�

kðxÞ½Δkþ1ðxÞ − ΔkðxÞ�: ðA1bÞ

Here, F0½Δ;φ� ¼ 0 denotes the set of equations (4)–(7),
taking ΔðxÞ and the phase difference φ as unknowns. The
value of φkþ1 is fixed by the pseudoarclength constraint
(A1), where the parameter s > 0 is an arclength constant
and θ ∈ ½0; 2� a weight factor. The tangent approximants
can be taken as _φk ¼ ðφk − φk−1Þ=δ, _Δk ¼ ðΔk − Δk−1Þ=δ,
with δ2¼θ∥Δk−Δk−1∥22þð2−θÞjφk−φk−1j2. Equation (A1)
is of similar complexity as the self-consistency
equation F0½Δ� ¼ 0, and it can be solved for ðΔkþ1;φkþ1Þ
using standard nonlinear solvers, given a spatial discretiza-
tion of Δ.

APPENDIX B: RICCATI PARAMETRIZATION

Equations (2) and (3) can be written in a Riccati
parametrization, eiχ sin ~θ≡ 2γ=ð1þ jγj2Þ:

F 0 ¼ jΔj2 ln T
Tc

þ 2πT
X
ωn>0

�jΔj2
ωn

þ 2j∂xγj2
ð1þ jγj2Þ2

þ 4
ωnjγj2 − Re½Δ�γ�

1þ jγj2
�
; ðB1Þ

and

Fb ¼
2πTD

r

X
ωn>0

X
j¼�

2jγðxjÞ − γSjj2
ð1þ jγðxjÞj2Þð1þ jγSjj2Þ

: ðB2Þ

This form has some advantages for numerical implemen-
tation. Moreover, the well-known connection to the

FIG. 10. (a) V vs Φ corresponding to Fig. 9 and L ¼ 2.5ξw, for
eRTIbias=Δ0;w ¼ 2, 1.5, 1, 0.2 (from top to bottom), and the
corresponding transfer function F . (b) Equivalent flux noiseffiffiffiffiffiffiffiffiffi

SΦ;T
p

from tunnel junction, for Δ0;w ¼ 200 μeV and
RT ¼ 100 kΩ.
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Ginzburg-Landau functional [26,44] is straightforward in
this form. The minimum of F 0 vs γ is γðx;ωnÞ ≈
ΔðxÞ=ð2ωnÞ, up to corrections ∝ j∂2

xγj; jΔj3. Neglecting
the corrections, substituting the leading term back in, and
expanding in a small jΔj yields

F 0 ≈
π

8T
j∂xΔj2 − jΔj2 lnTc

T
þ 7ζð3Þ
16π2T2

jΔj4; ðB3Þ

the GL functional.
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