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This paper demonstrates a method of acoustical self-feedback to suppress spontaneous gas oscillations
such as those observed in combustors of gas-turbine engines. Whereas a conventional feedback system
consists of electromechanical devices, the present method achieves acoustical self-feedback with a hollow
tube that connects two positions of the oscillation system. A model oscillator of combustion-driven gas
oscillations is designed and built to demonstrate the applicability of the self-feedback concept. Stability
analysis through measurements ofQ values (quality factor) of oscillations shows that the desired delay time
and gain are obtained when the tube length is equal to the odd integer times half the wavelength of the
anticipated acoustic oscillations.
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I. INTRODUCTION

Suppressing combustion-driven gas oscillation has
persisted as a goal that must be achieved for modern
combustion technology using a fuel-lean premixed com-
bustion. Premixed combustion, the full mixing of fuel and
air before burning, is indispensable for the reduction of
NOx emissions in gas-turbine engines [1,2], but it is prone
to the generation of thermally induced spontaneous gas
oscillations that can reduce lifetimes or even destroy an
engine [3]. For safety operations of aircraft and power
plants, techniques to stop the oscillations [4] and to predict
oscillations [5–7] are strongly demanded.
Delayed feedback is one method that can stop sponta-

neous oscillations. Atay [8] has theoretically analyzed a van
der Pol oscillator under delayed feedback:

ẍþ ϵðx2 − 1Þ_xþ x ¼ ϵkxðt − τÞ: ð1Þ

For small and positive ϵ, he adapted a method of averaging
to show that the state with zero amplitude becomes stable
when nondimensional delay time τ and feedback gain k
satisfy the relation of k sin τ > 1. Suchorsky recently
conducted a more detailed theoretical analysis through a
method of two timing [9]. Independently of these theo-
retical studies, Heckl [10] experimentally attempted the
delayed feedback to suppress spontaneous oscillations in a
thermally driven acoustic system of Rijke tube, and
demonstrated sound annihilation using a feedback system
consisting of a microphone, a delay line, and a loudspeaker.
Lang [11] applied this technique successfully to halt the
oscillations induced in a test combustion chamber.
Consequently, the validity of the delayed feedback has
been recognized, but the complicated electromechanical

feedback system, necessary to detect the pressure fluctua-
tions instantaneously and to feedback them with controlled
delay time and sufficiently large gain, would limit the
practical availability in actual gas-turbine engine systems.
The delayed feedback [8–13] can be expected to become a
powerful and reliable tool to damp the oscillation if the
practical components to build the feedback system were
greatly simplified.
The objective of this study is to accomplish delayed

feedback using an extremely simplified method. We have
recently demonstrated the amplitude death phenomenon in
coupled thermally driven gas oscillation systems. We
showed that a gas-filled tube of a half wavelength can
introduce sufficiently strong time-delay coupling through
the difference of _x terms between two systems [14]. In this
study, we design and build a model oscillator that mimics
one of the oscillation mechanisms in the combustion
system. Then, we test a method of self-feedback, where
the acoustic gas oscillation is fed back through the tube that
connects two positions of the oscillator. We show how the
linear stability of the zero-amplitude state changes with the
tube length through measurements of Q values (quality
factor) of oscillations. The applicability of the acoustical
self-feedback is demonstrated using experiments for
fundamental and second-mode oscillations of the model
oscillator.

II. MODEL OSCILLATOR

A. Model equation of combustion instability

Presuming that the pressure in the combustion chamber
is acoustically perturbed by heat-release fluctuations of the
flame, the resulting pressure change disturbs the pressure
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drop in the fuel injector, which changes the fuel-to-air ratio
and which results in heat-release fluctuation delayed by
time τ intrinsic to the combustion processes. This feedback
loop results in self-sustained oscillations often with a
frequency of some natural acoustic mode of the combustion
chamber [15]. This scenario is represented by an oscillator
forced by delayed feedback with the delay time τ and a
certain gain G [16,17] as

ẍþ c0 _xþ ω2
0x ¼ Gxðt − τÞ; ð2Þ

where c0 (> 0) and ω0 are constants. When the feedback
term Gxðt − τÞ is absent, the system is stable. The oscil-
lation amplitude decays with an attenuation rate
γ ¼ −c0=2. The feedback term, however, can change the
stability of the system, as shown below.
If we assume the solution of the form xðtÞ ¼

AðtÞ cos½ω0tþ θðtÞ� by introducing slow variables AðtÞ
and θðtÞ while imposing a relation

_A cosðω0tþ θÞ − A_θ sinðω0tþ θÞ ¼ 0 ð3Þ

on AðtÞ and θðtÞ, then the method of averaging [18] yields

_A ¼ −
cτ
2
A; ð4Þ

with

cτ ¼ c0 þ
G
ω0

sinω0τ ð5Þ

and

_θ ¼ −
G
2ω0

cosω0τ: ð6Þ

Therefore, the attenuation rate γ of the amplitude AðtÞ
becomes

γ ¼ cτ
2
; ð7Þ

whereas the oscillation frequency fτ of xðtÞ is given as

fτ ¼
ω0

2π
−

G
4πω0

cosω0τ: ð8Þ

The linear stability of the zero-amplitude state (A ¼ 0) is
determined by cτ. If cτ is positive, then the system is stable
and the oscillation amplitude AðtÞ decreases to zero after a
time. However, if cτ is negative, then the zero-amplitude
state becomes unstable and AðtÞ grows exponentially with
time. Although it is omitted from Eq. (2) for brevity, a
nonlinear term like the second term of the left-hand side in
Eq. (1) prevents AðtÞ from becoming infinitely large, which
makes the system attracted to a limit cycle. Consequently,
the stability limit is given as cτ ¼ 0.

B. Experimental setup of the model oscillator

Figure 1 presents a schematic representation of the
model oscillator constructed with simple electronics and
an acoustic resonator. The barrel-shaped acoustic resonator
is filled with air at ambient pressure and temperature. The
axial length of the resonator is 590 mm. The largest
diameter at the center is 280 mm. The smallest one at
both ends is 260 mm. A pressure transducer is mounted on
the center of a side plate of the resonator. An acoustic driver
made of a woofer speaker is placed at the other side. As a
preliminary experiment, a frequency response curve is
obtained by monitoring the acoustic pressure amplitude
when oscillations with various frequencies are generated by
the acoustic driver. Results show that the longitudinal
fundamental natural acoustic frequency f0 [¼ ω0=ð2πÞ]
is f0 ¼ 309.6 Hz in the present acoustic resonator.
The delayed feedback is achieved in the following way.

The pressure-transducer signal is put into a digital delay
line via an amplifier and a low pass filter with a cutoff
frequency of 1 kHz, sufficiently larger than f0. The
analogue output of the digital delay line is fed through a
power amplifier to the acoustic driver. The delay time τ and
the feedback gain G are tuned with the digital delay line
and the power amplifier.

C. Stability curve

The stability of the model oscillator with the delayed
feedback is mapped out in Fig. 2 on the plane of the gain G
versus the delay time τ normalized with respect to T, where
T ¼ 1=f0 denotes the acoustic period of the longitudinal
fundamental natural oscillation mode. The system becomes
unstable and starts to oscillate spontaneously with a
sufficiently large gain G for all delay times τ that are
tested, but the critical value of G, as well as the oscillation
mode, depends on τ. The fundamental mode is observed in
regions centered at τ=T ¼ 0.8 and 1.8, with the minimum
critical value of G ¼ −2 dB. The period τ=T ¼ 1 of the
unstable regions reflects the τ dependence of cτ through
Eq. (5). The second mode with frequency close to 2f0 is
observed in the regions centered about τ=T ¼ 0.4 and 1.4,

FIG. 1. Experimental setup of the model oscillator.
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in addition to regions with τ=T ≈ 1.0 and 2.0. The stability
curve of the second mode possesses a periodicity of
τ=T ¼ 1=2, as we show later. The third mode with the
frequency close to 3f0 is observed in narrow frequency
regions near τ=T ¼ 1.2 and 1.6. Quasiperiodic oscillations
are observed in the transition region, as shown by the solid
symbols in Fig. 2.
The periodic appearance of spontaneous oscillations

with varying τ is predicted to occur in a more detailed
model of the lean premixed gas-turbine combustors [15].
Therefore, the present oscillator apparently shares impor-
tant mechanisms with the combustion oscillations. In the
following section, we first introduce a method of self-
feedback to halt the fundamental oscillations generated.
Then, we extend the method for application to both the
fundamental and the second-mode oscillations.

III. SUPPRESSION OF OSCILLATIONS

A. Suppression mechanism of the self-feedback tube

To achieve the self-feedback of acoustic oscillations, we
connect a thick-walled silicon tube with 12.7-mm internal
diameter near the side plate of the resonator, as presented
in Fig. 1. Acoustic oscillations at one end of the tube
propagate down to the other with a delay time given by
τ0 ¼ L=c, where L is the tube length and c is the speed of
sound. Therefore, the dynamical system shown in Eq. (2)
would be modified to include an additional feedback term
with the gain G0 on the right-hand side as

ẍþ c0 _xþ ω2
0x ¼ Gxðt − τÞ þG0 _xðt − τ0Þ; ð9Þ

where we use _x instead of x based on our previous
experiments [14]. This modification changes Eqs. (4)
and (6) into

_A ¼ −
A
2

�
cτ − G0 cos

2πL
λ

�
; ð10Þ

_θ ¼ 2πfτ −
G0

2
sin

2πL
λ

; ð11Þ

where the term ω0τ
0 has been replaced with 2πL=λ through

the relation λ ¼ c=f0. Now the attenuation rate γ is given as

γ ¼ 1

2

�
cτ −G0 cos

2πL
λ

�
ð12Þ

when the self-feedback is turned on. Even if cτ is negative,
the self-feedback can recover the stability of the system
when L and G0 are tuned to satisfy the condition

cτ > G0 cos
2πL
λ

: ð13Þ

The condition in Eq. (13) is rewritten as
G0 > cτ= cosð2πL=λÞ and cosð2πL=λÞ < 0, for cτ < 0.
Once the condition of Eq. (13) is satisfied, the zero-
amplitude state remains stable.

B. Evaluation of stability by the Q value

To study the stability of the model oscillator, we
specifically examine the Q value of oscillations because
it is a nondimensional quantity that reflects the attenuation
rate γ in Eq. (12). Assuming that the angular frequency of
the relaxation oscillation xðtÞ is close to the natural angular
frequency ω0, the conventional prescription of dynamics
links the Q value with the attenuation rate γ as [19]

1

Q
¼ 2γ

ω0

: ð14Þ

As discussed in Sec. II A, the zero-amplitude state loses its
stability when γ crosses zero: when 1=Q becomes infi-
nitely large.
The Q value is determined from measurements of the

attenuation rate γ of the acoustic pressure pðtÞ. A tone burst
voltage signal with the carrier frequency f0 is created with
a function generator and fed to a mixing port of the delay
line at t ¼ 0. The voltage pulse, superposed on the signal
from the pressure transducer, is supplied to the acoustic
driver as an excitation signal. The resulting damped
oscillation of pðtÞ is sampled using an A=D converter.
The delay time is fixed to τ=T ¼ 0.8, whereas the gain G is
maintained at G ¼ −5 dB to keep the stability of the
system consistently.
Shown in Fig. 3(a) is the temporal pressure evolution

observed in the model oscillator without the self-feedback
tube, where the pressure waveform is sinusoidal with
exponentially decreasing amplitude. The instantaneous
amplitude and the instantaneous phase are determined
through the Hilbert transform of pðtÞ. The logarithmic
of the instantaneous amplitude, as depicted in Fig. 3(b), is
approximated as a linear function of time with using the
least squares method. The attenuation rate γ is derived from
the slope by considering the conversion from a base-10
logarithm to a natural logarithm. The instantaneous phase
depicted in Fig. 3(c) is also approximated using a linear
function of time. The oscillation angular frequency ω is

first
second
third

first&second
first&third
second&third

FIG. 2. Stability curve. Symbols denote the oscillation modes:
The fundamental (circle), the second (square), and the third
(triangle). Solid symbols are used when two oscillating modes are
observed.
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obtained from the slope. From the measured pressure
depicted in Fig. 3(a), we find that γ ¼ 1.25 s−1 and
fτ ¼ 308.0 Hz, being close to f0. The value of Q is then
determined as Q ¼ 778 from Eq. (14).
In most cases, both the logarithmic amplitude and the

phase linearly change with time, as shown in Figs. 3(b)
and 3(c), but when Q reaches below about 100 because of
the self-feedback tube, the envelope of pðtÞ often shows
beats during the relaxation process to zero. Although such
cases engender large estimation errors ofQ and f, the error
sizes are still acceptable.

C. Experimental results of Q

Figures 4(a) and 4(b) show the 1=Q values and the
oscillation frequencies f ½¼ ω=ð2πÞ� obtained for various
tubes. In Figs. 4(a) and 4(b), the tube length L is
normalized with respect to the wavelength λ ¼ c=f0.
The Q value (Q ¼ 778) and the oscillation frequency
(fτ ¼ 308.0 Hz) are also shown as horizontal lines in
Figs. 4(a) and 4(b) for comparison when the self-feedback
tube is absent. The stability of the system is undoubtedly
improved by the self-feedback tube, as evidenced by the
enhancement of 1=Q values when L=λ is close to 0.5 and
1.5. Because cosð2πL=λÞ goes to −1 with these values of
L=λ, this result is consistent with the attenuation rate γ
in Eq. (12).
By inserting γ in Eq. (12) into Eq. (14), the inverse of the

quality factor, 1=Q, is obtained as a function of L=λ as

1

Q
¼ 1

Qτ
−
G0

ω0

cos
2πL
λ

; ð15Þ

where Qτ ¼ ω0=cτ. The oscillation frequency f is also
given from Eq. (11) in the same way as

f ¼ fτ −
G0

4π
sin

2πL
λ

: ð16Þ

We see that the two maxima of 1=Q, as well as the sign
changes of f − fτ, near L=λ ¼ 0.5 and 1.5 are consistent
with Eqs. (15) and (16). However, the L=λ dependences of
1=Q and f differ from sinusoidal functions. Therefore, to
reproduce 1=Q and f in Figs. 4(a) and 4(b) fully, the gain
G0 must vary with L=λ.
Inserting Eqs. (15) and (16) into the relation

cos2ð2πL=λÞ þ sin2ð2πL=λÞ ¼ 1 yields

G0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0

�
1

Qτ
−

1

Q

�
2

þ 16π2ðfτ − fÞ2
s

: ð17Þ

We have evaluated G0 through Eq. (17) using measured
values of ω0,Q,Qτ, f, and fτ, as depicted in Fig. 5. Taking
aside the small differences from 0.5 and 1.5, one can say
that gain G0 becomes greater when tube length L is close to
ð2n − 1Þλ=2, but it remains small for other values of L,
where n is an integer. Therefore, the gain G0 of the self-
feedback only contributes to stabilizing the system. In other
words, if G0 is constant as in the external feedback, then the
system would become unstable when L approaches nλ.
After fitting the obtained G0 to a curve given by a sum of

two Lorentz curves that have peaks at L=λ ¼ 0.46 and 1.46,

(a)

(b) (c)
×

FIG. 3. Pressure oscillation excited by an acoustic pulse at
t ¼ 0, when τ=T ¼ 0.8 and G ¼ −5 dB. From temporal pressure
evolution in (a), the instantaneous amplitude (b) and instanta-
neous phase (c) are obtained.

(a)

(b)

FIG. 4. The inverse of the Q value (a) and the oscillation
frequency f (b) when feedback tube length L is changed. The
delay time and gain are fixed at τ=T ¼ 0.8 and G ¼ −5 dB. The
curves, respectively, portray the reproduction of 1=Q and f based
on the estimated gain G0 through Eqs. (15) and (16).
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we calculated 1=Q and f through relations in Eqs. (15)
and (16). Results are shown by thin curves in Figs. 4(a)
and 4(b), where qualitative agreement is seen with exper-
imental values. Because gain G0 serves as a quantity
characterizing the ability to suppress the oscillations,
additional studies must be undertaken to ascertain methods
to enhance the gain G0 at particular values of L=λ.

D. Stability curve with a self-feedback tube

The stability limit is determined experimentally with
varying delay times τ of the digital delay line to test
the ability of the self-feedback tube. Figure 6(a) shows
the stability curve when the self-feedback tube with
L=λ ¼ 0.46, together with that when the feedback tube
is absent. When the delay time τ is tuned as τ=T ¼ 0.8, the
system without self-feedback becomes unstable with
G ≥ −2 dB. However, when the self-feedback is adapted,
the system remains stable as long as G is less than 10 dB.
The resulting gain enhancement is 12 dB, which means that
the system remains stable until G becomes 100.6ð≈ 4.0Þ
times larger than the critical value. Such improvement is
also attained for the fundamental mode at τ=T ¼ 1.8.
Although the stability of the fundamental mode

oscillations is improved by the self-feedback tube with
L=λ ¼ 0.46, that of the second-mode oscillations is insen-
sitive to it. As a result, the second-mode oscillations mostly
govern the stability curve in Fig. 6(a), where we can more
clearly see the periodic appearance of the second mode,
which is hidden in Fig. 2.
The second mode has a frequency of about 2f0,

which means that the wavelength becomes almost half
of that for the fundamental. Therefore, the tubes with
L=λ ¼ 0.5; 1.5;… for the fundamental acoustic mode are
useless. Instead, the tubes with L=ðλ=2Þ ¼ 0.5; 1.5;…
become necessary to stop oscillations. Figure 6(b) presents
the stability curve when the secondary self-feedback tube

with L=λ ¼ 0.74 is connected to the resonator at the same
axial position as the first with L=λ ¼ 0.46. Comparison
between Figs. 6(a) and 6(b) presents that the minimum
threshold values of about 0 dB at τ=T ¼ 0.4, 0.9, 1.4, and
1.9 have increased by installation of the secondary tube. As
a result, the system gained its stability up to G ¼ 5 dB for
all the τ values.
It is clear that one should use a tube with a length equal to

the odd integer times half the wavelength of the anticipated
oscillation modes. In practical combustors, the natural
frequency might be varied according to operating condi-
tions. In such a case, tubes with different lengths and
internal diameters would be necessary to control the delay
time and the feedback gain. We plan to develop a method to
apply the feedback tube in a real system.

IV. SUMMARY

We have demonstrated the suppression of spontaneous
acoustic oscillations using self-feedback. Self-feedback is
realized using only a tube with a length equal to the odd
integer times the half wavelength of the anticipated acoustic
mode. The simplicity is the advantage of the present
method to the conventional delayed-feedback system.
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FIG. 5. Relation between the gain G0 of the self-feedback and
the tube length L. λ is the wavelength of the acoustic oscillations.
The curve represents a fitting result to a Lorentz curve with peaks
at L=λ ¼ 0.46 and 1.46.

(a)

(b)

first
second
third

first&second
first&third
second&third

FIG. 6. Stability curves with (a) the tube with L=λ ¼ 0.46 and
(b) the two tubes with L=λ ¼ 0.46 and 0.74. Symbols to denote
the oscillation modes are the same as in Fig. 2. The stability curve
shown by gray is reproduced from Fig. 2.
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