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Electron spins in solids have a central role in many current and future spin-based devices, ranging from
sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined
spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being
essential for device operation, these interactions can also result in undesirable effects, such as decoherence.
Arguably, the most important pure quantum interaction that causes decoherence is known as the “flip-flop”
process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate
of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and
approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can
be directly and accurately measured by examining spin-diffusion processes in the solid state for physically
fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state
exchange and not via actual spatial motion. Our approach is implemented on two types of samples,
phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to
quantum sensors and information processing. However, while the results for the former sample are
conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of
approximately 0.2 Hz for this rate can be estimated.
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I. INTRODUCTION

Spin-based quantum devices, such as magnetic-field
sensors [1,2] and quantum computers (QCs) [3], are
potentially very useful, but they are also prone to errors
and subject to limitations due to unavoidable interactions
with neighboring spins and the surrounding environment.
Such interactions may affect the purity and stability of a
given quantum state for any electron spin in the device.
Evidently, it is important to characterize these interactions
and their effects on spin coherence for a variety of materials
and spin arrangements (e.g., a 2D array of spins [4–8]). If
we examine a typical system of electron spins in solids, we
can identify several potential pure spin-related mechanisms
for decoherence that can be measured by electron-spin-
resonance (ESR) spectroscopy, as described in Fig. 1.
In order to properly design and optimize a specific spin-

based quantum device or a sensor, it is highly important that
the coherence properties of the electron spins are well
understood and characterized for each and every mechanism
independently. At present, the rate of this process can only be
estimated theoretically [10–14], or measured indirectly,
under limiting assumptions and approximations, via spin-
relaxation data [15]. The problem is that in most, if not all
settings, it is not possible to obtain a direct independent
measurement of each and every decoherence mechanism
separately. This is because coherence time is often evaluated

as a single collective parameter, based on the ESR signal
decay time profile as measured by spin echo [Fig. 1(g)] or a
Carr-Purcell-Meiboom-Gill sequence [16,17], which elim-
inates only the static field inhomogeneity contribution to the
decoherence and maintains all other contributions. Previous
efforts to try and disentangle the various decoherence
mechanisms out of the spin-echo decay data relied on the
use of several sets of samples, measured under several sets of
experimental conditions. A good example of such an effort
was carried out recently by Lyon’s team, which looked into
the details of the coherence time of P-doped Si [15]. The
contribution from instantaneous diffusion to decoherence is
estimated by plotting the inverse relaxation time (1=T2) as a
function of the second pulse rotation angle θ [sin2ðθ=2Þ to be
more exact] and extrapolating to θ → 0. This leads towhat is
referred to as the “intrinsic” T2 of the system, TINT

2 , without
the artificial effects of static field inhomogeneity and micro-
wave (MW)pulses. The contribution of the acmagnetic-field
noise due to nuclear spin random flips to the electron
decoherence is evaluated by comparing the relaxation times
of different samples with different 29Si concentrations (as
theoretically described in Ref. [18]) at different temper-
atures. The contribution from direct and indirect flip flops is
estimated using a combination of measurements with differ-
ent rotation angles θ carried out in either homogenous or
inhomogeneous static fields (which can suppress some of the
flips flops, at least along the gradient direction). This later
procedure has tomake some significant simplifying assump-
tions in order to finally extract the direct flip-flop contribu-
tion to decoherence (1=TDFF

2 ). Namely, it must assume a
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simple exponential dependence of the echo amplitude on
TDFF
2 , TIDFF

2 , and TID
2 to extract them all from the relaxation

data curve (for example, with an exponential rate
of ð1=T2Þ ¼ sin2ðθ2=2Þ½ð1=TID

2 Þ þ ð1=TDFF
2 Þ� þ ð1=TIDFF

2 Þ;
see Ref. [15]). This may be an oversimplification (the theory
predicts a much more complex decay behavior [9]) and may
potentiallywork only if all relaxation rates are of comparable
magnitude. Unfortunately, in most samples of relevance to
QCs, such as P-doped Si or nitrogen vacancies (NV) centers
in diamonds, the direct flip-flop rate (and its contribution to
decoherence) is very small compared to other mechanisms
described above and is also almost inseparable from the
indirect flip-flop effects. Moreover, additional experimental
issues, such as the electromagnet’s random magnetic-field
noise and imperfections and inhomogeneity of the excitation
MW pulses, add to the experimental complexity. Thus, the
process of disentangling the direct flip-flop rate based on
echo measurements’ decay data may be prone to significant
errors andnot satisfactory, especiallywhen longer and longer
decoherence times are involved.
In the present work, we demonstrate an approach to

selectively extracting and measuring the flip-flop rate of

electron spins in solids, without the effort of disentangling
contributions from other decoherence mechanisms. This is
achieved by directly measuring the spin-diffusion process
of physically fixed spins, where the wave function of the
spins diffuses only through this flip-flop-mediated quan-
tum-state exchange and not via actual spatial motion.
Consequently, these spin-diffusion data immediately pro-
vide the flip-flop rate. Our approach is implemented on two
types of samples: phosphorus-doped 28Si and NVs in
diamonds, both of significant relevance to quantum sensors
and information processing [3,19,20]. However, while the
results for the former sample are conclusive, the latter
sample yields only an estimate of the upper limit of the
flip-flop rate.

II. THEORY OF SPIN FLIP FLOP
AND SPIN DIFFUSION

A. Spin diffusion and the flip-flop rate

The concept of the spin self-diffusion coefficient Ds was
introduced a long time ago by Bloembergen, who linked it
to the flip-flop rateW in his seminal paper [10]. This direct

FIG. 1. Electron spin decoherence mechanisms in a solid-state sample. (a) Static field inhomogeneity leads to spatial variations in the
sample’s Zeeman frequencies, resulting in an extra broadening of the inhomogeneous ESR spectrum of the order of 1=TDC

2 .
(b) Instantaneous diffusion decoherence effects can be seen in a Hahn spin echo experiment (see item g), where the second π pulse flips
not only the observed spin but also the neighboring random-state spins. This results in a stochastic change of the local magnetic fields
felt by the observed spin and leads to “instantaneous” changes in its precession frequency, thus resulting in less efficient echo refocusing
and shorter observed phase-memory time with an excess rate characterized by 1=TID

2 . (c) ac magnetic-field noise due to flip flops of
nearby dipolar nuclear spin pairs acting on the observed electronic spin in the form of fluctuating fields and resulting in enhanced
relaxation rates of the order of 1=TAC

2 . Using isotopically pure samples with no magnetic nuclei reduces this decoherence effect.
(d) Indirect electron-spin flip flops involve a mutual change in the quantum state of dipolar electron pairs neighboring the observed spin,
which thus produce fluctuating magnetic fields shifting the observed frequency in a time-dependent manner (also denoted as spectral
diffusion), with a rate given by 1=TIDFF

2 . (e),(f) The direct flip-flop process, also known as spin diffusion, contributes to the overall
relaxation by a rate given by 1=TDFF

2 and involves the direct exchange of polarization between the observed spin and its neighbor. This
may occur between two observable spins (e), or one observable and another, unobserved spin (f). The term “observable” relates here
to a spin that is excited by the microwave pulses in the spin-detection sequence. Only the former case is of relevance to
decoherence [9].
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link betweenW andDs leads to the possibility of providing
accurate measurements of W by measuring Ds. We can
describe this relation in quantitative terms using the
approach of Bloembergen [10] and those who followed
his work. We assume that the S ¼ 1=2 spins in the sample
are located on a cubic lattice with equal spacing a and have
an equal nearest-neighbor flip-flop rate W ¼ Wij between
spins i and j. We denote the polarization pðx; tÞ ¼
Pþðx; tÞ − P−ðx; tÞ, where Pþð−Þðx; tÞ is the probability
of finding at x and at time t a jþ1=2iðj−1=2iÞ state. Thus,
based on the definition of W, it is possible to write
that

−∂pðx; tÞ
∂t ¼ WfPþðxþ a; tÞP−ðx; tÞ

− Pþðx; tÞP−ðx − a; tÞ
þ Pþðx − a; tÞP−ðx; tÞ
− Pþðx; tÞP−ðxþ a; tÞg: ð1Þ

Using the relation Pþðx; tÞ þ P−ðx; tÞ ¼ 1 and neglect-
ing terms that are quadratic in p results in the well-known
diffusion equation

−∂pðx; tÞ
∂t ¼ Ds

∂2p
∂x2 ; Ds ¼ Wa2: ð2Þ

Therefore, by measuring Ds we obtain direct knowledge
about the flip-flop rate, assuming that the interspin distance
a is known.
In cases where the interspin distance is not constant, as in

most electron-spin samples of interest, it is possible to
make use of numerical derivation of the spin-diffusion
phenomenon as mediated by flip-flop processes. In the next
section, we outline the details of such a numerical simu-
lation, carried out in conjunction with our measurement
protocol, which takes into account possible deviations from
the average distance a and considers the interactions from
all neighboring spins and also the orientation of the static
magnetic field with respect to the spins.

B. Theoretical approach to calculating W

Most of the theory for calculating W was developed in
the context of condensed-phase nuclear magnetic reso-
nance (NMR), where the dipolar interaction between the
spins is the dominant transverse relaxation process (T2).
While this is not the case for the electron spins in our
samples, it is worthwhile to briefly describe the existing
theory, as we make use of its results as a rough estimation
of the expected experimental outcomes.
We consider first a system of identical spins in a solid

that interact via the dipole interaction. Such a system can be
described using the Hamiltonian [10,13]

H ¼ Hz þHd ð3Þ

with the Zeeman interaction

Hz ¼
X

k

γkB0Sk ð4Þ

and the dipolar term

Hd ¼
X

j;k;j<k

μ0
4π

ℏγjγk
r3jk

�
Sj · Sk − 3ðSj · rijÞðSk · rijÞ

r2jk

�
; ð5Þ

where rjk is the distance between spins j and k, Sj is the
angular-momentum operator of spin j, in ℏ units, and γj is
the gyromagnetic ratio of spin j. The dipolar interaction can
be divided into several complementary terms:

Hd ¼
μ0
4π

ℏγjγk
r3jk

ðAþ Bþ CþDþ Eþ FÞ; ð6Þ

where each of the terms is involved in a different change of
the spins’ ms quantum number. The only relevant term that
induces the flip-flop process is the one where the total
quantum number ms of the two interacting spins does not
change (zero quantum transition):

B ¼ − 1

4
ðSþj S−k þ S−j Sþk Þð1 − 3cos2θjkÞ; ð7Þ

where Sþj and S−j are the raising and lowering spin operators
of spin j, respectively, and θjk is the angle between rjk and
the direction of B0. Based on this description, the flip-flop
rate Wjk can in essence be calculated from first principles,
assuming that the dipole interaction is a small perturbation
to the Hamiltonian [10,12–14]:

Wjk ¼
π

2

�
μ0
4π

ℏγjγk
r3jk

�
2
�
3cos2θjk − 1

2

�
2

fjkð0Þ: ð8Þ

However, such calculations are limited by nature, since
they require a priori data about the zero-quantum transition
normalized spectral line shape function on the two-spin
system, fjkðωÞ. This line shape may be very different than
the one measured for the conventional single-quantum
transition spectrum, as it is much less affected by the
decoherence mechanisms listed above (e.g., static field
spatial inhomogeneities and temporal instabilities), and
calculating it would require many details about the spatial
and spectral distribution of fluctuating lattice motions and
magnetic fields in the solid, which are difficult to obtain.
Under the assumption that f has the same line shape as the
one measured for the single-quantum transitions (assumed
here to be Gaussian) and that the line-shape-broadening
mechanism is mainly due to the dipolar interaction between
the spins, it is possible to obtain this approximate formula
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for the exchange rate between like spins randomly distrib-
uted in the solid [10]:

W ≈
ffiffiffiffiffiffi
2π

p

30TINT
2

; ð9Þ

with the notation of TINT
2 as referred to in the main text.

However, as noted above, this formula is very approximate,
especially for weakly interacting spins (where line-shape
broadening is certainly due not only to the dipolar
interaction) and thus can serve only as a rough order-of-
magnitude estimation. Thus, while many theoretical papers
can be found on the subject (mainly in the context of NMR)
that are based on a perturbative approach, make use of a
more rigorous density-matrix formulation [21], or even rest
on a classical numerical simulation [22], in practical terms
it is necessary to resort to experiments to obtain W, and, as
noted above, deriving W from the decoherence rate is very
problematic.

III. MEASUREMENTS OF SPIN DIFFUSION

The spin diffusion considered in this work is certainly
related to, but should not be mistaken for, real-space
diffusion, which can be more easily measured. For exam-
ple, real-space diffusion of proton spins can be accurately
measured by employing NMR in the presence of a static or
pulsed magnetic-field gradient. In a sample with diffusing
species, e.g., molecules in liquids, this leads to a significant
reduction in the echo signal’s magnitude, which can be
directly linked to the diffusion coefficient of the spins

[17,23–25]. Measuring the diffusion of the spins’ wave
function resulting from the flip-flop mechanism, when the
spins are physically fixed in a solid, is far less common.
However, there are some unique examples of just such
measurements but only in the field of condensed-phase
NMR, where spin-spin interactions (dipolar- or exchange-
based) are relatively large with respect to the spin-lattice
relaxation times that are relatively very long [26–29]. In the
case of electron spins, the measurement of self-diffusion,
both in real space and certainly for physically fixed spins, is
far less common. The reason for that lies in the technical
difficulties that arise due to the short relaxation times of
the electron spins, which in turn pose extreme challenges
on the required magnitude and duration of the applied
magnetic-field gradients.
In order to better clarify the exact nature of our present

measurements in comparison to other related electron- and
electron-spin-diffusion experiments, we provide the follow-
ing discussion with reference to Fig. 2. Physical real-space
diffusion [Fig. 2(a)] was measured in the past in the unique
case of conduction electrons in solids, thanks to their
relatively large diffusion coefficient of Ds > 10−6 m2=s
[30]. More recently, a much more advanced setup using a
unique set including a miniature resonator and gradient
coils, driven by powerful and fast gradient drivers, was
employed to measure physical electron spin diffusion in
liquids, with Ds as low as 10−10 m2=s [31–33]. Other
works, from the field of spintronics, refer to “spin diffusion
length (or time)” [Fig. 2(b)] as the distance (or time) over
which a nonequilibrium flow of spin population can
propagate prior to decaying to thermal equilibrium

FIG. 2. Description of various electron- and electron-spin-diffusion processes and related experiments. (a) The electron spins are
in thermal polarization and physically self-diffuse in a liquid (in the case of paramagnetic molecules) or in a solid (in the case of
conduction electrons). (b) In spintronics, electron spins are injected to a conductor or a semiconductor through a spin “filter” resulting in
a polarized electron spin current with a polarization level that decays during the “diffusion length” of the spins. (c) The electron (and not
necessarily electron spin) diffusion can be measured by generating a local electron population and observing their physical diffusion.
(d) Spin diffusion in physically fixed spins mediated by flip flops, as measured in the present experiments.
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polarization [34]. Data on this process can be measured by
advanced methods, such as muon spin rotation and Kerr-
rotation microscopy [35,36]. Additional experiments of
relevance observe the physical diffusion of the electrons or
electron-hole pairs, without specifically considering their
spin properties [Fig. 2(c)] [37,38]. As noted above, contrary
to the processes described in Figs. 2(a)–2(c), our present
work considers the spin diffusion of physically fixed
electron spins in solids [Fig. 2(d)]. While this process is
undistinguishable from that occurring in physically free
spins [Fig. 2(a)], the former process can be safely neglected
in insulating samples or other similar samples where
electrons are not mobile. Up until now, no experiment
has attempted or shown a capability to measure the
diffusion of the electron spins’ wave function in solids
(due to flip flops), which is expected to be of the order of
10−15–10−13 m2=s (see below). Here we provide an
account of such an experiment, which assesses the electron

spins’ self-diffusion coefficient and uses this measurement
to provide directly the flip-flop rate for spins in a P-doped
single crystal of 28Si and attempts the same for NV centers
in diamonds. Both of these samples are of significant
relevance to quantum sensors and information process-
ing [19,20].
The assessment of Ds in our work is carried out

employing the pulsed gradient spin echo sequence
(PGSE) shown in Fig. 3. The magnitude of the echo signal
acquired via this sequence is given by [40]

Eg
ðt¼2τ2þτ1Þ ¼Aexp½−2τ2=T2−τ1=T1

−Dsγ
2g2δ2ðΔ−δ=3Þ�: ð10Þ

Let us first investigate, in quantitative terms, what would
be the experimental requirements needed to measure Ds

for a typical sample, such as P-doped 28Si. The order of

FIG. 3. (a) ESR pulse sequence for directly measuring the flip-flop rate through spin diffusion. The image depicts both the
conventional induction-detection scheme as well as the optically detected scheme (with an additional π=2 MW pulse, shown in
semitransparent mode, and the green laser irradiation before and after the sequence). (b),(c) Spin evolution can be described as follows:
A π=2 excitation pulse creates magnetization along the −x axis of the laboratory frame (the static field B0 is along the z axis). A short
magnetic-field gradient pulse creates variation in the Larmor precession frequencies. The result of this pulse is that the position of the
spins along the field gradient is encoded in their phase. During the evolution time, spins can undergo a flip flop and thus distort the nicely
ordered phase-encoded pattern (plate c, center). The two π=2 pulses applied during evolution just make sure that the phases are encoded
along the z axis and thus stored for a period of T1, typically much longer than T2, to facilitate a relatively long evolution time. At the end
of the evolution period, the spins are decoded with an identical short magnetic-field gradient pulse. If no diffusion occurred during the
evolution period (plate b), the stimulated echo magnitude is maximal (affected only by T1 and T2 processes), while with flip-flop-
mediated diffusion (plate c), refocusing is not complete and the echo signal is smaller. For optical detection, the MW sequence is
preceded by a laser pulse that pumps the spin population of the NV triplet to its ms ¼ 0 state, and an additional MW pulse is applied to
convert coherences to populations that affect the magnitude of the detected fluorescence signal [39].
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magnitude of the flip-flop rate can be grossly estimated, to
be [see Eq. (9)] W ≈ ½ ffiffiffiffiffiffi

2π
p

=ð30TINT
2 Þ� [10,12]. This means

that for a sample with approximately 1014 P atoms in
1 cm3, where at approximately 4 K the value of TINT

2 is
measured to be approximately 600 ms [15], W ∼ 0.03 s−1.
The mean distance between like-electron spins (those that
have the same quantum state for their neighboring nuclei) is
a ∼ 270 nm, which gives an estimatedDs of approximately
2.2 × 10−15 m2=s [Eq. (2)]. Similar arguments lead toDs ∼
3.1 × 10−15 m2=s for P concentrations of approximately
10−15, based on TINT

2 data provided in Ref. [15], while for P
concentrations of approximately 1016 atoms=cm3 we can
expect Ds ∼ 10−14 m2=s. These Ds values are extremely
small and thus pose severe experimental challenges to
measure them. More specifically, in order to be able to
measure such diffusion effects, the term in the argument of
the exponent in Eq. (10) involving Ds must be comparable
to the terms with T2 and T1. As noted above, in recent years
we have developed a methodology to measure the physical
diffusion of electron spins in liquids. This capability relies
on the use of a miniature resonator to acquire strong ESR
signals from a very small sample, around which we place
miniature gradient coils that make it possible to produce
powerful magnetic-field gradients with a very short dura-
tion, as required by the PGSE sequence for electrons. Our
latest achievements in this area allow us to obtain gradients
of up to approximately 500 T=m with a pulse duration of
approximately 1 μs [41]. Thus, even for a sample with
approximately 1014 P atoms in 1 cm3, it is possible, for
example, to employ the sequence in Fig. 3 with values of τ1
up to approximately T1=2 ∼ 50 ms (at 7 K [15,42]) and τ2
of approximately 5 μs (to enable enough time to place in
the gradient pulse—see Fig. 3). This implies that the factor
Dsγ

2g2δ2ðΔ − δ=3Þ can reach a value of approximately 0.8,
while 2τ2=T2 þ τ1=T1 ∼ 0.5, meaning that the expected
echo decay due to spin diffusion should be considerable
and measurable under such conditions. Similar arguments
support also the experimental capability of measuring the
diffusion of samples with higher P-atom concentrations at
similar cryogenic temperatures.

IV. EXPERIMENTAL DETAILS

A. Samples

Two types of samples are employed in this study:
(a) Phosphorus-doped 28Si (28Si∶P) single crystal (28Si
purity of more than 99.9%) with a concentration of
1016 P atoms per cubic centimeter [43]. The doped isotopi-
cally enriched thin layer of 10-μm thickness is grown on a
high-resistivity p-type silicon substrate [Fig. 4(a)]. At the
measured temperature of 10 K, it is well known that such a
sample behaves as an insulator with the electron spins fixed
about the phosphorous nucleus [44–46]. (b) A synthetically
grown diamond single crystal, type IIa, with a [111] face
(purchased from Element Six, Germany), irradiated with

10-MeVelectrons with a dose of 1018 cm−2, resulting in NV
concentrations of approximately 1014 spins=cm3 (based on
continuous-wave electron-spin-resonance measurements).
These NVs are immobile at room temperature and the
sample itself is highly insulated, precluding any real
physical space electron motion. The diamond sample’s
dimensions are 3 × 3 × 0.34 mm [see Fig. 4(b)].

B. Experimental system

The experiments are carried out employing our home-
made pulsed ESR microimaging spectrometer as the main
instrument console [47]. For the measurements of the
28Si∶P sample, we employ our cryogenic Q-band imaging
probe head with a ring dielectric resonator [Fig. 4(a)],
which is also equipped with a cryogenic low-noise ampli-
fier for improved sensitivity [41,48]. The sample is placed
with its plane perpendicular to the static field B0, and the
pulsed field gradients have a predominant dB0=dz compo-
nent [Fig. 4(a)]. The measurements of the diamond sample
are carried out using our optically detected magnetic
resonance imaging setup [49], but with a specially designed
dielectric resonator for approximately 6.7 GHz, which can
accommodate both the diamond sample and the gradient
coils [Fig. 4(b)], for enhanced gradient efficiency (vs our
setup in Ref. [49], where the gradient coils are outside
rather than inside an approximately 10.6-GHz resonator).
The sample is placed with its [111] orientation along B0 to
enable efficient optical pumping of the NV spins’ levels.
The gradient pulses are generated by our homemade half
sine pulse drivers [33]. In the present experiments, we
apply a gradient of 150 T=m for a duration δ of 1.1 μs for
the 28Si∶P sample, while for the diamond sample gradients
of 305 T=m are applied with a duration of δ ¼ 550 ns. The
duration τ2 is 25 μs for the 28Si∶P measurements and
8.3 μs for the NV sample. A 16-step phase-cycling scheme
is used to cancel all unwanted FID and echo signals [50].

V. RESULTS AND DISCUSSION

A. Numerical simulation of the echo magnitude
decay due to spin diffusion

The echo intensity measured with gradients, Eg, nor-
malized to the echo intensity without gradients, E0, when

FIG. 4. The experimental setup for measuring the 28Si∶P
sample (a) and the diamond sample (b).
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using the pulse sequence shown in Fig. 3, can be directly
linked to W via a numerical simulation that follows all the
stages of the PGSE pulse sequence. The simulation takes a
large number of electron spins (typically about 10 000) and
places them randomly in a 3D space, with a mean distance
that corresponds to their bulk concentration. Following this,
the simulation applies a pulsed magnetic-field gradient that
creates a corresponding spatially dependent phase profile
for the spins in the sample along the z axis (parallel to the
applied static field B0). The spins are then given the
opportunity to evolve during the evolution time with small
time steps Δt (typically 100 μs). In terms of the simulation,
this means that at each time step a given spin has a chance
to flip flop with other spins. The flip-flop process between
spins j and k, during a given short time step, is simulated as
a random stochastic Markovian event with a probability of
Δt × K2

exð3cos2θjk − 1Þ2=r6jk [based on Eq. (8), with

Kex ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðπ=8Þfjkð0Þ

p ½ðμ0=4πÞℏγjγk�]. Following the evo-
lution time, the spins are then subjected to another gradient
pulse that unwinds the phase profile generated by the first
pulse. If no significant spin diffusion occurred via flip
flops, the complex sum magnitude of all the spins in the
sample should amount to their number. However, if many
flip-flop events occurred, the complex sum becomes lower
than the maximal value, as measured by our PGSE
sequence. The only adjustable parameter in this numerical
simulation is Kex to fit the Eg=E0 measured plot.

B. Spin diffusion in the 28Si∶P sample

ESR measurements with the pulse sequence shown in
Fig. 3 are carried out at 8 K. The stimulated echo signal is
recorded with and without the pulsed field gradients in an
interleaved manner at a repetition rate of 10 Hz with
evolution time ranging from 7 up to 60 ms (T1 at this
temperature is found to be approximately 30 ms).
Measurements at each time point are averaged for a period
of 1–5 min (longer averaging times for the longer evolution
time where the echo signal is smaller). The echo signal with
the pulsed field gradient, Eg, is normalized with respect to

the echo signal without the phase gradients, E0. Figure 5(a)
shows the measured Eg=E0 signal as a function of the
evolution time. The figure also shows the theoretical fit,
based on Eq. (10), normalized to E0, i.e., Eg=E0 ¼
exp½−Dsγ

2g2δ2ðΔ − δ=3Þ�, with a single fit parameter
Ds ¼ 3.37 × 10−14 m2=s, which translates through
Eq. (2) to an exchange rate of W ∼ 15.9 Hz (using a ∼
46 nm for P concentrations of 1016=cm3). An additional fit
is obtained by numerical simulation of the spin-diffusion
phenomenon, which is more accurate than simply using
Eq. (2) (see above), leading directly to a value of Kex ¼
1.2 × 106 ½Hz × nm3�, which for a distance of 46 nm and
θjk ¼ π=2 gives W ∼ 12.3 Hz. The value of Kex also
provides information about the normalized zero quantum
spectrum of the two-spin system [see Eq. (8)], to give
fjkð0Þ ¼ 3.8 × 10−5 (for a spin distance of 46 nm).

C. Spin diffusion in the diamond sample

Similar stimulated echo measurements with and without
the gradient pulses are carried out at room temperature on
the diamond sample with the NV defects, but with the
modified optically detected magnetic resonance (ODMR)
PGSE sequence having two additional laser and one MW
pulses (Fig. 3). As before, Fig. 5(b) shows the normalized
echo signal Eg=E0 as a function of the evolution time.
However, due to the relatively short T1 (approximately
5 ms) of the diamond sample at room temperature, we are
limited to an evolution time of approximately 9 ms. In
addition, it is evident that the error in these measurements is
more prominent than in the first sample, and it is immedi-
ately noticeable that the normalized echo value starts from
about 0.5 rather than from 1, even for a short evolution
time. These issues are mainly due to three reasons: the
relatively short T2 of the diamond sample (approximately
10 μs) compared to that of the 28Si∶P (approximately
200 μs), its relatively large size (approximately 300 μm)
compared to the thin (10 μm) enriched, layer of the Si
sample, and the inherent problematics of the unique ODMR
detection protocol.

FIG. 5. (a) The ratio between the
stimulated echo signal with pulse
gradients, Eg, and the signal without
pulse gradients, E0, for the 28Si∶P
sample. The fit to Eq. (10) is shown
by the red line, and the numerical
simulation results are shown by the
green line. (b) The same as panel (a)
but showing the measured and theo-
retical results for the sample of the
NV centers in diamonds. An addi-
tional theoretical curve, assuming a
tenfold larger spin-diffusion coeffi-
cient value, is shown in magenta (see
the text for more explanations).
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Let us explain what the implications of each of these
three issues are. Pulsed magnetic-field gradients are never
optimal, and residual small currents can persist in the
gradient coils well after the pulse is applied. As noted
above, since the gradient pulses can be applied only during
the transverse evolution period, their duration should be
comparable to or, better yet, much shorter than T2. In the
latter case, placing the gradient pulse at the beginning of the
evolution period leaves enough time for the residual current
to decay, during τ2, which evidently cannot be much longer
than T2. In the 28Si∶P sample, due to its long T2, we could
employ a τ2 of 25 μs, leaving more than enough time for
the residual current to decay, while for the NV sample, with
τ2 of only 8.3 μs, some residual current apparently still
remains. This residual current can shift the frequency of the
echo signal and also broaden it. The shifting, and especially
the broadening, effects greatly depend on the dimensions of
the sample along the gradient axis. Here, also, the NV
sample is inferior to the 28Si∶P, which is much thinner and
thus much less prone to these artifacts. Finally, the ODMR
detection protocol, with its need for an additional MW
pulse to detect the echo signal, creates another problem.
ODMR essentially collects the transverse magnetization
echo signal at a single time point; therefore, any broadening
or frequency shifts reduce the magnitude of the signal
without any simple apparent way of restoring it. This is in
contrast to the conventional induction-detection approach
with quadrature detection, which collects the entire echo
time evolution in a single acquisition. With induction
detection, it is possible to immediately identify frequency
changes and broadening effects that simply move and
broaden the peak signal in the frequency spectrum domain.
Thus, when such effects occur, they can be mostly reversed,
and the undistorted total echo signal can be recovered by
simply looking at the integral of the signal rather than at its
maximum spectral value.
The above explanations and discussionmake it clear why,

at the high level of gradient pulses we employ, the
normalized echo Eg=E0 value shown in Fig. 5(b) already
drops to a level of about 0.5, even for a very short evolution
time. This is obviously not because of spin diffusion but
rather due to the above-mentioned reasons, which limit the
level of echo reconstruction that can be achieved with this
sample in our present setup. Furthermore, as a result of the
relatively short maximum evolution window and the large
signal variability, we cannot observe a definite decay in the
normalized echo signal. Nevertheless, while the signal and
the corresponding results are far from optimal, it is still
possible to draw some (albeit limited) physical conclusions
based on it. For that purpose, we superimpose on the
experimental data three theoretical decay curves. The first
two are similar to those shown in Fig. 5(a), based on fitting
the experimental data to the predictions of Eq. (10) and to the
numerical simulation. With these two fits, we obtain a Ds

value of approximately 1 × 10−14 m2=s [fitting to Eq. (10)]

and a Kex value of approximately 2 × 106 Hz=nm3, corre-
sponding toW ∼ 0.2 Hz (based on the numerical simulation
results). The drop in the signal due to the effects of the
residual current is accounted for by simply normalizing the
simulation value to 0.47 instead of 1. Because of the quality
of the data, these fitted values represent just a rough order of
magnitude that provides an upper limit to the real physical
values. To make this point clearer, a third theoretical plot is
added, which represents the prediction of Eq. (10) but with a
Ds value of approximately 1 × 10−13 m2=s. This additional
curve clearly shows that under our experimental conditions,
for such aDs value, the signal decay is expected to be much
more pronounced, to a level that would have been meas-
urable already during the 9-ms time slot. Thus, it can be
concluded that the W ∼ 0.2 Hz is indeed a rough order-of-
magnitude upper limit to the flip-flop rate in this sample that
can be estimated from our current experimental data.
The experimental results as a whole show the possibility

to accurately measure the flip-flop rate of like-electron
spins, as long as this rate is not much smaller than 1=T1.
This condition is obeyed in the case of the 28Si∶P sample,
but for the diamond sample this is not the case, and thus we
can obtain only an upper limit for W. Our results can be
compared to theory, based on Eq. (9), using the measured
value for the intrinsic TINT

2 ∼ 1.05 ms at 8 K for our 28Si∶P
sample to obtain W ∼ 79.5 Hz. In the case of the diamond
sample, TINT

2 ∼ 90 μs, leading to W ∼ 928 Hz. These two
theoretical rates are much faster than the measurements
obtained by us. However, this is clearly due to the
limitations of the simplified theory, because such fast rates
are incompatible with our observations. In terms of a
comparison to other experimental results, as noted above,
such a type of measurements has not been carried out to
date for electrons. The closest ones which are of relevance
are the measurements carried out on a 28Si∶P sample with P
concentrations of 1014 spins=cm3 at 1.8 K, the findings of
which are TDFF

2 ∼ 0.8 s [15], corresponding to W ¼
1=TDFF

2 ∼ 1.25 Hz [10]. The spin concentration in that
case is 100 times lower than in our experiment, which
suggests that W should also be much smaller (due to the
dependence of the dipolar interaction on interspin dis-
tance). However, there should also be some temperature
dependence affecting the entire process (via the spectral
line width), and, thus, it is hard to conclude whether our
results are in agreement with such a relaxation-time-based
measurement or not.

VI. SUMMARY AND OUTLOOK

It can be concluded that the approach provided here for
direct measurements of the flip-flop rate circumvents the
difficulties associated with the extraction of this parameter
using spin decoherencemeasurements. The acquisitionof this
rate is made possible thanks to advanced experimental
capabilities inESR that relyonhigh-sensitivitymeasurements
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executed with fast and powerful pulsed field gradients.
These can be applied to a variety of samples and should be
an important characterization tool for various structures
(vectors and 2D and 3D arrays) of spins, aiming at a variety
of quantum-sensingand information-processing applications.
Moreover, on a more basic level, these measurements open
a window to address the issue of zero quantum spectral
information (e.g., linewidth) in very weak electron-spin-
coupled samples.
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