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The generation of propagating Bessel beams is typically limited to optical frequencies with
bulky experimental setups. Recent works have demonstrated Bessel-beam generation at microwave
and millimeter-wave frequencies utilizing low-profile, planar, leaky-wave antennas. These studies have
assumed a single leaky mode in the antenna. In this work, the rigorous analysis of a planar Bessel-beam
launcher supporting multiple modes is presented. By employing the mode-matching technique, a complete
electromagnetic solution of the structure, its supported modes, and radiated fields is obtained. Additionally,
a coupled system of two planar Bessel launchers is analyzed, and it is shown that the system can both
transmit and receive Bessel beams. The energy-transfer characteristics of the coupled system are analyzed
and discussed. An analysis of the coupled system’s even and odd modes of operation show that efficient
power transfer is possible, and that an odd mode is preferred since it yields higher field confinement and
power-transfer efficiency.
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I. INTRODUCTION

Ideal Bessel beams are field solutions to Maxwell’s
equations which do not undergo diffractive spreading [1].
A Bessel beam can be considered as the superposition of
plane waves with propagation constants lying on a cone.
They have self-healing capabilities, which allow the field to
reform behind scatterers, and can be tailored to have narrow
beamwidths. These extraordinary traits suggest valuable
applications in the fields of near-field probing, medical
imaging, and wireless power transfer. However, these
idealized beams, possessing an infinite nondiffracting
range, require infinite energy. In addition, practical
Bessel-beam demonstrations have generally been at optical
frequencies [2,3]. Attempts typically employ an illumi-
nated axicon, or a similar lens, to generate Bessel beams
over a finite range [4,5].
In recent literature [6,7], efforts to realize Bessel-beam

launchers in the microwave regime have been reported.
The leaky radial waveguide, proposed in Ref. [6]
as a launcher, is planar, low profile, and fed directly with
a coaxial cable. An approximate analysis of the microwave
Bessel-beam launcher was performed which considered a
single leaky mode within the radial waveguide (the
launcher) [6]. The transverse-resonance technique was
used to derive the dispersion relation and establish
design parameters. The reported structure demonstrated

Bessel-beam generation within a nondiffractive range
above the leaky radial waveguide [7]. The analysis, how-
ever, did not consider the presence of other modes, nor
were the fields in free space exactly solved. A more
thorough field solution of the launcher, identifying its
modal structure, can be performed with the mode-matching
technique. Mode matching was first proposed as a solution
to waveguide-discontinuity problems [8,9], and it has
been employed in more recent literature [10–12]. In other
recent works, free-space fields were found using
mode-matching techniques by applying the Hankel trans-
form [13].
In this paper, a mode-matching approach is applied to the

planar Bessel-beam launcher (see Fig. 1). The relevant
vector potential is defined, and an eigenmode expansion is
employed to express the field solution as a summation
of transverse modes. Since the free-space spectrum above
the launcher is continuous, it is expressed in terms of
the Hankel transform. Power-orthogonality relations are
employed to preserve continuity of power flow across the
structural boundaries. In this way, the solution to the modal
coefficients is obtained. This approach allows the relative
magnitude of the waveguide modes to be computed and
provides an explicit solution for the free-space (radiated)
spectrum.
Since an isolated launcher is known to generate Bessel

beams, the analysis is extended to two coupled launchers.
In this arrangement, two launchers are separated by a
distance d, and the system’s ability to transmit and receive
Bessel beams is demonstrated. As this system of coupled
launchers comprises two coupled resonators (launchers),
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the field response exhibits even and odd modes of operation
about its central plane. The polarity of the modal coefficients
in the launchers identifies these even and odd modes of
operation. Two-port scattering parameters are retrieved from
the analysis of the coupled launchers. Port impedances are
then computed for a simultaneous complex-conjugate
impedance match. The performance of the conjugately
matched system is subsequently discussed. The even mode
is shown to radiate more, whereas the odd mode demon-
strates high field confinement in free space, and the fields
between the two Bessel launchers appear as within a
waveguide. In other words, a diffractionless beam exists
in free space. Much work has been reported on wireless links
as well as power transfer in the reactive near field and
far field [14–17]. Here, the system operates at distances
between these two ranges; within the radiative near field.
Additionally, it is shown that the radiative system is highly
coupled, as the input impedance is dependent on the
receiving launcher. This state is unusual for a radiative
system, but it is the case for the coupled Bessel launchers.

II. SINGLE BESSEL LAUNCHER

In Refs. [6,7], it was shown that an electrically thin radial
waveguide, covered with a capacitive sheet, can produce a
propagating Bessel beam. A cross-sectional image of such
a structure excited by a coaxial feed is depicted in Fig. 1.
Regions I and II both have a central conductor of radius a
and an outer conductor of radii b and c, respectively.
Region I represents the coaxial feed used to excite the
structure. Region II can be analyzed as an oversized coaxial
waveguide with a discontinuity at z ¼ −h. Region III
represents free space, and the boundary between regions
II and III is defined by a sheet impedance, Zsheet, at z ¼ 0.
The sheet impedance specifies the transverse-field ratio,
Zsheet ¼ −Eρ=Hϕ, and is capacitive. A capacitive sheet
impedance allows the radial waveguide to support trans-
verse magnetic (TMz) leaky waves. Analysis proceeds in
the following sections with the derivation of the fields in a
coaxial waveguide.

A. Review of field definitions

Here, expressions for the TMz modes supported by the
coaxial waveguides (regions I and II) of the Bessel-beam
launcher are reviewed. The electromagnetic vector poten-
tial in either region I or region II can be expressed in
separable form [18]:

ψ ¼ ZðzÞRðρÞΦðϕÞ: ð1Þ

The potentials are defined for a coaxial structure with
cylindrical geometry. Since the structure and the excitation
are ϕ invariant, further expression of ΦðϕÞ is suppressed.
The TMz fields are derived from the vector potential (1) in
cylindrical coordinates [18,19]. The resulting TMz fields
have the form

Eρ ¼
1

ωε
kρkz½Ae−jkzz − Bejkzz�R1ðkρρ; ρ1Þ; ð2Þ

Hϕ ¼ kρ½Ae−jkzz þ Bejkzz�R1ðkρρ; ρ1Þ; ð3Þ

Ez ¼ −
j
ωε

k2ρ½Ae−jkzz þ Bejkzz�R0ðkρρ; ρ1Þ; ð4Þ

where Eϕ ¼ Hρ ¼ Hz ¼ 0. A time-harmonic progression
of ejωt is assumed (e−jkz indicates propagation in the þẑ
direction). The general form of R is defined as

Rνðkρρ; ρ1Þ ¼
�
JνðkρρÞ −

J0ðkρρ1Þ
Y0ðkρρ1Þ

YνðkρρÞ
�
; ð5Þ

where ρ1 is the outside rim of the coaxial conductor, and
JνðkρρÞ and YνðkρρÞ are νth-order Bessel functions of the
first and second kind, respectively.

B. Eigenmode expansion

Next, fields in each region are expressed as a summation
of their eigenmodes. Transverse-electromagnetic (TEMz)
and transverse-magnetic (TMz) fields are considered in
regions I and II of the launcher shown in Fig. 1. TEMz wave
numbers are referred to as ki ¼ ω

ffiffiffiffiffiffiffiffi
μ0εi

p
, where i denotes

the region. The TMz wave numbers are referred to as kzni
and kρni for a discrete nth mode in region i, and they are
connected by the separation relation, k2i ¼ k2zni þ k2ρni ,
where ki is the wave number in region i. All regions are
air filled, so ki ¼ k0, and all wave numbers are in units of
radians per meter. The electromagnetic fields are summa-
rized in Eqs. (6)–(11):
Region I:

EI
ρðρ; zÞ ¼ ½e−jk1ðzþhÞ þ A0ejk1ðzþhÞ�eITEM

þ
X∞
n1¼1

½−Bn1e
jkzn1 ðzþhÞ�eITM ð6Þ

FIG. 1. A cross-sectional view of a leaky radial waveguide
capable of launching propagating Bessel beams. All boundaries
except for Zsheet are assumed to be perfect electric
conductors (PECs).
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HI
ϕðρ; zÞ ¼ ½e−jk1ðzþhÞ − A0ejk1ðzþhÞ�hI

TEM

þ
X∞
n1¼1

Bn1e
jkzn1 ðzþhÞhI

TM ð7Þ

Region II:

EII
ρ ðρ; zÞ ¼ ðC0e−jk2z þD0ejk2zÞeIITEM

þ
X∞
n2¼1

ðEn2e
−jkzn2 z − Fn2e

jkzn2 zÞeIITM ð8Þ

HII
ϕ ðρ; zÞ ¼ ðC0e−jk2z −D0ejk2zÞhII

TEM

þ
X∞
n2¼1

ðEn2e
−jkzn2 z þ Fn2e

jkzn2zÞhII
TM ð9Þ

Region III:

EIII
ρ ðρ; zÞ ¼

Z
∞

0

Qðkρ3Þe−jkz3 zeIIITM∂kρ3 ð10Þ

HIII
ϕ ðρ; zÞ ¼

Z
∞

0

Qðkρ3Þe−jkz3 zhIII
TM∂kρ3 ð11Þ

Region I describes the coaxial-cable feed. The trans-
verse-electromagnetic fields in this region are characterized
by an incident and reflected TEMz mode, and a summation
of reflected TMz modes. They are defined by Eqs. (6)
and (7). The forward-propagating (incident) TEMz wave is
known and is assigned magnitude 1 for convenience.
Region II describes the leaky radial waveguide or
Bessel-beam launcher. The transverse-electromagnetic
fields in this region are a forward- and backward-
propagating (þ=−) TEMz mode and summation of
(þ=−) TMz modes, as defined by Eqs. (8) and (9).
Region III encompasses the free space beyond the radial

waveguide, and it is defined for z > 0 and 0 ≤ ρ < ∞. In
free space, the field is expressed as the inverse Hankel
transform of the spectrum. The transverse fields in this
region are defined in Eqs. (10) and (11). Note that the free-
space spectrum is continuous rather than discrete, as is the
case for the other two regions. Thus, the wave numbers are
expressed as kρ3 and kz3 and are related by k20 ¼ k2z3 þ k2ρ3.
The transverse-field profiles for the electromagnetic fields
defined in Eqs. (6)–(11) are provided in Table I.

C. Boundary conditions and power orthogonality

Next, boundary conditions are enforced on the tangential
Eρ- and Hϕ-field components at the interfaces between
regions. Following the application of boundary conditions,
power orthogonality is applied to simplify the expressions.
For two eigenmodes, ēn and h̄m, in the same region, power
orthogonality states thatZ Z

S̄
½ēn × h̄�m� · ẑ∂S̄ ¼ 0; ð12Þ

where n ≠ m. S̄ defines the cross section of an interface
[8,9,19–21]. Power orthogonality is applied over the cross
section of the discontinuity to simplify the expressions. For
brevity, these lengthy derivations are not included in the
main text, but they can be found in the Supplemental
Material [22].

D. Solution

By exploiting power orthogonality, a system of equa-
tions with the unknown modal coefficients A0, Bn1 , C0,D0,
En2 , and Fn2 is written. The free-space spectral coefficient
Qðkρ3Þ from Eqs. (10) and (11) is solved in closed form and
substituted into the system of equations. These detailed
calculations are provided in the Supplemental Material
[22]. The system of equations is arranged in a square
matrix, ¯̄M. The modal-coefficient vector A and forcing-
function (excitation) vector W have the relation

¯̄MA ¼ W: ð13Þ

The modal-coefficient vector can be solved by a matrix
inversion: A ¼ ¯̄M−1W. Knowledge of the system dimen-
sions and the operating frequency allows all modal coef-
ficients to be solved.

E. Numerical analysis

In order to test the preceding analysis, the geometrical
and electrical parameters for the radial waveguides
displayed in Table II are selected. Within region I, the
transverse wave numbers (kρn1) are solved by setting
R0ðkρn1a; bÞ ¼ 0,

0 ¼ J0ðkρn1aÞY0ðkρn1bÞ − J0ðkρn1bÞY0ðkρn1aÞ: ð14Þ

TABLE I. Transverse-field profiles for all regions in the single launcher shown in Fig. 1, and the coupled launchers in Fig. 5.

Region I Region II Region III Region IV Region V

eTEM 1=ρ 1=ρ 1=ρ 1=ρ
hTEM 1=ρ

ffiffiffiffiffiffiffiffiffi
ε1=μ

p
1=ρ

ffiffiffiffiffiffiffiffiffi
ε2=μ

p
1=ρ

ffiffiffiffiffiffiffiffiffi
ε4=μ

p
1=ρ

ffiffiffiffiffiffiffiffiffi
ε5=μ

p
eTM ðkρn1kzn1=ωε1ÞR1ðkρn1ρ; bÞ ðkρn2kzn2=ωε2ÞR1ðkρn2ρ; cÞ ðkρ3kz3=ωε3ÞJ1ðkρ3ρÞ ðkρn4kzn4=ωε4ÞR1ðkρn4ρ; cÞ ðkρn5kzn5=ωε5ÞR1ðkρn5ρ; bÞ
hTM kρn1R1ðkρn1ρ; bÞ kρn2R1ðkρn2ρ; cÞ kρ3J1ðkρ3ρÞ kρn4R1ðkρn4ρ; cÞ kρn5R1ðkρn5ρ; bÞ
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The variable n1 ¼ 1; 2; 3… defines the higher-order TMz

modes in region 1. To find the cutoff wave numbers in
region II, kρn1 is replaced with kρn2 , and b with c. For the
dimensions given in Table II, the associated TMz cutoff
wave numbers are given in Table III.
The operating frequency is chosen to be 10 GHz. The

free-space wave number at 10 GHz is k0 ¼ ω
ffiffiffiffiffiffiffiffiffi
μ0ε0

p ¼
209.58. Because of the small dimensions of region I, only
highly evanescent TMz modes are present around the
design frequency. In other words, the TMz modes are in
cutoff. As a result, the TMz modal coefficients in region I
are many orders of magnitude less than the TEMz ones.
Since TMz contributions in region I are negligible, only the
n1 ¼ 1 mode is used in the calculations, whereas n2 ¼ 20
modes are required in region II for convergence.

F. Results

In this section, numerical results and a discussion of
the Bessel launcher are presented. The modal-coefficient
matrix ¯̄M and the excitation vector W are computed across
the X band: 8–12 GHz. The modal-coefficient vector (A) at
each frequency is solved for using Eq. (13).

1. Input impedance and resonance

The single Bessel-beam launcher is a one-port system.
The port is a lossless coaxial port at z ¼ −h: the boundary
between regions I and II. From Eq. (6), the reflection
coefficient at this port can be defined as

Γinðz ¼ −hÞ ¼ EI−
ρ

EIþ
ρ

≈ A0; ð15Þ

where the þ and − superscripts denote forward- and
backward-propagating fields, respectively. Since TMz

modes in region I are negligible, Γin ≈ A0.
Then, the input impedance is calculated to identify the

frequencies at which the Bessel launcher resonates. The
input impedance is Zin ¼ Z0ð1þ ΓinÞ=ð1 − ΓinÞ, where Γin
is defined by Eq. (15), and Z0 is the characteristic
impedance of the coaxial port. Since higher-order TMz

modes are considered negligible in region I, Z0 is the
characteristic impedance of the TEMz mode in region I:

Z0 ¼
ffiffiffi
μ

ε

r
ln b=a
2π

: ð16Þ

Note that Z0 ¼ 45.73 Ω for the conductor dimensions
given for region I in Table II. The resulting Zin ¼ Rin þ
jXin (assuming Z0 terminations) is complex and is plotted
in Fig. 2. The points of resonance of the structure are
identified by the points where ReðZinÞ attains a local
maximum.
The mode-matching approach is verified using the

commercial finite-element-method (FEM) solver COMSOL

Multiphysics. The radial waveguide (with properties in
Table II) is embedded in a PEC ground plane. The coaxial
port is excited and the frequency-domain reflection coef-
ficient extracted. The input impedance is calculated and is
plotted in Fig. 2 alongside the results from the mode-
matching approach. From the plots in Fig. 2, the predicted
resonances agree with the FEM solver to within 0.1%.

2. The discrete-waveguide spectrum

Next, the discrete modes within the waveguide are
analyzed to determine the points at which a given mode
is dominant. The ẑ-directed TMz modal strength in the
waveguide is the sum of the (þ=−) TMz coefficients:
En2 þ Fn2 . Since the Bessel launcher is electrically thin,
the total ẑ-directed electric field En2 þ Fn2 is essentially
constant for −h < z < 0. The first seven modes of the

TABLE II. Properties of the system depicted in Fig. 1.

Dimension Value Descriptor

a 0.653 mm Inner radius of regions I and II
b 1.4 mm Outer radius, region I
c 85.95 mm Outer radius, region II
h 1 mm Radial-waveguide height
Xs −25jΩ Sheet reactance at 10 GHz

TABLE III. TMz modes in region I and II and associated cutoff
wave numbers and frequencies for the system depicted in Fig. 1
with dimensions in Table II.

Region I Region II

Mode (n) kρn1 (rad/m) fn1 (GHz) kρn2 (rad/m) fn2 (GHz)

1 4175.7 199.24 32.3 1.54
2 8395.4 400.58 69.5 3.32
3 106.7 5.09
4 143.76 6.86
5 180.81 8.63
6 217.82 10.39
7 254.81 12.16
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FIG. 2. Real and imaginary input impedance for the single
Bessel launcher vs frequency.
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Bessel-beam launcher (n2 ¼ 1; 2;…; 7) are plotted vs
frequency in Fig. 3 as jEn2 þ Fn2 j. A direct comparison
between Figs. 2 and 3 shows a correlation between peaks of
Zin (resonances) and dominance of a single mode in the
waveguide. The frequencies corresponding to the peak
values of ReðZinÞ and the corresponding modal coefficient
are recorded in Table IV. The frequencies of the peak values
occur within approximately 1% of each other.

3. Free-space fields

An important factor to consider in this leaky-waveguide
design is the nondiffractive range, ddiff , associated with
each waveguide mode [1,6]. The nondiffractive range is
given as

ddiff ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k2
kρn2

�
2

− 1

s
; ð17Þ

where c is the outer radius of the Bessel launcher, and k2 is
the wave number in the waveguide. Since the launchers are
air filled, k2 ¼ k0. The values of ddiff at a mode’s resonant
frequency are listed in Table IV.
To analyze the fields in free space, the spectral coef-

ficient, Qðkρ3Þ, is computed at the resonant frequencies.
The ẑ-directed free-space fields ðEIII

z Þ are computed using

EIII
z ðρ; zÞ ¼ −

j
ωε3

Z
∞

0

Qðkρ3Þe−jkz3 zJ0ðkρ3ρÞk2ρ3∂kρ3 :
ð18Þ

The free-space fields at the three resonant frequencies
in Table IV are computed over 0 ≤ ρ ≤ 150 mm and

0 < z ≤ 150 mm. The results are compared to the free-
space fields calculated using COMSOL in Fig. 4. A com-
parison of the field plots indicates close agreement between
the mode-matching technique presented here and the
commercial solver.

G. Discussion

The extracted electrical characteristics of the Bessel-
beam launcher demonstrate its core operating principles.
The launcher itself supports TMz modes of an oversized
coaxial metallic geometry excited by an electric field. The
input impedance (Fig. 2) of the launcher shows that
the structure has multiple resonances. A comparison with
the TMz modal coefficients (Fig. 3) shows that these
resonances are associated with the dominance of a single
mode in the Bessel launcher. Then, as the free-space field
plots show (Fig. 4), the Bessel-function mode excited in the
launcher radiates into free space. The free-space Bessel
beam is limited to the nondiffractive region. In brief, at a
resonance, the Bessel launcher propagates the dominant
waveguide mode into free space.

III. TWO COUPLED BESSEL LAUNCHERS

In this section, the formulation from Sec. II is extended
to consider a system of two coupled Bessel-beam launch-
ers, as shown in Fig. 5. The electromagnetic fields within
the five regions of interest are described next.

8 8.5 9 9.5 10 10.5 11 11.5 12
0

0.002

0.004

0.006

0.008

0.01

Frequency (GHz)

|E
n +

 F
n|

 

 

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

Mode (n), kρn

Modal coefficients

FIG. 3. Magnitudes of the first seven modal coefficients vs
frequency. The coefficients describe the relative strength of each
mode in the Bessel launcher.

TABLE IV. A comparison between the point of resonance of
Zin and the point at which a given mode experiences its peak
strength in the waveguide (region II). In addition, the non-
diffracting-region distance (ddiff ) is displayed for each resonant
frequency.

Mode
number
(n2)

Wave
number
(rad/m)

Resonant
frequency
(GHz)

Modal
peak
(GHz)

Percent
difference

(%)

ddiff at
resonance
(mm)

4 143.76 8.58 8.67 1.05% 64.59
5 180.8 9.99 10.1 1.1% 50.19
6 217.82 11.48 11.63 1.31% 40.32

FIG. 4. Normalized electric field jEzj=maxðjEzjÞ in free space
plotted at three resonant frequencies. The left column displays
fields plotted using Eq. (18). The right column displays the field
plots using a commercial FEM solver, COMSOLMultiphysics. The
first, second, and third rows display the four-, five-, and six-null
Bessel patterns, respectively, at their resonant frequencies. The
coordinate system in these plots is the same as that used in Fig. 1.
The surface of the launcher extends from ρ < c at z ¼ 0 (the
bottom axis of each plot). Field patterns have been reflected
across ρ ¼ 0 to show the complete image.
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A. Definition of fields

The fields are expressed as a summation of their
eigenmodes. Explicit field expressions are summarized
in Eqs. (19)–(28):
Region I:

EI
ρðρ; zÞ ¼ ½e−jk1½zþðd=2Þþh� þ A0ejk1½zþðd=2Þþh��eITEM

þ
X∞
n1¼1

½−Bn1e
jkzn1 ½zþðd=2Þþh��eITM ð19Þ

HI
ϕðρ; zÞ ¼ ½e−jk1½zþðd=2Þþh� − A0ejk1½zþðd=2Þþh��hI

TEM

þ
X∞
n1¼1

Bn1e
jkzn1 ½zþðd=2Þþh�hI

TM ð20Þ

Region II:

EII
ρ ðρ; zÞ ¼ ½C0e−jk2½zþðd=2Þ� þD0ejk2½zþðd=2Þ��eIITEM

þ
X∞
n2¼1

½En2e
−jkzn2 ½zþðd=2Þ� −Fn2e

jkzn2 ½zþðd=2Þ��eIITM

ð21Þ

HII
ϕ ðρ; zÞ ¼ ½C0e−jk2½zþðd=2Þ�−D0ejk2½zþðd=2Þ��hII

TEM

þ
X∞
n2¼1

½En2e
−jkzn2 ½zþðd=2Þ� þFn2e

jkzn2 ½zþðd=2Þ��hII
TM

ð22Þ

Region III:

EIII
ρ ðρ; zÞ ¼

Z
∞

0

½Qðkρ3Þe−jkz3 ½zþðd=2Þ�

− Pðkρ3Þejkz3 ½z−ðd=2Þ��eIIITM∂kρ3 ð23Þ

HIII
ϕ ðρ; zÞ ¼

Z
∞

0

½Qðkρ3Þe−jkz3 ½zþðd=2Þ�

þ Pðkρ3Þejkz3 ½z−ðd=2Þ��hIII
TM∂kρ3 ð24Þ

Region IV:

EIV
ρ ðρ;zÞ¼ ½G0e−jk4½z−ðd=2Þ� þH0ejk4½z−ðd=2Þ��eIVTEM

þ
X∞
n4¼1

½Kn4e
−jkzn4 ½z−ðd=2Þ�−Ln4e

jkzn4 ½z−ðd=2Þ��eIVTM

ð25Þ

HIV
ϕ ðρ;zÞ¼ ½G0e−jk4½z−ðd=2Þ�−H0ejk4½z−ðd=2Þ��hIV

TEM

þ
X∞
n4¼1

½Kn4e
−jkzn4 ½z−ðd=2Þ� þLn4e

jkzn4 ½z−ðd=2Þ��hIV
TM

ð26Þ

Region V:

EV
ρ ðρ; zÞ ¼ ½T0e−jk5½z−ðd=2Þ−h� þ U0ejk5½z−ðd=2Þ−h��eVTEM

þ
X∞
n5¼1

½Sn5e−jkzn5 ½z−ðd=2Þ−h�

−Wn5e
−jkzn5 ½z−ðd=2Þ−h��eVTM

¼ T0½e−jk5½z−ðd=2Þ−h� þ ΓLejk5½z−ðd=2Þ−h��eVTEM
þ

X∞
n5¼1

Sn5 ½e−jkzn5 ½z−ðd=2Þ−h�

− ΓTM
L e−jkzn5 ½z−ðd=2Þ−h��eVTMÞ ð27Þ

HV
ϕðρ; zÞ ¼ T0½e−jk5½z−ðd=2Þ−h� − ΓLejk5½z−ðd=2Þ−h��hV

TEM

þ
X∞
n5¼1

Sn5 ½e−jkzn5 ½z−ðd=2Þ−h�

þ ΓTM
L e−jkzn5 ½z−ðd=2Þ−h��hV

TM ð28Þ

Note that the fields are referenced to the center point
between the two launchers. Thus, fields in regions I, II, and
III are rewritten relative to this referencing point. Region I
describes the coaxial-cable feed, and region II describes the
bottom Bessel-beam launcher. Fields in these regions are
given by Eqs. (19)–(22). Region III describes the free space
between the coupled radial waveguides and is defined for
−ðd=2Þ < z < ðd=2Þ and 0 ≤ ρ < ∞. In free space, the

FIG. 5. The cross section of two identical Bessel-beam
launchers coupled over a distance d. All boundaries except for
Zsheet are PECs.
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transverse fields are given by Eqs. (23) and (24). Note that
the total spectrum consists of forward- and backward-
propagating spectral functions, Qðkρ3Þ and Pðkρ3Þ. These
functions are defined at the surface of the bottom and top
Bessel-beam launcher, respectively.
Region IV describes the top Bessel-beam launcher with

fields defined by Eqs. (25) and (26). Region V describes the
output coaxial cable. The field expressions in Eqs. (27) and
(28) consider waves incident on and reflected from the
output coaxial cable (the output port). The load-reflection
coefficient, ΓL ¼ U0=T0, accounts for TEMz reflections
imposed by the load impedance. It is defined as

ΓL ¼ ZL − Z0

ZL þ Z0

; ð29Þ

where Z0 is the characteristic impedance of the TEMz mode
(16). Coefficient ΓTM

L ¼ Wn5=Sn5 accounts for TM
z reflec-

tions. As in region I, the reflections due to TMz modes are
negligible in region Vand are neglected, as the modes are in
cutoff. Note that the transverse-field profiles for all of the
electromagnetic fields are provided in Table I.

B. Boundary conditions and field solution

Next, the boundary conditions are enforced on Eρ

and Hϕ at the boundaries between regions. Continuity
of power flow at the boundaries is preserved through
power-orthogonality operations. The simplification
process is lengthy and is provided in the Supplemental
Material [22].
The coupled Bessel-beam launchers are defined by a

system of equations with the unknown modal coefficients
A0, Bn, C0, D0, En, Fn, G0, H0, Kn, Ln, T0, Sn, and ΓL,
where ΓL is a function of the load impedance and can be
arbitrary. These modal coefficients form vector A. In initial
calculations, the load is assumed to be matched to the
characteristic impedance (Z0) of the transmission lines of
regions I and V. This matching is referred to as the port-
matched system, since the load is matched to the port
impedance. In the port-matched system, ΓL ¼ 0. The
equations are organized into a matrix ¯̄M, with a forcing
vector W. Then each coefficient in vector A is solved by
matrix inversion (13).

C. A complex-conjugate-matched system

An important figure of merit for a coupled system is its
transmission efficiency. Efficiency quantifies the amount of
energy that is passed from the source to the load. Maximum
power transfer is achieved with a simultaneous complex-
conjugate impedance match [23]. In this section, the
process to derive the optimal load impedance (ZL;opt),
which provides a complex-conjugate impedance match,
is discussed. Since the structure is symmetric, the optimal
source impedance is equal to ZL;opt.

The coupled launchers in Fig. 5 form a two-port system.
Port 1 is a lossless coaxial port referenced to the boundary
between regions I and II. Port 2 is similarly defined and is
referenced to the boundary between regions IVand V. In the
port-matched case, there are no reflections at port 2. Such
an analysis allows the extraction of the scattering param-
eters: S11, S12, S21, and S21 [24]. Since A0 ≈ Γin ¼ S11, an
expression for the transmission coefficient (T ¼ S21) can be
written as

T ¼
EVþ
ρ jd¼½ðd=2þh�

EIþ
ρ jd¼−½ðd=2Þþh�

≈ T0: ð30Þ

As in region I, contributions from the TMz modes in region
V are negligible at the frequencies of interest. Thus,
T ≈ T0 ¼ S21. Since the system is symmetric and passive,
S22 ¼ S11 and S12 ¼ S21.
A simultaneous complex-conjugate impedance match

yields the optimal source and load impedances (ZL;opt)
[25–27]. If port 2 is terminated in ZL;opt, this system is
referred to as the conjugately matched since the load is
complex-conjugate impedance matched. The load also
receives maximum power. The derivation of ZL;opt is
discussed under such a condition in the Appendix.

D. Numerical analysis

Now, the process for analyzing the coupled structure
with a complex-conjugate load impedance can be clearly
defined. Given the parameters a, b, c, Zsheet, and h, the
procedure involves the following steps:
(1) For a given excitation,W, calculate the port-matched

¯̄M as a function of frequency (ZL ¼ Z0 or ΓL ¼ 0).
(2) Solve for the modal-coefficient vector A using

Eq. (13).
(3) Extract A0 ¼ S11 ¼ S22 and T0 ¼ S21 ¼ S12 from A.
(4) Compute Z parameters from S parameters [24].
(5) Calculate ZL;opt from Eqs. (A1) and (A2).
(6) Calculate ΓL;opt ¼ ΓL from Eq. (29), assuming

ZL ¼ ZL;opt.
(7) Compute the conjugately matched ¯̄M0, using ΓL;opt

from step (6). Since the input is not modified, the
excitation W is not changed.

(8) Solve for the modified coefficient vector A0.
The conjugately matched system matrix ¯̄M0 and coefficient
vector A0 now account for a conjugate impedance-matched
load. Modal coefficients for the conjugately matched
system are denoted with a prime notation and are A0

0,
B0
n, C0

0, D0
0, E0

n, F0
n, G0

0, H0
0, K0

n, L0
n, T0

0, and S0n.
Now that a process for analyzing the structure is defined,

the system of coupled launchers is analyzed across the X
band: 8–12 GHz. In regions II and IV, n2 ¼ n4 ¼ 16modes
are required for convergence. As before, regions I and V
only consider the TEMz mode, and a single TMz

mode: n1 ¼ n5 ¼ 1.
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E. Results

The eight-step process detailed in the previous section is
followed to solve for the modified modal-coefficient
vector A0. The physical dimensions given in Table II are
used in these calculations.

1. Power transfer

In the port-matched system, jT0j2 represents the ratio of
the power delivered to the load to the power available from
the source. This quantity is known as the transducer gain
(GT) of a two-port network. Since the port-matched source
and load are matched for zero reflections, GT ¼ jS21j2 ¼
jT0j2 [23].
Note that in the conjugately matched system, the load

is modified to realize a complex-conjugate match. The
source, however, is not modified. Therefore, the power
delivered to the input of the network and to the load are
defined as

PIN ¼ 1

2Z0

ð1 − jA0
0j2Þ; ð31Þ

PL ¼ jT 0
0j

2Z0

ð1 − jΓL;optj2Þ; ð32Þ

respectively. The reflection coefficient (ΓL;opt) of the
conjugately-matched system is given by Eq. (29).
Satisfying the condition for maximum power transfer,

ΓL;opt ¼ Γ�
out (the reflection coefficient looking into port 2).

Since the system is symmetric, Γout ¼ Γin ¼ A0
0, resulting

in A0
0 ¼ Γ�

L;opt and jA0
0j ¼ jΓL;optj. Finally, the ratio of the

power dissipated in the load to the power delivered to the
input of the network is

GP ¼ PL

PIN
¼ jT 0

0j
ð1 − jΓL;optj2Þ
ð1 − jA0

0j2Þ
¼ jT 0

0j: ð33Þ

This quantity is also known as the power gain
(GP ¼ PL=PIN) of a two-port network [23,24]. The power
gain is independent of the source impedance. To summa-
rize, the port-matched system efficiency is jT0j2, while the
conjugately matched system efficiency is jT0

0j2. Note that
the conjugately matched system efficiency is independent
of the source impedance.
Next, the system S parameters are extracted from

COMSOL over 8–12 GHz and for d ¼ 0–70 mm. The
conjugately matched power-transfer efficiency is calculated
over this range using Eq. (A3) and is displayed in Fig. 6(a).
Using the mode-matching approach (detailed in Sec. III D),
the conjugately matched modal-coefficient vector A0 is
computed. From it, jT0

0j2 is extracted and is plotted against
frequency for four separate distances in Fig. 6(b). This data
is contrasted with jT0j2 (the port-matched case). The results
from COMSOL are also overlaid for comparison. The
efficiency calculated using the mode-matching approach
agrees closely with that computed using COMSOL.

FIG. 6. (a) The conjugately matched power-transfer efficiency (ηmax) calculated from COMSOL using Eq. (A3) is plotted as a color map,
where the height of the color map is conjugately matched power-transfer efficiency. The nondiffractive range, ddiff , of the n2 ¼ n4 ¼ 4,
5, and 6 mode is included in green dash-dotted lines. Four distances of interest have been highlighted (d ¼ 30, 40, 50, and 60 mm). At
each distance, a “slice” of the plot is shown in (b). These slices show the port-matched (jT0j2, the blue dashes) and conjugately matched
(jT0

0j2, the green line) power-transfer efficiency over frequency calculated using the mode-matching method. Efficiency data from
COMSOL, η and ηmax, is overlaid in circle’s and inverted triangle’s, respectively. The plots demonstrate close agreement between the two
approaches.
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The plots show definite peaks of high power-transfer
efficiency within the nondiffractive range (ddiff ) of each
Bessel mode. It is also clear that a complex-conjugate
impedance match increases power-transfer performance.
Next, these traits are further explored in terms of the
discrete modes of the coupled launchers.

2. Discrete-waveguide spectrum

The coefficients (En2 , Fn2) describe (þ=−) TMz modes
in region II (the first launcher), while coefficients (Kn4 , Ln4)
describe (þ=−) TMz modes in region IV (the second
launcher). Since the Bessel launchers are electrically thin,
the sum of the coefficients represents the ẑ-directed total
electric-field strength in each waveguide over the entire
height, h. The quantities jEn2 þ Fn2 j and jKn4 þ Ln4 j are
plotted vs frequency in Fig. 7 at four distances of interest.

3. Analysis of a conjugately matched system

Vector A0 provides the conjugately matched modal
coefficients: E0

n2 ,F
0
n2 ,K

0
n4 , and L0

n4 . These modified coef-
ficients are displayed as jE0

n2 þ F0
n2 j and jK0

n4 þ L0
n4 j in

Fig. 8. These values can be directly compared with Fig. 7,
the port-matched system.
First, within the nondiffracting range of each Bessel

beam, ddiff (see Fig. 6), the corresponding mode in the
launcher is dominant. Additionally, many modes have two
maxima, an indication that the modes have split. Mode
splitting is a well-known property of coupled resonators,
seen, for example, in near-field magnetic-resonant power

transfer [16]. In order to distinguish the odd and even
modes, the phase of the ratio of the dominant modal
coefficients in the launchers is calculated:

φ ¼ En2 þ Fn2

Kn4 þ Ln4

; ð34Þ

Relative phase ¼ tan−1
�
ImðφÞ
ReðφÞ

�
: ð35Þ

This relative phase determines whether a given peak
represents an even or odd mode. When the relative phase
≈0°, the free-space electric field (EIII

z ) is even with respect
to the xy plane. Conversely, when the relative phase ≈180°,
EIII
z is odd with respect to the xy plane. This result is shown

graphically in Figs. 9(a) and 9(b). The polarity of each
mode’s peak at d ¼ 30, 40, 50, and 60 mm is displayed in
Table V.
Another interesting facet arises in the conjugately

matched system. The peak modal strength in the receiving
waveguide experiences an increase in magnitude over
the port-matched system. In other words, at resonance,
a complex-conjugate impedance match strengthens the
fields received by the secondary launcher. Additionally,
the frequencies of modal-peak enhancement correspond to
frequencies of peak efficiency. This result supports the
conclusion that the Bessel launchers are strongly coupled in
the radiative near field. Furthermore, energy is transferred
through free space by the Bessel modes supported by each
launcher.
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FIG. 7. Modal coefficients in two coupled Bessel-beam
launchers at d ¼ (a) 30, (b) 40, (c) 50, and (d) 60 mm.
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FIG. 8. Modal coefficients in two coupled Bessel-beam launch-
ers at d ¼ (a) 30, (b) 40, (c) 50, and (d) 60 mm. A conjugately
matched system is assumed.
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4. Free-space fields

Next, the characteristics of the free-space fields at a
mode are discussed. The free-space fields are plotted for
frequencies corresponding to the peaks of jT0

0j2 in Fig. 6.
At these frequencies, the most power is transferred. Ez in
region III is given as

EIII
z ðρ; zÞ ¼ −

j
ωε3

Z
∞

0

½Qðkρ3Þe−jkz3 ½zþðd=2Þ�

þ Pðkρ3Þejkz3 ½z−ðd=2Þ��J0ðkρ3ρÞk2ρ3∂kρ3 : ð36Þ

The even and odd n2 ¼ n4 ¼ 5 free-space fields are
plotted in Figs. 9(d) and 9(e) for a conjugately matched
system. Note that, as distance increases, the even-mode
field becomes more diffuse, whereas a sharp-field pattern
persists for the odd mode. Additionally, the odd-mode
fields are tightly constrained to the region between the two
launchers (ρ < c). Since the structures are lossless, it is
clear from Fig. 6 that the even modes radiate significantly
more power into free space. This result indicates that the
odd mode is a preferred choice for high-Q coupling. In fact,
the fields of an odd mode appear as those in a waveguide,
but they occur in free space.

F. Discussion

The coupling performance of two Bessel launchers is
reported. The two launchers demonstrate characteristics of

FIG. 9. On the left, in (a) and (b), are renderings of two coupled Bessel launchers experiencing an (a) odd and (b) even mode. In (c),
the range of Fig. 6 from 9–11 GHz is displayed (the fifth Bessel mode). The green arrows highlight the efficiency maxima
representing the even and odd modes. (d),(e) Even and odd mode free-space EIII

z characteristics at power-transfer efficiency local
maxima. The field plots are normalized: jEz=maxðEzÞj, and the color bar shows the normalized field value. Note that there
is no discernible fifth even mode at d ¼ 60 mm. Here, the even mode has degraded to a point that it does not efficiently
transfer power.

TABLE V. Relative phase of modal coefficients (35) for local
maxima in power-transfer efficiency.

Port-matched system
(ZL ¼ Z0)

Conjugately matched system
(ZL ¼ ZL;opt)

Mode
(n)

f
(GHz)

Phase
(deg)

Even or
odd

Mode
(n)

f
(GHz)

Phase
(deg)

Even or
odd

d ¼ 30 mm
4 8.6 −4.8 E 4 8.47 −0.2 E
4 9.23 193 O 4 9.23 191.9 O
5 10.02 −5.2 E 5 9.99 −0.6 E
5 10.64 171.1 O 5 10.66 180.5 O
6 11.56 0.25 E 6 11.56 −0.7 E

d ¼ 40 mm
4 8.47 1.63 E 4 8.41 0.17 E
4 8.86 164.4 O 4 8.88 178.2 O
5 9.96 15.5 E 5 10.04 13.85 E
5 10.27 146.4 O 5 10.37 178.5 O
6 11.46 17.87 E 6 11.47 10.61 E
6 O 6 11.93 178 O

d ¼ 50 mm
4 8.25 4.01 E 4 8.23 2.34 E
4 8.69 170.9 O 4 8.71 179.2 O
5 10.15 173.9 O 5 10.22 176.7 O
6 11.65 170.4 O 6 11.8 181.8 O

d ¼ 60 mm
4 8.57 177 O 4 8.56 177.1 O
5 10.05 190.7 O 5 10.1 181.9 O
6 11.54 197.4 O 6 11.59 202.6 O
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strongly coupled resonators. The modes of a launcher in
isolation are split into even and odd modes in the coupled
system (Fig. 8). By modifying the analysis to consider a
conjugately matched system, the receiving launcher’s field
amplitudes are enhanced, resulting in an increased effi-
ciency (Fig. 6). Though it is shown that both even and odd
modes can transfer power, odd modes are preferred due to
the stronger field confinement and the resulting higher
efficiency.
At close distances (d < ddiff ), the even and odd

n2 ¼ n4 ¼ 5 modes demonstrate marked free-space field
enhancement (see Fig. 9). However, the degradation of the
even mode becomes more apparent as d increases. When
d ¼ 60 mm, the even-mode fields become more diffuse as
the majority of power is radiated. What is curious is that,
even for d > ddiff, the n ¼ 5 odd mode persists for some
distance.
Also, despite being a radiative system, the transmitting

and receiving Bessel launchers are highly coupled.
Several electrical parameters of the transmitting radiator
depend on the receiving radiator. As the receiver is
perturbed, the input impedance of the transmitter
changes, as well as the optimal load impedance. In far-
field wireless systems, this is not the case since the
coupling coefficient between the transmitting and receiv-
ing radiators is low.
The radiation properties of the even and odd

modes can be explained in terms of equivalent magnetic
currents. The þẑ electric field near the lower launcher can
be represented by a þϕ̂-directed magnetic current. In an
odd mode, the −ẑ fields near the upper launcher are
represented by a −ϕ̂ magnetic current. In the far field,
these opposing sources destructively interfere, reducing
radiation losses. However, for an even mode, the electric
field maintains a þẑ direction between the launchers,
reinforcing the þϕ̂-directed magnetic current and radiating
energy into free space. This result explains why the odd
mode provides higher field confinement and power-transfer
efficiency.

IV. CONCLUSION

In this work, a planar Bessel-beam launcher at micro-
wave frequencies is analyzed through eigenmode expan-
sion and mode-matching analysis. Boundary conditions
are enforced on the tangential field components and
simplified using power-orthogonality relations. The
numerical solution provides a modal breakdown of a
coaxial-fed Bessel-beam launcher. It allows the input
impedance and discrete-waveguide modes to be plotted
over frequency. At the frequencies of resonance, the free-
space fields are plotted. The analysis showed that a
Bessel-beam launcher operating at a resonant frequency
has one dominant waveguide mode that propagates into
free space.

Furthermore, the work is extended to analyze a wire-
less link employing Bessel beams. A simultaneous com-
plex-conjugate impedance match is applied to two
coupled launchers. Waveguide mode coefficients are
plotted for each launcher, and the even and odd modes
of the coupled system are identified. Results show that
conjugate matching increases the transmission efficiency
at the even or odd modes. Also, free-space field plots
showed that the conjugately matched system has a high
degree of field confinement. In fact, the field distribution
appears as that within a waveguide, despite operating in
free space. However, as the coupling distance increases,
the even modes are no longer sustainable and radiate into
free space. In contrast, the conjugately matched odd
modes have a comparatively high degree of field contain-
ment. As a result, the odd modes couple more efficiently
as the distance increases between two coupled Bessel
launchers.
Single Bessel-beam launchers have several potential

applications. The structure used in this work can be
modified to produce collimated Bessel beams [28]. Using
a layered metasurface, launchers have been used to develop
low-profile high-gain antennas [29]. Using a similar
approach, tractor beams [30] have been realized for
microparticle manipulation. Furthermore, vector Bessel
beams, such as those reported here, have been shown to
exhibit self-healing properties [31]. This quality can result
in robust systems whose main beam remains unperturbed
outside the shadow region of the obstacles. Coupled
Bessel-beam launchers also have several potential appli-
cations. The high degree of field confinement and coupling
points to applications in power transfer and covert com-
munication. Additionally, free-space high-Q resonators
could be used in nondestructive evaluation [32] to simplify
material-parameter extraction [33].
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APPENDIX: DERIVING ZL;opt
FROM S PARAMETERS

The reflected and incident waves of a two-port system
(such as the two coupled Bessel launchers described in
Sec. III) are characterized by a 2 × 2 S-parameter matrix.
From this S-parameter matrix, the Z parameters can be
computed [24]. A simultaneous complex-conjugate imped-
ance match yields the following expressions for the optimal
source and load impedances [25–27]:
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Re½ZL� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2½Z22� −

Im2½Z12
2�

4Re2½Z11�
−
Re½Z22�
Re½Z11�

Re½Z12
2�

s
;

ðA1Þ

Im½ZL� ¼
Im½Z12

2�
2Re½Z11�

− Im½Z22�; ðA2Þ

where Eqs. (A1) and (A2) are the real and imaginary parts
of the optimal port impedance: ZL;opt ¼ Re½ZL� þ jIm½ZL�.
If port 2 is terminated in ZL;opt, the load also receives

maximum power. From Eqs. (A1) and (A2), the conju-
gately matched power-transfer efficiency can be calculated.
It is defined as the ratio of the power delivered to the load
(PL) to the power available from the source (PAVS) [27]:

ηmax ¼
PL

PAVS

¼ jZ21j2
2Re½Z11�ðRe½Z22� þ Re½ZL;opt�Þ − Re½Z2

21�
: ðA3Þ
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