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In this paper, we study the Schottky transport in a narrow-gap semiconductor and few-layer graphene in
which the energy dispersions are highly nonparabolic. We propose that the contrasting current-temperature
scaling relation of J « 72 in the conventional Schottky interface and J o T3 in graphene-based Schottky
interface can be reconciled under Kane’s k - p nonparabolic band model for narrow-gap semiconductors.
Our model suggests a more general form of J o (T2 + ykgT?), where the nonparabolicty parameter y
provides a smooth transition from 72 to T3 scaling. For few-layer graphene, we find that N-layer graphene
with ABC stacking follows J « T%N+1 while ABA stacking follows a universal form of J o T regardless
of the number of layers. Intriguingly, the Richardson constant extracted from the Arrhenius plot using an
incorrect scaling relation disagrees with the actual value by 2 orders of magnitude, suggesting that correct

models must be used in order to extract important properties for many Schottky devices.
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I. INTRODUCTION

Translating the unusual physical properties of nano-
material-based heterostructures into functional device
applications has become one of the major research goals
in recent years [1]. One important heterostructure is the
metal-semiconductor interface, commonly known as the
Schottky interface [2], where applications such as broad-
band ultrasensitive photodetectors [3], gate-tunable
Schottky barriers [4], promising solar-cell performance
[5], and ultrafast phototransistors [6] have recently been
demonstrated. The current transport across a Schottky
interface is mainly due to majority carriers. In general,
there are three different transport mechanisms, namely,
diffusion of carriers from the semiconductor into the metal,
thermionic emission of carriers across the Schottky barrier,
and quantum-mechanical tunneling through the barrier [7].
For the thermionic emission, the Schottky-diode equation is
written as [8]

J = J[eleV/mksT) _ 7], (1)

where J is the reverse saturation current density determined
by the thermionic emission process, V is the bias voltage,
and 7 is an ideality factor. For bulk materials with parabolic
energy dispersion (E; k%), the reversed saturation current
density J takes the well-known Richardson form of [9,10]
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where ® denotes the magnitude of the Schottky barrier’s
height. The exponential term e~®/*7 in Eq. (2) originates
from the classical Boltzmann statistics and is universal
regardless of the form of the transport electron-energy
dispersion, while the J o T? current-temperature scaling
relation is a signature of the parabolic energy dispersion of
the transport electrons.

For materials with nonparabolic energy dispersion [see
Figs. 1(a)-1(d) for examples of nonparabolic energy
dispersions], the validity of J o« 72 should be verified.
Although it is well known that the energy dispersion plays
an important role in governing the Schottky transport, the
traditional J o« 7% model is still widely used in the vast
majority of recent experimental works on Schottky inter-
faces composed of materials such as MoS,, black phos-
phorus, graphene, and few-layer graphene, where the
dispersion is highly nonparabolic [4,11-21]. Therefore,
there is a need to reformulate the Schottky model in order to
uncover the underlying physics in these structures. For
monolayer graphene, it was recently reported that J has
an unconventional form of Jp;,. « T°e~%/%T [22]. The
Jpirac & T2 behavior can be regarded as the Dirac-Schottky
scaling relation and is a signature of the linear energy
dispersion in graphene [23]. As the form of the energy
dispersion can crucially affect the scaling, the Schottky
transport model has to be reformulated for the Schottky
interface made up of nonparabolic dispersions-based
materials. The very distinct forms between the Schottky
T? scaling and the Dirac-Schottky 73 scaling also prompts

© 2016 American Physical Society
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FIG. 1. Nonparabolic energy dispersion and model of Schottky
transport. (a) Kane’s nonparabolic band, (b) low-energy Dirac
cone in graphene, low-energy dispersion of trilayer graphene with
(c) ABA-stacking and (d) ABC-stacking orders, and (e) Schottky
transport model in a metal-semiconductor interface. ® is the
work function of the metal, y is the electron affinity of the
semiconductor, and the Schottky barrier is ® = &, — y. Inset
shows the coordinate system and the geometry of the Schottky
interface studied in this work; (f) crystal structure of the
graphene layer. Solid (dashed) circle denotes the A (B) sublattice;
(g) ABA-stacking order; (h) ABC-stacking order.

us to investigate whether the Jz o T? and the Jp;,c o T3
can be connected via a unique energy dispersion that is
“intermediate” between parabolic and linear and whether
the graphene multilayer follows other forms of unconven-
tional scaling relations.

In this paper, we study the Schottky transport in a narrow-
gap semiconductor and in few-layer graphene (FLG) in
which the energy dispersion is highly nonparabolic. We show
that the Schottky 72 scaling and the Dirac-Schottky 73
scaling can be unified under Kane’s k - p band model for a
narrow-gap semiconductor in which the band nonparabo-
licity is captured by the nonparabolicity parameter,
y [24-26]. We obtain a Kane-Schottky scaling relation of

jKane x (T2 + ZkaT3)e_(q)/kBT)' (3)

The scaling relation exhibits a mixture of 72 and T>. Here, y
is responsible for the continuous transition from J 77 to
J o T3 scaling. In the case of perfectly parabolic dispersion
(y — 0) and perfectly linear dispersion (y — o), the scaling
becomes J o« T? and J o T3, respectively. Thus, the Kane-
Schottky scaling relation (SR) is a more general SR that
connects the Schottky 7 scaling and the Dirac-Schottky 73
scaling. In FLG, we find that the scaling is strongly

dependent on the stacking order. For ABA-stacked N-layer
FLG, the Schottky current shows an N-fold enhancement due
to the presence of N conduction subbands. Peculiarly, 7%)/‘
follows the Dirac-Schottky 73 scaling universally, regardless
of the number of layers. This is in contrast to ABC FLG
where 7%% follows an N-dependent scaling of 7%% x
T?/N+1. Finally, we show that the Richardson constant
extracted from the Arrhenius plot disagrees with the actual
values by 2 orders of magnitude when an incorrect 72 scaling
is used. This emphasizes the importance of using a correct
model when interpreting the experimental data in Schottky
devices of nonparabolic energy dispersions.

II. THEORY

The Schottky transport model is shown in Fig. 1(e). J is
determined by the thermionic emission process for which
we briefly describe the formalism here [7,27]. The energy
of the emitted electron can be written as E = E | + Ej,
where E | is the energy component along the emission z
direction, and Ej is the energy component that lies in the
x-y plane [see inset of Fig. 1(e)]. The electron emission
current density is given as

7 / N(EL)D(E,)dE, (4)

where D(E,|) is the transmission probability, and P
is the Schottky barrier. For the overbarrier process,
D(E|) can be approximated by D(E ) =@(E, — ®).
The electron supply function N(E ) can be expressed as
N(EL)dE, = dE, [ n(E,E,)dE, where the electron

supply density is

&k
(27)*

The group-velocity component along the emission
direction is given as v, = A~'dE | /dk,, and f(E) is the
Fermi-Dirac distribution function. The k-space integration
can be rewritten as d’k = kydkydgdk,, where k; =
(ky,ky) denotes the in-plane crystal momentum of the
transport electron, k| denotes the out-of-plane momentum
component, and ¢ = tan™! ky/ky. Since the energy of the
overbarrier electron is much larger than the Fermi level, the
Fermi-Dirac distribution function can be approximated by
the Boltzmann distribution function. We can simplify
n(E,E|)dEdE | as

I’l(E, EJ_)dEdEJ_ = gs,vevJ_f(E) (5)

S,/Ue
n(E.E,)dEdE, = dE, éﬂw Fup(E)kydkydg,  (6)

where fp(E) is the Boltzmann distribution function.
In order to complete the [(---)dE integral in
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N(E,)dE |, the k-space differentials k;dk, need to be
converted into E)-space differentials. The k dk; — dE;
transformation depends on the actual form of the E} — k;
relation, i.e., the energy dispersion. Therefore, N(E | )dE |
contains all of the information about the energy dispersion
and plays an important role in determining the form of the
Schottky transport current.

III. RESULTS AND DISCUSSION

In this section, we present the Schottky transport models
for two classes of nonparabolic energy dispersions:
(i) Kane’s nonparabolic energy dispersion for the nar-
row-gap semiconductor and (ii)) FLG with ABA stacking
and with ABC stacking. For (i), we further consider two
related band-structure effects, i.e., Kane’s model with band
anisotropy and the parabolic model with the higher-order k*
correction term. The details of the derivation are presented
in the appendixes.

A. Kane-Schottky transport model

The electron transport in a narrow-gap semiconductor is
well-described by Kane’s nonparabolic band model
[24,25,28]. As the parabolic energy band is only a good
approximation near the conduction-band edge, Kane’s model
is also an improved band model especially for higher-energy
transport electrons [29-31]. Kane’s nonparabolic energy
dispersion is given as Ey(1+yE)) = h’kj/2m, where
y=(1l=m/my)/E, denotes the nonparabolicity of
the dispersion, my is the bare electron mass, and E, is the
magnitude of the band gap. ykp typically lies in the
range of 10~ to 1073 K~! for a sub-electron-volt narrow-
gap semiconductor such as PbSe, InAs, InSb, and the
topological insulators HgCdTe and Bi,Te; [32-35].
The energy dispersion can be reexpressed as Ej=

(27)7"'(y/1+4yA*k;/2m—1). For small y, we recover the

parabolic dispersion Ej « kj. For large y, Ej(1+
YE)) = yEﬁ, and this yields a linear dispersion of E}| o k.
Hence, Kane’s model connects the two extreme cases of
perfectly parabolic and perfectly linear dispersion via y.
Solving Eqgs. (4)—(6) using Kane’s nonparabolic energy
dispersion, we obtain the Kane-Schottky-diode equation as

2
_ gspemky

Tkane ==, 53 (T2 + 2ykpT?)e~(@/ksT) (o(eV/ksT)=1Y

(7)

The detailed derivation can be found in Appendix A. The
reverse saturation current density exhibits a combination of
the Schottky 77 scaling and the Dirac-Schottky 77 scaling,
ie., J o (T? 4 2ykgT?). This finding concludes that the
Kane-Schottky model gives a more general scaling relation,
as it unifies both Schottky and Dirac-Schottky scaling

—6 - T T T T T
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FIG. 2. Arrhenius plot of the Kane-Schottky model using
different scaling relation with ykz = 10~ K~!. Kane-Schotkky,
Schottky, and Dirac-Schottky scaling relations are denoted by the
solid, dashed, and dotted lines, respectively. The reverse bias is
set to V = —1 V to ensure current saturation.

relations via y. For the highly parabolic limit, y — O,
and this yields the conventional Schottky 72 scaling with
reverse saturation current density J,_o = AT%e~(¥/ksT),
where A = g, ,emk%/4x*h* is the Richardson constant.
In the extremely nonparabolic limit of y — oo (i.e., perfectly
linear dispersion), the energy dispersion becomes linear in &,
ie., E, = hvpk where vy =./1/2my and the T° term
dominates. In this case, Eq. (7) reduces to the Dirac-Schottky
form of J = BT3e~(®/%T) [22], where B = g, eky/
47’h3v% is the modified Richardson constant in graphene.
The Kane-Schottky-diode model has an implication in
the experimental determination of the Richardson constant.
In Fig. 2, we generate the Kane-Schottky current density J,
with & = 0.30 eV and n = 1.1 for temperatures from 200
to 500 K, and we plot the 1/T Arrhenius plot using
different scaling relations of (i) log[J/(T? + 2ykzT?)],
(i) log(J/T?), and (iii) log(J/2yksT?). Because of the
dominating exp(®/kpT), scalings (ii) and (iii) are both well
fitted by straight lines. The Schottky barrier’s heights
extracted from the gradients of the linear fit are
® = (0.31,0.28) eV, respectively, for (ii) and (iii). This
deviates only slightly from the actual value of 0.30 eV.
However, the Richardson constant determined from the y
intercepts of the linear fit is Ag = (2.46,0.0028).4,,
respectively, for scalings (ii) and (iii) and disagrees sig-
nificantly with the actual value Ay = eg, ,mk3/4n*h>.
This illustrates the importance of using the correct scaling
in the Arrhenius plot instead of assuming the conventional
T? scaling when extracting Ay, from experimental data.
For completeness, we further demonstrate that the Kane-
Schottky scaling relation is robust against band anisotropy
and can be similarly obtained by including a higher-order k*
correction term in the parabolic dispersion. For the former
case, we have E|(1+7yE)) = h*ki/2m,+ A*k;/2m,,
where (m,,m,) is the anisotropic effective mass in the x
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and y directions, respectively. This energy dispersion yields a
Kane-Schottky scaling in the form of

_ ;. weks
= DBV (12 4 k1)

—(®/ksT
my#ny, 4r 2h3 e (¥/ksT), (8)
The latter case represents an alternative approach to account
for the band nonparabolicity via a higher-order k* term, i.e.,
E = ak? — pk*, where a = h?/2m, and f is a small correc-
tion factor. In this case, we obtain

Ys.0€ V32D _E0 \ ~(@/kyT)
sy, ([ ) emen, )

where D, (x) = e~ I e is the Dawson integral, and £, =
a’/4p is a characteristic energy. Note that as f < a, £ >
kgT for all practical temperatures. Using the fact that
D, (x)~1/2x + 1/4x> for large x, we obtain the Kane-
Schottky scaling of

* 7,2
- _ gswem'ky 2,
Jakz—ﬁk“ ~ W <T

Jai2 —pkt =

8m?p
nt

kT3> ~(@/ksT) —(10)

B. Few-layer-graphene Schottky transport model

The electrical properties of FLG are sensitively depen-
dent on the number of layers N and the stacking order
[36-48]. FLG with ABA and ABC stacking are the most
thermodynamically stable stacking orders [49]. The energy
dispersion of both stacking orders is highly nonparabolic,
and this motivates us to develop a nonparabolic Schottky
transport model for ABA and ABC FLG-based Schottky
interfaces (see Appendix B for detailed derivations).
Ignoring the layer-asymmetry band gap [50,51], the energy
dispersion of the n subband of ABA FLG is [43,52,53]

nn n
Epn =11 COS<N+ 1) + \/(ka”) + £ cos <N+ 1),
(11)

where N > 3 is the number of layers, #; =~ 0.39 eV is the
interlayer hopping parameter [43,49,54], vy = 10° m/s is
the Fermi velocity, and n = 1,2, ..., N represents each of
the 2N subbands. J can be derived as

F(N)

k3
TV = N x ZI05B 73 ~(@/kT) (12)

4ﬂ'2fl3 2

The Schottky current exhibits an N-fold enhancement and a
universal Dirac-Schottky T3 scaling for all N. The N-fold
enhancement can be explained by the presence of N
conduction subbands [54]. The N-independent T* scaling
is a rather surprising result. As the ABA FLG contains
multiple nonparabolic subbands, one would expect a

mixture of 72 and 73 terms in the Schottky current
equation. However, we find that the T? term generated
by the j < N subband is exactly canceled out by that of the
(N — j) subband (where j # N/2 is a positive integer). This
mutual cancellation leads to the universal Dirac-Schottky
T? scaling in ABA FLG regardless of the number of
layers N.

In the case of ABC FLG, the low-energy two-band
effective tight-binding model [42,52,55] gives an energy
dispersion of Ey = (Avp)/Y~'kl. We obtain

2—(2/N
FN) _ L(2/N) (1.\>@N) eg, ky TCIN)H =(@/ksT).
ABC N kg A3 02 2
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FIG. 3. Schottky transport in few-layer graphene with
ABA- and ABC-stacking orders. J-V characteristics of

(a) ABA stacking, (b) ABC stacking at T =300 K and 5 =
1.1 with for N = (3,4,5,7,10), (c) the N dependence of the
normalized Schottky current, and (d) the temperature dependence
of 7™/ T pirec. Solid (dashed) lines denote ABA (ABC) stacking;
(e) Arrhenius plot of tetralayer graphene (N =4). The inset

shows the N dependence of Ay, / A%)C.
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TABLE L

nonparabolic energy dispersions. Note that ¢~(%/ks7)

Summary of the reverse saturation currents and the current-temperature scaling relations for the Schottky transport model of
is omitted for simplicity.

Energy dispersion

Reverse saturation current

Scaling relation

EII(I —l—}/E”) = (hzkﬁ/zm) jKane =
E“(l + ]/E”) = (flzk%/ZmX) + (flzkf/Zmy)
E, = (fl2kﬁ/2m) —ﬂkﬁ

Ey, =t cos(zn/N +1) 7™

+/(vpk)? + £ cos’(zn/N + 1)

Ey = [(hvp)" /Y~ Tk}f 300 = [T2/N)/N(t, [ kp)>= V) (g, I /4n2R3v3) TN+

(g5.oemk’ /4R (T? + 2ykpT?)

janisotmpy = (gs.ve\/ mxm_v/4ﬂ2h3k%)(T2 + ZkB}/T3)
J{Jzkz—/}k4 = (gs,vemk%/4ﬂ2h3)[T2 + (szﬁkB/fl4)T3]

T? + 2ykpT?
T? + 2ykyT?
T? + (8m*Bky /n*)T?

3
apa = N x (egs kg /4> 303 ) T r

T@2/N)+1

where I'(x) is a Gamma function. The Schottky current

follows an N-dependent scaling relation of 7\ o T2/N+1
in contrast to ABA FLG. The J — V characteristics of ABA
FLG and ABC FLG are plotted, respectively, in Figs. 3(a)
and 3(b) for a typical Schottky barrier height of
® =0.5eV. In general, the Schottky current increases

with N in both stacking orders, and J%)C is about an
order of magnitude larger than J%)A. In Fig. 3(c), we plot

the layer dependence of the normalized Schottky current,
ie, J,=TM(T)/To(T) for i=(ABA,ABC) where
Jo(T) = eg, Jy T2 e 5T [ (42 W3 0}). Tap and T apc
exhibit distinct forms of N dependence. For ABA FLG,
Japa < N and is temperature independent. In contrast,
J apa exhibits a temperature-dependent nonlinear growth
with N. To compare the Schottky transport of FLG with
that of the monolayer graphene, we define the following
ratio:

7(N)

zABA — Ne_[A(I)%)/kBT], (14&)

Dirac

F(N) 2-(2/N
Jase _T2/N) (1, \** ) a0, k] (14b)
J Dirac N kBT

where A®Y = 0™ — g 5, Y and dgq is the
Schottky barrier of i-stacking FLG and of the single-
layer-graphene Schottky interface, respectively. For sim-
plicity, we assume that ACIJZ(M is the same as the work

function difference between monolayer graphene and FLG,
which has a typical value of A@fm ~0.1 eV [49,56-58].
The temperature dependence of Eq. (14) is shown in
Fig. 3(d) for N = (3,4,5,7). At the lower-temperature

regime T <400 K, both 7%1‘/7Dirac and 7%)C/7Dirac
exhibit similar exponential-like growth with increasing
T. Although Schottky devices are not typically operated

at 72400 K, it is interesting to note that 7%1‘ /I Dirac
and 7%%/7]3%3 exhibit contrasting high-temperature
dependence. 7%)[1 /Jpirac Maintains the exponential growth

with increasing T, while 7%)6/7Dimc exhibits a gradual
saturation. This behavior can be traced back to the
7%)C/7Dirac o (1/T)*7*/N dependence, which balances

out e=An/ksT gt sufficiently high temperature.
The Richardson constant for ABA FLG and ABC

FLG can be defined, respectively, as A%)A = NB and
AN =T (Q2/N) (1, /kp)*>"B/N.  We plot the
Arrhenius plot with a representative FLG of N =4 in
Fig. 3(e) using the actual scaling and the conventional T2
scaling for comparison. For ABA FLG, 1%:4) JT? is
heavily up-shifted by orders of magnitudes with respect

to the actual scaling J%T) /T3. This is contrary to ABC
FLG where J %?”/ T? is severely down-shifted with respect

to J%?) /T3>, This immediately suggests that the
Richardson constants extracted via the incorrect 72 scaling
can severely deviate from the actual values. For ABA

stacking, the Richardson constant fitted via log (J%)A /T?),

ie., Ag,. yields a ratio of Ag,/AY, =870 forall N, i.e., a
nearly 10° overestimation. This extremely high overesti-
mation remains approximately constant for all N due to the
universal T2 scaling in ABA FLG. In the inset of Fig. 3(e),

A/ A%)C is plotted for N up to 10 for ABC FLG. The
strong N dependence is a consequence of the T2/Nt!
scaling. For ABC-trilayer graphene, Ap, underestimates
A%zg) by a factor of approximately 0.1. This under-
estimation becomes worse and reaches Ag;/ A%)C ~ 1073
at N = 10. In contrast, the extracted Schottky barrier height

is not significantly influenced by different scaling relations
. _ . N
due to the dominance of e~®/%7_ Typically, ®p,/ @g;A ~

1.08 and ®g/®\Y. ~0.93, where ®p, is the Schottky
barrier height fitted from the Arrhenius plot assuming a
T? scaling. It should be noted that the good agreement
between the T2 fitted and the actual values of ® [4,11-18]
could misleadingly suggest the conventional 72 model as a
valid model for Schottky interfaces composed of non-
parabolic energy dispersions. We summarize the main
findings of this article in Table I.
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IV. CONCLUSION

In summary, we find that the Schottky transport current in
a narrow-gap semiconductor and in FLG exhibits distinct
forms of unconventional scaling relations. In practice,
although the uncertainties of the Richardson constant
extracted from an Arrhenius plot can be effectively reduced
by using a Legendre polynomial fitting scheme as outlined
in Ref. [59], using an incorrect scaling relation can still lead
to a severe misinterpretation of the experimental data,
yielding an extracted Richardson constant that differs from
the actual value by 2 orders of magnitude. Our results
highlight the importance of using the correct scaling relation
in order to better understand the physics of Schottky devices
based on materials with nonparabolic energy dispersions.
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APPENDIX A: DERIVATION OF THE
KANE-SCHOTKKY MODEL

The nonparabolic Kane energy dispersion is given as
[24,26,28]

hzkﬁ
E\(1+7E) =~ " (A1)
where y denotes the nonparabolicity of the band structure.
The energy dispersion is a simple quadratic equation in E|

and can be solved to obtain

(A2)

This energy dispersion allows us to write down the
following transformation:

In this case, the function n(E, E ) is given as

(A3)

3
n(E,E,)dEAE| = g, ev, f(E) d—kq
s (2]1’)*

27rgY v 1dE |
E)k dky———dk
( )3 f( ) 45 hdk,

gS 1)em
=dE
* (2n)*h?

s[1+27(E-EL)|f(E)E,

(A4)

where v, = h~'dE | /dk | is the group-velocity component
along the emission direction. Assuming the Boltzmann
statistic, i.e., f(E) = e~®*T the electron supply function
can be written as

gS ’l)em ©
N(E|)dE, = dEJ_—4’2 3 / [1+2y(E-E))|f(E)dE
T h E,
gs,vem _ .
=dE\ s (—kpT)(1 + 2ykpT)e~(Ex/ksT)
(A5)

This supply function gives the Kane-Schottky-diode equa-
tion as

2
gsmeka

7o ®/kyT
JKane_W (®/ksT),

(T? + 2ykpT?)e™ (A6)
The Kane-Schotkky scaling relation exhibits a mixture of
T? and T3 behavior. In the extremely nonparabolic case,

y — oo, the energy dispersion becomes

[2
7—’00 my

By defining v = \/1/2my, the energy dispersion reduces
the graphene’s linear dispersion, i.e., Ej = hvgk). Using
the fact that y = (2mv%)~!, we write

(A7)

9ok p3,-(o/ty1)

A0 (A%)

J Kane —

i.e., the modified Richardson law for graphene [22]. In the
other extreme case of y — 0, the conventional form of
J o T? can be obtained. In summary,

B AT2e=(®/ha),
JKane = {BT?)e_(q)/kBT),

07
e (A9)

Y — o,

where A = g, ,emk/4x*h* and B = g, ek} /4x* W02

1. Anisotropic Kane dispersion

In the presence of anisotropy, Kane’s nonparabolic
energy dispersion can be written as

h2 k2 h2 k2 h2 k2

2m,  2m, o
where 0(¢) = cos’p + (m,/m,)sin’@, (mx,my) are the

x- and y-direction electron effective mass and
k; = (k,.k,). Equation (A11) can be solved as

E\(1+7E)) =

(A10)

4y€(¢)h2kﬁ
2m -1
2y ’

1+

E, = (A11)

which leads to the dk — dE; relation of
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I m

o) (A12)

The supply function density then becomes

H(E, EL)dEdEL

Gsp€My
(2r)3n?

X f(E)dEAzﬂ <cosz¢ +%sin2¢>_ld¢. (A13)

y

:dEJ_

[1+2y(E-E})]

The angular integration has a closed form solution of

/)2” <coszq’) + Z—isinzqﬁ) _ldqb =2z Z—i (A14)
Therefore,
n(E,E,)dEdE,
—gg, BTN o (E—E)f(E)IE.  (A1S)

(27)*n?

This is identical to the electron supply function of the
isotropy band except that the effective mass m is replaced
by the term , /m,m, in the prefactor. Finally, the emission
current density can be determined as

Janisotropy = C<T2 + 2kByT3)e_(¢’/kBT)v (A16)
where  C = g, ,e,/mm,/4n*h*ky is the modified

anisotropic Richardson constant.

2. Parabolic dispersion with a higher-order k* term

Beyond the parabolic band approximation, a higher-
order term can be included to account for the nonparabo-
licity of the band structure at energy far away from the
conduction-band edge [30]. In this case, the general form of
the energy dispersion can be written as E} = akj — fkj,
where a = A2 /2m, and f is a small correction factor. For
this energy dispersion, we have

2,/ — 4BE,

This relation gives the supply function density of

kydky = (A17)

1 egy.of (E)

ME EL)dEdE| = ¢ap V@ —4B(E—E))

dEdE, ,

(A18)

and, hence,

e+E) g_<E/kBT)

VP —4B(E-E,)
(A19)

egS,U

N(E))dE, =dE
( L) € l87z2h £

Note that Ej has an unphysical band turning at energy
gy = a’/4p. Hence, the upper limit of f dE) is set to &.
When converting [ dE; — [dE, the upper integration
limit becomes &, + E, since E = E | + E|.. The integral
can be solved analytically as

dE
N(E|)dE, = TL \/Z(kBT)l/ze‘(fo/kBT)erfi

s ]2 e (EL/hsT),
kT

where erfi(x) is the imaginary error function. Finally, we
obtain

7 e | —_fo_ . £ _
J i —pt —5\/%(;%”3/26 kBTerfl( k_0>€ (®/ksT)

sT

(A20)

(A21)

Using the identity e erfi(x) = (2//7)D,(x), where
D (x)=e™ I e”dr is the Dawson integral, the current
density can be rewritten as

7 _ 95w 3/2 [ €0\ —(@/ksT)
J 2 = kgT D — BL/,
ak?—pi Sﬂzfl\/ﬁ( sT) +< kBT>e
(A22)
In the limit of gy > k3T,
= g5 v€ 3/2
J oo gs =—22" (kpT)3/
ak=—pk Sﬂzfl\/ﬁ( B )
1/2 3/2
X l kB_T / _|_1 kB_T / e_<¢'/kBT)’
2 =) 4 &
(A23)

where the identity of D, (x)~1/2x+ 1/4x* +--- for
large x is used. Replacing @ = /#?/2m, we obtain the final
form of

. gy pem’ 8m’p

Jakz—/fk“zm (kBT>2+ h4 (kBT)3 e_(é/kBT)'

(A24)

APPENDIX B: SCHOTTKY MODEL IN
FEW-LAYER GRAPHENE

We now derive the reverse saturation current in FLG.
FLG can be stacked according to two stacking orders:
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(i) Bernal ABA stacking and (ii) rhombohedral ABC
stacking [40,52,53,55]. Experimentally, it was shown that
the ABC staking made up of 15% of the total area of
mechanically exofoliated tri- and tetralayer graphene [60].
For chemically grown graphene multilayer in SiC substrate,
ABC stacking is the dominant configuration [61]. For
completeness, FLG of both ABA and ABC stacking is
considered.

1. ABA-stacked few-layer graphene

For ABC-stacked FLG, we rewrite the energy dispersion
in Eq. (11) of the main text as

1 /rd m2o3kd, + 1
E”’n == 5 (Bl)

YN.an

where yy, = [t cos (zn/N + 1)]~'. Hence,

VN, nEll n

ky ndky , = .

dE” - (B2)

The supply function due to electrons from the n subband is
given as

("(E,)dE,
€Ys.v 3 (kBT)Z —(E, /kgT)
=dE, —=2_ | (ksT)? — 2L L/epl) B3
J_47Z2h31}%: |:( B ) YN € ( )

The reverse saturation current density can be calculated as

T = Z / "(EL)dE,
n= ABA
N

o €95
T A2 H3 2 E :
4"’ vp 4=

x [(kgT)? =t cos (wn/N + 1)(kgT)?|e™ (@ kT,

(B4)

Note that the cosine term in the square bracket follows

the following identity
. N
cos(%)z—cos( kJﬂ>,

where j is a positive integer with 2j # N and j < N.
Therefore, the summation over all n results in the mutual
cancellation of the T? terms in the square bracket in the
second line of Eq. (B4). This mutual cancellation leads to
the following fotal reverse saturation current of

(BS)

N)

71(4314 — N)(MT'3 _( ABA/kB )

A 2h3 2 (B6)

2. ABC-stacked few-layer graphene

For ABC-stacked N-layer graphene with N > 2, the low-
energy two-band effective Hamiltonian can written as [52]

R hop)N /0 kY
Hk:_(Nfl) ( >7

Y K0

(B7)

where k. = k, & ik,. The basis of H, is composed of the
sublattices in the outermost layers, ie., (¢,,, ¢BN)T,
since they are responsible for the low-energy dynamics.
By diagonalizing H,, the energy dispersion is found to be
E = ayk{, where ay = (hvp)¥~'/¢]7!. Similarly, the
following relation can be determined:

v )

Similarly, the electron supply function can be written as

kydky = (B8)

g.&\,l}e
4n’hNay

o E—E \*
x/ dE(7L>N e”
E, ay

The integral can be analytically solved in terms of an
incomplete Gamma function, i.e.,

o — 2-1
free(52)
E, ay

_ 2
— _all\/ (2/N) (kBT)Q/N)F(N) e—(EL/kBT)‘ (B]O)

N(El)dEl:dEL

(E/kgT) (B9)

e_<E/kBT)

Finally, the current density is found to be

(2/N)
r (3) T3 p—(®e/ksT)
N

(B11)

SV _ €Gsoky (11kp)*
ABC T 4m’ndvr N
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