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We develop a concept of the traveling-wave Josephson parametric amplifier exploiting quadratic
nonlinearity of a serial array of one-junction superconducting quantum interference devices (SQUIDs)
embedded in a superconducting transmission line. The external magnetic flux applied to the SQUIDs
makes it possible to efficiently control the shape of their current-phase relation and, hence, the balance
between quadratic and cubic (Kerr-like) nonlinearities. This property allows us to operate in the favorable
three-wave-mixing mode with a minimal phase mismatch, an exponential dependence of the power gain on
number of sections N, a large bandwidth, a high dynamic range, and substantially separated signal (w,) and

pump (w,,) frequencies obeying the relation w; + w; = @

»» Where w; is the idler frequency. An estimation

of the amplifier characteristics with typical experimental parameters, a pump frequency of 12 GHz,
and N = 300 yields a flat gain of 20 dB in the bandwidth of 5.6 GHz.
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I. INTRODUCTION

These days, the Josephson parametric amplifiers (JPAs)
[1] have practically achieved a quantum-limited perfor-
mance [2-4] and are considered to be the most advanced
tools available for fine experiments in the field of quantum
measurements [5,6] and quantum-information technologies
[7-10]. Recently, owing to the impact of the kinetic-
inductance traveling-wave parametric amplifier [11], the
Josephson traveling-wave parametric amplifiers JTWPAs)
enabling a larger gain per unit length with lesser pump
power have been in the particular focus of several research
groups [12-16]. Moreover, these promising devices have
already demonstrated the performance with noise
approaching the quantum limit (see the works of White
et al. [14] and Macklin et al. [16]). In contrast to conven-
tional JPAs including Josephson junctions (JJs) embedded
in superconducting cavities and, therefore, suffering
from an inherent gain-bandwidth trade-off, JTWPAs are
designed as microwave transmission lines enabling the
mixing of propagating microwaves and, therefore, free of
the bandwidth limitation and possibly allowing a higher
dynamic range. These properties are required particularly
for the frequency-multiplexing readout of quantum
objects [17].

Similar to the concept of parametric amplification in
nonlinear optical fibers [18], JTWPAs analyzed [12,13,15]
and accomplished [14,16] to date were based on the
Kerr nonlinearity, i.e., on the dependence of the refractive
index n on intensity of the wave « |E|?. In superconducting
circuits, this nonlinearity is due to the dependence
of the Josephson inductance (equivalent to the refractive
index n in optics) on the square of current I2, viz., L;(I) ~
®y(1 +717/1%)/(2xl,.), where ®, is the magnetic-flux
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quantum and [, is the Josephson critical current. The
nonlinear term originates from the term o ¢ in the Taylor
expansion of the Josephson supercurrent /; = I, sin .
Generally, by exploiting the centrosymmetric nonlinearity
of the supercurrent, /;(—¢) = —I;(¢) or, equivalently, the
symmetric nonlinearity of inductance, L;(—1I) = L,(I),
JTWPAs can, however, only operate in the four-wave-
mixing mode [18]; i.e., when the signal (w;), idler (w;), and
pump () tones obey the relation w; + w; = 2w,,.

In this paper, we propose a JTWPA possessing nonzero
quadratic nonlinearity produced by nonlinear inductance
L;(I), the power expansion of which contains a term
proportional to /1. (or an index n having dependence on
E). We engineer this nonlinearity by means of modification
of a current-phase relation in a superconducting circuit
including JJs. This property enables operation in a
favorable three-wave-mixing mode (whose theory had
been developed by Cullen as early as 1960 [19]) with
frequencies obeying the relation

w5 +w; = w,. (1)

For such a regime, the pump frequency shifts away
substantially from the signal band and therefore can be
efficiently filtered out from the amplified signal. Because of
inherently stronger quadratic interaction (in comparison to
higher-order cubic interaction), efficient operation in the
three-wave-mixing mode is possible with a lesser pump
power. Moreover, the three-wave-mixing mode enables
a high dynamic range and wideband operation. These
promising characteristics have been recently demonstrated
in the experiment with a NbTIN kinetic-inductance
traveling-wave amplifier [20] in which quadratic non-
linearity was created in addition to conventional Kerr
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nonlinearity of a thin superconducting wire by means of
applying a dc current bias.

II. THE MODEL

The proposed ladder-type transmission line having full
control of both quadratic and cubic nonlinearities consists
of a serial array of one-junction superconducting quantum
interference devices (SQUIDs), or the so-called rf SQUIDs,
embedded in the central conductor of the coplanar wave-
guide as shown in Fig. 1. The value of the screening
SQUID parameter f; = 2xL,I./®, < 1 [21], where L, is
the geometrical inductance. In this case, the external
magnetic flux ®, induces a flux inside the loop P4 (P,)
which is a single-valued function of ®,, and its value is
found by solving the transcendental equation (see, for
example, Ref. [22])

Dy + (Po/27)p sin(22 Py /Py) = P, (2)

The phase drop across the JJ [see Fig. 1(a)] is therefore
Pac = @1 — g = 21P4./Py. The inverse inductance
for a small input current is L7'=L;'+L;'=
L;'(1+ p cosgqy.), whereas the current-phase relation
for the flux-biased SQUID is expressed by the formula

(@) = 1.9/P + 1[sin(pg. + @) —singg].  (3)

Here, ¢ is the variation of the JJ phase associated with
the (ac) current injected in the SQUID. By expending the
current I(¢p) in a power series of the small parameter
lp| < 1, one arrives at the formula

(@)

(b)

FIG. 1. (a) Electric diagram of the transmission line including
an array of one-junction SQUIDs. The tunnel JJ is presented as
the parallel connection of Josephson inductance L; and tunnel
capacitance C;. (b) Possible layout of the transmission line with
parallel plate capacitor crossovers.

1/1, = (B7 + cospa)p = po* 79> — ... (4)

with ﬁ = %Sin Picy ¥V = %cos Pqc»> etc. The first term on the
right-hand side is related to the inverse inductance of the
SQUID, whereas B and y describe the quadratic and Kerr
(cubic) nonlinearities, respectively. The quadratic non-
linearity introduces the desired asymmetry I(—¢)#—I(¢)
and allows a number of remarkable physical effects
inaccessible with only Kerr nonlinearity. These effects
include, for example, second-harmonic generation (SHG)
[23], spontaneous parametric down-conversion (SPDC)
[24-26], and what we focus on here, the three-wave mixing
that enables parametric gain [19].

Following the method of deriving a wave equation for a
ladder-type L C transmission line with embedded JJs, which
was described in detail by Yaakobi et al. [12], we arrive, in
our case, at the equation for the phase ¢(x, ¢) on the circuit
nodes,

2 2
P L0, P
Ox? 0 or ! ox*or
0 [ [0¢\? o0 [[(0\?3

+ﬂ8x{<8x) } +},8x [(EM) ] =0 0
Here, x = X/a is a dimensionless coordinate, a the
section size, wy = (LC,)~(1/?) the cutoff frequency, and
w; = (LC,)~/?) the plasma frequency of the SQUID.
The ac part of the phase on a SQUID is ¢ =
a(0¢/0X) = (0¢p/ODx), whereas voltage on a ground
capacitor is V = (®q/27)(d¢p/0t). The nonlinear coeffi-
cients are § = /;’ﬁ ;. and y = yf; (see their plots in Fig. 2).
The third term in Eq. (5) yields an ordinary superlinear

frequency dependence [12,15] of the dimensionless wave
vector k = 2za /4,

k) :a)ox/l—(uz/a)%’ ©)

which follows from a plane-wave solution ¢/**=®%) of the
corresponding linear equation (at f = y = 0). The section
size a is assumed to be much smaller than the wavelengths
of the propagating signals, i.e., a < 4, the values of k <« 1
and, therefore, all working frequencies are small,
w;, <@y For sufficiently large plasma frequency
w; > w,; ,, the chromatic dispersion Eq. (6) is small,
k(w) = (w/wy)(1 + 0.50%/w?), and, as usual in optics
[18], positive, dn(w)/dw > 0.

II1. ANALYSIS AND CHARACTERISTICS
A. Signal gain

The solution of the wave equation (5) is found using the
coupled-mode-equation (CME) method [18] in the form
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FIG. 2. Coefficients f (the red curves) and y (the blue curves) as
functions of the applied magnetic flux ®, for two values of the
SQUID parameter ;. The thin dotted vertical line indicates the
optimal flux bias ®, = 0.39®, ensuring the phase ¢4, = 7/2
corresponding to the maximum gain (the maximum value of |f|
and the zero value of y) for the case of f;, =0.9. (Inset)
Frequency dependence of the signal-power gain G, in the
JTWPA, calculated for typical experimental parameters and the
optimum flux bias.

ety =5 > [Ax)elroin yec].  (7)

j={s.i.p}

where k; ; , are wave vectorsand A, ; , (x) are slowly varying
(e, [0%A;/0x*| < k;j|0A;/0x| < k3 j={s.i,p}H
amplitudes of the signal, idler, and pump waves, respectively.
Corresponding CME:s take the form

s

dA

.3 —iAkx
—dxp = lg?’k?,Ap|Ap|2 _EkskiAsAie bk, (8)
dA;; .3 p A pibky
dx N lZ]’k” P 91|A |2 +35 kl kaAl SAPe o (9)

The phase mismatch resulting from dispersion equation (6) is

3_.3_ .3
W, —w;—w; 30,00

Ak =k, —k, —kp 220 20Dy g (g0
2wow; 200075

where the higher-order small terms o« wj'w;*@y,; , are

neglected. The terms proportional to y produce the self-

phase modulation (SPM) §,, and the cross-phase modula-
tions (XPMs) 9, and 9;, respectively [18], i.e.,

= (3/8)7k§>|AP|2kp’ (11)

19s.i = (3/4)yki|Ap|2ks.i7 (12)

which contribute to the total phase mismatch

v =Ak+9, (13)

where
9= 1917 - 8.? - '9i ~ _(3/8)(wp/w0)3y|Ap|2' (14)

Here, we had again neglected the higher-order terms o
(w;.:p/0;)*(w,/wy)%y because of a small y and relations
ks,i,p ~ a)s,i.p/wO'

Under the undepleted-pump assumption |A,(x)| =
Ay > |A;;(x)], the pump can be found from Eq. (8)
explicitly,

A, (x) = Apgeneis, (15)

where y is the initial phase. Then Eq. (9) is simplified:

dAg; .
dx - s,i4hs i

i 0 »i9,% ilkx
Fementel A (16)
P

90 = |B|A w3 /4. (17)

For a zero initial idler A;(0) =0 but a nonzero initial
signal, A,(0) = Ape= # 0, the solution of linear equa-
tions (16) can be presented in the form [18]

A(x) = Ageo |cosh(gx) — %sinh(gx) et/

(18)

Ai(x) = 2%143,06%%"%0 sinh(gx) et/ (19)
)4

with initial phases obeying the relation y o — x4
The complex exponential gain factor is

=[(1-8)g5 -

o—Xio = 0.

(w/2)%]"/2, (20)

where 1 — & stands for 4w,w;/w?. Here, the dimensionless
detuning is

5= |2ws,i—a)p|/a)p, (21)

while the total phase mismatch equals

3603 2
w=Ak+9=—-2=L (1—52)——)/A (22)
Sa)o 0y

For the zero phase mismatch y = 0, the signal has the
maximum power gain

G, = |A;/Ap|* = 1 +sinh? (V1 =8%gyN), (23)

where N is the length of the line.
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B. Phase mismatch

Generally, realization of a zero phase mismatch is a
challenging problem in designing four-wave-mixing
JTWPAs. The main difficulty is that both the phase
modulation and the gain depend on the very same param-
eter, i.e. the Kerr nonlinearity y. This problem can be
partially solved by sophisticated engineering of dispersion
using auxiliary-resonance elements embedded in the trans-
mission line [13,14]. However, in our three-wave-mixing
case, the phase-modulation effects and the signal gain are
controlled by two different nonlinear terms, i.e., }/A?,O
and A, respectively, so a phase matching can be simply
realized by adjusting external flux bias ®, [see the
dependencies f(®,) and y(®,) in Fig. 2].

In particular, for w,; ~ w; = 0.5w,, (i.e., a small 6 ~ 0) the
total phase mismatch y given by Eq. (22) can be made
equal to zero if, first, y > 0 and, second, yAfJO is of the order
of wj/w} = C;/Cy. Assuming that the optimal pump
amplitude is determined by a swing of the Josephson
phase ¢,~1, ie., Ay = @,/k,~wy/w,, we obtain
y~wh/w; < 1. In this case, the finite detuning 5 may
cause a phase mismatch |y|~ (3/8)8%w} /(wow3) which
is much smaller than the exponential gain factor g =

0.5V'1 = &*|plw,/wy (of course, not for vanishingly small
values of || and a value & not very close to 1). Thus, for
proper circuit parameters, an exponential gain with fre-
quency dependence given by Eq. (23) is always possible.

Large exponential power gain allows operating even
in the regime of imperfect phase matching, y # 0. The
dephasing length on which the phase mismatch becomes
substantial is

8 3 1= 52 2 -1
N, =% = 8mo | (1= 8wy _ yAZ| . (24)
ly| 3o, wj

This formula can be rewritten as

My = NG VR (9
where
8rwow?
Np = 33— o) (26)
and
8w}
Npy = ?U/TI,A()?,O (27)

are the dephasing lengths attributed solely to chromatic
dispersion and attributed solely to SPM and XPM, respec-
tively. For optimal values of |f|=p,/2 and y -0

(see Fig. 2), the length N which is sufficient for attaining
the designed value of gain Gy,

N arccoshy/G, N 4w} In(2/Gy)
g |ﬂ|w%(1 - 62)Ap0

(28)

can safely be designed to be substantially smaller than a
very large N,,. In this case, the gain suppression from the
pump depletion may dominate.

C. Pump depletion

Depletion of the pump power in this JTWPA may occur
by means of two major mechanisms. First, there is a
possible leak of power to higher harmonics, especially to
the second harmonic 2w,,. An analysis of the corresponding
CME shows that, because of weak frequency dispersion
(2w, < w;) and both small SPM and XPM (y < 1), the
phase mismatch between the main tone and the second
harmonics is small. Without special precautions, this fact
may cause intensive SHG. To suppress SHG, one may
create a narrow stop band around 2w, by applying, for
example, the technique of periodic variation of wave
impedance developed by Eom et al. [11]. In our case,
such stop-band engineering is reduced to some change of,
for example, capacitance C, in every mth section of the
line. The number m should correspond to a half wavelength
of a preselected frequency, ie., m = [2zw,/4w,].
Alternatively, one can reduce the cutoff frequency w, to
prevent propagation of higher (>2) pump harmonics
having frequencies larger than @, as was done in Ref. [14].

Second, the input pump power P,, is inevitably
converted into the power of signal P; and idler P;

[P; o (0p;/01)* = wilA %, j = {s.i, p}], ie,
a’%Aio + 0?A2) = w3 |A, P + 0} AP + @F|AR. (29)
Specifically, for a zero phase mismatch, the power gain

versus the length dependence is described by the formula
(see the Appendix for details)

(@ ! inh?
Gy’ = 1 h*(gN), ask—1, (30
C = a2 (gN /KK — 1 +sinh*(gN), ask— (30)

where dn(u,k) is the Jacobi elliptic function with the
modulus value

k= 0,42/ (0.4% + 0,42, (31)

The maximum possible power gain G = 1/(1 —k?) is
achieved for the line length N = kK (k)/g, where K is the
complete elliptic integral of the first kind. For a longer line,
the gain is reduced due to reverse-power conversion from
the signal and the idler to the pump [19].
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IV. POSSIBLE DESIGN AND DISCUSSION

Finally, let us make an estimation of possible exper-
imental parameters. For state-of-the-art four-wave-mixing
counterparts, the critical current I. =35 uA [14,16].
Assuming a similar value of /. and a critical-current
density of 500 A/cm?, the tunnel area is about 1 ym?
and the JJ capacitance C; =~ 60 fF. For a width of center
strip of w = 15 um, capacitance C,, can be designed [4] to
be around 100 fF without a significant increase of the
section size a ~ 2w. By applying small meandering geo-
metrical inductance, L, can be made to be about 57 pH,
yielding f#; ~ 0.9. For an appropriate flux bias correspond-
ing to @4 = /2 and ensuring a maximum value of
f = p./2 =0.45 and a zero y [see Eq. (2)], the resulting
inductance L = L,/(1 + cos ¢q.) = L, = 57 pH.

The wave impedance of this line is, therefore,
Zy = (L/Cy)"/? ~24 Q, the plasma frequency w,/2x ~
86 GHz, and the cutoff frequency /27~ 67 GHz
Taking the pump frequency w,/2z = 12 GHz and the
amplitude A,y = 0.5w/w, ~ 2.8, corresponding to the
phase swing ¢, = k,A o = 0.5 rad < 30° and the current
I = (1/v/2)(®o/22L) g, ~ 1.9TuA (~ —70.3 dBm), we
obtain the factor g, = [B|w, /8wy ~ 0.01 [see Eq. (17)]. The
power gain of the N-section JTWPA given by Eq. (23) is,
therefore, G, ~ 1 + sinh?(0.01N), i.e., about 20 dB for
N =300, whereas the geometrical length aN ~9 mm.
This length corresponds to n, = aN /4, = N/(2zw,/w,)~
8.6 wavelengths of the pump.

The evaluated dephasing lengths in Eqgs. (26) and (27)
are N = 2400 and Npy186/y, respectively. Taking the
most unfavorable value of y = —0.1 (achieved instantly
only at the extreme position of an oscillating phase ¢),
we have a very conservative estimate Eq. (25) for a
total dephasing length N, ~ 1000 > N. The dependence
of the power gain G, on frequency (shown in the inset
of Fig. 2) yields a remarkably wide 3 dB range of
0.47w,/27 ~ 5.64 GHz. While this 3 dB range is only
slightly larger than that achieved in the four-wave-mixing
JTWPA (e.g., approximately equal to 0.42w,/x [15],
0.38w, /7 [14], and 0.21w, /7 [16]), the latter typically
exhibits considerable ripple or other variations in the gain
versus frequency, which can be practically cumbersome.
Moreover, the contiguous frequency range of the power
gain in our JTWPA is extended up to a pump frequency
of w,/2x = 12 GHz.

As follows from the corresponding coupled equations
(A1)—(A3) (see the Appendix), the 1-dB reduction of the
gain due to pump depletion occurs when the complemen-
tary modulus value k' = v'1 —k? ~ 0.075. The simulated
dependence of the signal and pump powers versus the
length N presented in Fig. 3 shows that, for a rather modest
pump power of —70.3 dBm, the input signal-saturation
poweris Py ~ —96 dBm (cf. =98 dBm for a 20-dB gain in

1.0+ —mm - P.ump, o,
"\.\ — Signal, o, =0.6w,
0.8 \.\ - - Iqler, ;=040, _
N Signal (w/o depletion) ,
o \ . .
o 064|902 w max Py /.’
~ PsO/P ;
o 0.01
= 041
& 0.00 +———rmr ==
0
0.2 /
0.0

0 100 200 300 400 500
Length N

FIG. 3. Amplification of a signal (the green solid curve) and an
idler (the dashed blue curve), and depletion of a pump (black
dash-dotted curve) versus the line length N found by numeric
solving of CMEs (A1)—(A3) in the case of w; = 0.6w,,. The gray
and open circles show the output powers of the signal and the
pump, respectively, corresponding to a 1 dB suppression of the
nominal gain of 20 dB in the 300-section array occurred
at k' =0.075. For the pump power P, = —70.3 dBm,
the signal-saturation power is Py = (k'/k)*(0,/@,)P, ~
0.0057(w,/w,)P o = =96 dBm. For comparison, the red dotted
curve shows the exponential rise [described by Eq. (23)] of this
signal in the case of an undepleted pump. The solid green
circle shows a maximum signal power P = (w,/w,)P )~
—73.5 dBm corresponding to a maximum achievable gain of
about 22.5 dB (at N = N,, = 399).

Refs. [13,15] and —92 dBm for a 12-dB gain in Ref. [14]).
The dynamic range can be further improved by an increase
of the phase swing ¢, from 0.5 rad up to, for example, 1 rad
with a corresponding 6-dB increase of both the pump
and the signal-saturation powers, i.e., up to approximately
—64.3 and —90 dBm, respectively.

For the above-mentioned experimental parameters, the
line impedance Z, is still below 50 €, which may require
special matching with a signal source and a postamplifier.
This matching can be done, for example, with the help of a
Klopfenstein taper [27] having a design similar to that in
Ref. [4]. The low-Z, problem can be solved (at the price
of some reduction of dynamic range and a larger size of
the circuit) by simultaneously making the ground capaci-
tance C and the critical current /, smaller and the
geometrical inductance L, larger. For example, /. =2.5uA,
L, =114 pH (which can be realized by means of a
relatively large size inductor) and Cy = 50 fF should yield
Zy~ 50 Q, while we keep f;, w;, and @, equal to the
above-mentioned design values. To keep the length of such
a circuit reasonably short, one can, for example, replace a
large geometrical inductance L, o 1/I, by a kinetic
inductance of a serial array of two to four larger JJs.
Finally, another strategy for increasing Z, toward 50 € is
replacing a single rf SQUID in each section by a group of
two to four serially connected rf SQUIDs.
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V. CONCLUSION

We develop a concept of a JTWPA with three-wave
mixing, which can outperform state-of-the-art JTWPAs
operating on the principle of four-wave mixing. Our circuit
enables high gain, the widest flat bandwidth, and nominally
zero phase mismatch. Moreover, this JTWPA allows
efficient operation with slightly imperfect phase matching.
The proposed design is simple, compact, excludes the
engineering of sophisticated resonant phase-matching ele-
ments, allows cascading and multiplexing, and is feasible in
the labs with standard fabrication facilities.

This JTWPA flexibly allows further optimization of its
parameters and a possible integration with, for example,
SQUID transducers, single-photon detectors, qubits, etc.
We believe that this amplifier with potentially quantum-
limited noise performance will advance high-fidelity mea-
surements and signal processing at the single-photon level.
Last but not least, realization of a SPDC regime [26] in a
circuit with a Josephson noncentrosymmetric nonlinear
medium, like in this JTWPA, may allow its application for
the generation of entangled photon pairs with frequencies
obeying the relation w; + @, = w,,. Such entangled bipho-
tons are of particular importance for creating a quantum
processor, quantum-key distribution, and a secure trans-
mission of data.
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APPENDIX: EFFECT OF PUMP DEPLETION

Neglecting the SPM and XPM effects (i.e., y — 0) and
the phase mismatch due to chromatic dispersion (Ak — 0),
the coupled-mode equations (8) and (9) for the amplitudes

and the phases of the waves, A, ;(x) = |A,,;(x)|e%rsi),
take the form
d|A,| pw,w;
=—5— 5 |A]|A;] cos . (A1)
dx 2 @}
d|As| /}a)in
=5 |Ail|A,[ cosy. (A2)
dx 2 o} r
d|Ai| ﬁ ;0
=5 a)zp A |A,| cos g, (A3)

0

d_)( — gwﬂa)swi % |As||Ai| _ |Ap||Ai| _ |As||Ap| Sil‘l)(,
dx 2 (1)% wF|AP‘ ws|As| wi‘Ai|

(A4)

where y =y, —x,—x;- The initial conditions read
A, (0)] = Ay, |A5(0)] = Ay, |A;(0)] =0, and x(0) =
Xpo —Xs0 — Xio = 0. Therefore, the fourth equation (A4)
yields a constant phase y = 0, so cos y is equal to 1. The set
of equations (A1)-(A3) implies that

dlA,|
dx

d|A,|
dx

d|A;|
dx ’

= ws|As|

= COi|Ai|

_a)p|Ap| (AS)
or, equivalently, in terms of wave powers (P; « w3|A;[%,
i=Ap.s.i}),

1dp, 1dp_ 1,

w, dx w; dx w; dx’

(A6)

Virtually, these equations are the Manley-Rowe relations
for the waves [28]. The three corresponding conserved
quantities (in the sense that they are spatially invariant) are

PS Pp‘i‘i:Mz i—521‘43

), i s i

(A7)

Using the initial conditions, the constants M, M,, and M;
entering Eq. (A7) can be found, so the corresponding
relations between the wave amplitudes read

a)p|Ap|2 + a)s|As|2 = wplAp0|2 + ws|AsO|2’ (AS)
wp|A1J|2 + wi‘Ai|2 = wp|Ap0|27 (A9)
o AP — oA = oAyl (A10)
Substituting the expressions
A = Ao + (@, /0) (A — 4,2 (ALD)
and
Al = (@, /o)Al - 14, (A12)
into Eq. (A1),
A4l = (@ /o) (AR - |A0P)  (A13)

and
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4, = 1Al + (@,/0,) (A0 ~ A2 (A14)
into Eq. (A2), and
A, = AP + (@i/o)A  (AlS)
and
A=l — @/, AP (Al6)

into Eq. (A3), we obtain a set of three uncoupled equations
which are solved by a separation of the variables,

dja,|
w140 = 14, P14l + 52 (1Ap0l = |4,)]
ﬂwrwi
="y, (A17)
2 o}
diA,|
Vo UAP = A0 P) 1Al + 2= (1Al = A, P)]
ﬁwiwp
== dx, (A18)
2 o}
diA|
VAP + 2 A4 - 2 |AiP]
ﬂwswp
== dx. Al9
2 o} * (A19)

The solutions (see, for example, Ref. [29]) can be expressed
in terms of the Jacobi elliptic functions sn(u, k), cn(u, k),
and dn(u, k), i.e.,

|Ap| = |Alsn(K = gN/k,k), (A20)
@p
|As| = a)_‘Ap0|dn(K - gN/k7 k)
= |Ayl/dn(gN/k k), (A21)

(0}
Al = [ 224A len(K = N/ k). (A22)
1

Here, K is the complete elliptic integral of the first kind,
with the modulus value k given by Eq. (31). The comple-
mentary modulus value is

) (A23)

K= V1=K = 0,43/ (0,4% + 0,A%)

and the ratio

k//k Y ws/prSO/Apov

while gN stands for (w,,\/@,®;/w§)pA 0N = V1 — §goN
[see Egs. (17) and (20) in the main text]. Formula (30) for
power gain ng) immediately follows from Eq. (A21).

The transmission line length ensuring the maximum
possible power gain

(A24)

Gmax 1 w A% + a)[,Aio
max — T80 P p0

A25
k2 A2, (A25)

should correspond to half of the period of the Jacobi elliptic
function dn(u, k) = dn(u + 2K, k) [30], i.e., K, so

k 1. 4
For a longer transmission line—in our case, at

N > N,, = 399—the reverse-power conversion from the
signal and the idler to the pump occurs as shown in Fig. 3
(see also Fig. 6 in Ref. [19]).
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