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We report a theoretical and experimental study on the use of nonequilibrium tunneling injection to
control the local Cooper pair amplitude ΦS in an SF sandwich involving superconducting (S) and
ferromagnetic (F) layers coupled by the proximity effect. In an SISFIFS structure (where I is an insulator),
this same SF sandwich serves as the acceptor electrode of an SISF Josephson junction whose critical
current Ica depends on ΦS. We derive the self-consistency equation describing the critical temperature Tc of
the SF sandwich under nonequilibrium conditions. In addition, we compute Ica by solving the Boltzmann
equation for the electron distribution function fε, which then allows a determination of the relative change
of δIca=δIiðViÞ versus the bias voltage Vi and the injection current IiðViÞ. The computed gain δIca=δIiðViÞ
strongly depends on δIca=δIiðViÞ, and agrees well with the experimental data.
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I. INTRODUCTION

Progress towards next-generation computing is rapidly
approaching a crisis due to thermal management and other
issues associated with semiconductor technologies [1].
New device and computing strategies with significantly
higher energy efficiencies are clearly required [2,3].
Cryogenic superconducting single-flux quantum (SFQ)
technologies with switching energies ∼10−19 J=bit are
actively being pursued as a basis for future processors
[4,5]. However, dense and energy-efficient memories
compatible with SFQ logic have yet to be developed.
Promising cryogenic memory technologies based on mag-
netic memory devices have been considered [6–10]. The
challenge of combining superconducting processing devi-
ces and magnetic memory arrays in a single circuit requires
matching substantially different material and electrical
characteristics. A promising approach involves the direct
integration of materials with competing-order parameters in
multilayered structures. Superconductor/ferromagnet het-
erostructures allow one to exploit additional mechanisms to
control the superconducting state, thereby considerably
expanding the functionality of existing devices and pos-
sibly leading to the development of completely new
ones [11,12].

The focus of the present work is to develop the theory of
quasiparticle-injection devices [13–23] which are modified
to include ferromagnetic layers. It is anticipated that such
devices will find various applications in superconducting
electronics [24–26], and improving their performance will
require a better understanding of the physics of the non-
equilibrium superconducting (S) state in hybrid multilay-
ered structures.
Excess nonequilibrium excitations in an S layer, which

tend to occupy all the available electron states, lead to a
weakening of Cooper pairing, thereby causing the sup-
pression of the superconducting correlations. This allows
one to establish control of the superconducting state by
injecting quasiparticle excitations from an adjacent elec-
trode through a tunnel junction [13–23]. A particular device
exploiting this approach was proposed by Faris [15] and is
known as the quiteron. In this three-terminal device, the
two Josephson junctions are stacked on top of each other to
form an S1IS2IS3 structure (where I is an insulating tunnel
barrier). When biased above the sum-gap voltage, the S2IS3
junction injects excess quasiparticles into the S2 electrode,
thereby suppressing superconductivity in that layer. Since
the S2 electrode is shared by the acceptor (S1IS2) junction,
the I − V curve of the acceptor junction is perturbed. For
the same reason, if a voltage is applied across the acceptor
junction, the I − V curve of the injector junction is affected.
This backaction is undesired and has to be suppressed for
the device to be used in superconducting circuits. One way
to do this is to suppress the superconducting correlations in
the injector junction in the vicinity of the barrier.
In previous publications the authors have shown that

introducing very thin ferromagnetic (F) layers on both
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sides of the injector barrier efficiently eliminates both the
Josephson current flowing through the injector junction and
the gap-related features in its I − V curve [24–26], owing to
the presence of the exchange field in F [27]. It is also
shown that input-output isolation in the modified devices,
designated superconducting-ferromagnetic transistors
(SFTs), is greatly improved as compared with the quiteron
[24–26].
In order to provide a theoretical basis for optimizing the

characteristics of the devices studied here, we consider how
to control the Josephson current flowing through the
S1I1S2F1 (the left or acceptor) junction of the multilayered
hybrid structure shown in Fig. 1. The structure involves
three superconducting (S), two insulating (I), and two
ferromagnetic (F) layers. The blue line in Fig. 1 denotes the
spatial dependence of the Cooper pair amplitude ΦðxÞ. In
the S2F1 sandwich, ΦðxÞ in S2 is diminished due to the
inverse proximity effect with adjacent F1 layer. Additional
suppression of ΦðxÞ in S2 can be realized by injecting
nonequilibrium quasiparticles from the F2S3 electrode
through the potential barrier I2. Thus, excess quasiparticles
injected from the F2S3 electrode into the middle S2F1

sandwich create conditions for a transition of the S2 layer
from the superconducting to normal state, which can be
used to control the Josephson current through the acceptor
junction.

II. EXPERIMENT

The multilayer SFT-device structure [see Fig. 1(b)] is
implemented [24–26] in the vertically integrated form. This
geometry allows one to efficiently utilize valuable chip
space. The top superconducting S3 electrode enables four-
terminal-like measurements of the injector junction and
minimizes the resistive contribution of the F layers. (The
role of the F layers is discussed in more detail in our former
publications [24–26].) Briefly, the role of these layers is to

block superconducting correlations across the I2 barrier.
Simultaneously, the F1 layer has to be thin enough to
prevent significant quasiparticle trapping in it. A ferro-
magnetic material is chosen for F1 because it is challenging
to find a nonmagnetic N layer, which can satisfy the above
two conditions simultaneously (an N layer could be used in
place of F2, but it is convenient to use the same material for
both the F1 and F2 layers).
The devices are fabricated from Nbð1Þ=Al=AlOx=Nbð2Þ=

Nið1Þ=Al=AlOx=Nið2Þ=Nbð3Þ multilayers deposited in situ
onto oxidized Si substrates. Typical thicknesses of the
layers in the devices are as follows: 120, 42, and 80 nm for
the Nbð1Þ, Nbð2Þ, and Nbð3Þ layers, respectively; 2.7 nm for
Nið1Þ layer; and 2.7–6.7 nm for the Nið2Þ layer. Other
important device parameters are listed below in Sec. IV.
Our device geometry [see Fig. 1(b)] allows us to electrically
bias the injector and the acceptor junction separately using
two independent battery-powered current sources. The
preamplifiers for the voltage signals are also battery
powered in order to minimize external electromagnetic
influences. The devices are characterized at 4.2 K in a
shielded environment. We measure Ica versus H depend-
ences of the S1IS2 acceptor junction (where Ica is the
maximum dc Josephson current and H is an external
magnetic field applied parallel to the layers) at different
levels of the current Ii through the S2F1I2F2S3 injector
junction. The maximum Ica is determined from the IcaðHÞ
dependences and plotted against Ii.

III. MODEL FOR A MULTILAYERED
HYBRID JUNCTION

Here, we propose a tractable theoretical model based on
the nonequilibrium Green’s function technique [28–30],
which allows us to describe and interpret experimental data
and with it provide theoretical guidance for the device
optimization. We show that the superconducting correla-
tions and Josephson current in hybrid multilayered struc-
tures (cf. Fig. 1) can be controlled by quasiparticle
injection, so that reversible switching between the super-
conducting and resistive states can be realized. Because
of the complexity of the system and various physical
phenomena governing the device operation, a full self-
consistent microscopic consideration of the problem
requires a numeric approach. Unfortunately, the physical
interpretation of the results obtained is not transparent, and
for this reason, we simplify the theoretical model in order to
obtain analytical solutions. Good agreement between the
simplified theory and the experimental data confirms that
our model captures the basic physics of the experimental
device.
As noted, the nonequilibrium Green’s functions [30]

describing the superconducting properties and phase-
coherent transport in the multilayered hybrid structure is
rather complex. A tractable description becomes possible
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FIG. 1. (a) The hybrid multilayer device wherein supercon-
ductivity in S2 layer and the Josephson current through the
S1I1S2F1 junction (acceptor) are controlled by injecting non-
equilibrium quasiparticles via the S2F1I2F2S3 junction (injector).
The Cooper pair amplitude ΦðxÞ (where x is the coordinate
perpendicular to the layers) is shown by the blue line; it is
discontinuous at the S2F1 and F2S3 interfaces and vanishes near
the tunneling barrier I2, leading to a suppression of the Josephson
supercurrent component inside the injector. (b) Schematic view of
the device (not to scale) and biasing used in the experiment.
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by making simplifying assumptions based on the available
experimental data. First, for the sake of convenience, we
split the whole multilayered structure into several smaller
pieces. The central part of the system is the S2F1 sandwich,
which plays two important but different roles. On one hand,
the S2F1 sandwich is the left electrode of the S2F1I2F2S3
injector junction, where one creates a nonequilibrium
distribution of quasiparticles. On the other hand, the same
S2F1 sandwich is the right electrode of the S1I1S2F1

acceptor Josephson junction, whose critical current Ica is
controlled by changing the bias current Ii (or voltage Vi)
across the injector. Second, our experimental data imply
that the Josephson current vanishes for the injector junction
at x ¼ x3 (where x is the coordinate perpendicular to the
layers); hence, Φ vanishes on both sides of the tunnel
barrier I2 due to the exchange field h in the adjacent
ferromagnetic layers F1 and F2. On the contrary, the pair
amplitude Φ2ðxÞ in S2 remains essentially unchanged when
approaching the barrier I1, but closer to the S2F1 interface
(see Fig. 1), it becomes increasingly suppressed due to the
proximity with F1.
In this work we have disregarded any effects of the

(possibly different) orientation of the magnetization of F
layers, because the available experimental data (see, e.g.,
the Ic versus H dependences reported in Refs. [25,31])
indicate a very weak or no permanent magnetic moment
orientation in our “soft” magnetic layers, unlike the
pronounced magnetization switching effects reported,
e.g., in Ref. [8] for the case of strongly magnetized F
layers. For the same reason, we neglect the effect of the
spin-polarized injection. Also, the F-layer configuration
used in the experiment is unlikely to support the triplet
superconducting correlations which require special con-
ditions to be observed. On the other hand, our model
adequately describes the experimental data without the
need to include any exotic superconducting correlations,
which justifies neglecting them in the model.
The experimental I − V curve of the injector junction

reflects two important facts which we use in building our
model. First, since the current versus voltage is linear
[25,31], we conclude that the injector current is due to the
quasiparticle excitations only, while the Josephson com-
ponent of the electric current is absent owing to the finite
exchange field h ≠ 0 of the F1 and F2 layers. Second, the
injector conductance allows us to find the tunneling
injection intensity αV, which is given by Eq. (26) below
and in Sec. 4 of the Appendix.
The basic equations of the model are derived using the

Keldysh Green’s function method [27–30], which is briefly
reviewed in Sec. 1 of the Appendix. The model is
simplified in the “dirty” limit [27,32,33] li ≪ ξi, where
the electron mean free path li in the ith layer is much
shorter than the superconducting coherence length
ξi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vFili=ð6πTciÞ

p
, where i is the layer index, vFi is

the Fermi velocity and Tci is the superconducting critical

temperature. In the dirty limit, the hybrid multilayered
stack is described in terms of Usadel equations for the
quasiclassical retarded (R) energy-integrated Green’s func-
tions GR

i and FR
i , complemented with a Boltzmann equa-

tion for the distribution function fðiÞε of nonequilibrium
electrons [30] in the ith layer (see also Sec. 4 in the
Appendix). For the sake of simplicity, we assume that the
pair amplitude Φ1 in the S1 layer is position independent,
while the coordinate dependences of Φ2ðxÞ in the S2 layer
and ΦF

1 ðxÞ in the ferromagnetic F1 layer are discussed
below. For the S2F1 sandwich, the Usadel equation for the
pair amplitude ΦiðxÞ versus coordinate x perpendicular to
layers reads

Φi ¼
πTc2

εGR
i
½ðGR

i Þ2Φ0
i�0ξ2i þ Δi; ð1Þ

where i is the layer index and ε is the energy variable. The
Cooper pair amplitudes Φi (i ¼ 1, 2 is the layer index) are
related with the retarded (R) quasiclassical Green’s func-
tions GR

i and FR
i as

GR
i ðεÞ ¼

ε

ζε
; FR

i ðεÞ ¼
GR

i Φi

ε
¼ Φi

ζε
; ð2Þ

which satisfy the Usadel equation (1), where FR
i is the

anomalous retarded function describing superconducting
correlations in the ith layer, and ζε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − ΦiΦ∗

i

p
. The

self-consistency equation is

Δ1;2 ln
T

Tc1;2
¼ 1

2

Z∞
−∞

Φ1;2GR
1;2 − Δ1;2

ε
ð1 − 2fð1;2Þε Þdε; ð3Þ

where Δ1;2 are the energy gaps of the S1;2 layers, Tc1;2 are

their critical temperatures, and fð1;2Þε are the nonequilibrium
electron distribution functions, as determined from the
corresponding Boltzmann equation as discussed in
Sec. 4 of the Appendix. According to our experimental
results, Δ2 ¼ 0.75Δ1 [31], where Δ1;2 are the local values
of superconducting energy gap in the S1;2 layers on the left
(1) and right (2) sides of the tunneling barrier I1 located at
x ¼ x1. Both Δ1;2 and Tc1;2 are strongly affected by the
nonequilibrium injection, as well as by the proximity effect
in the hybrid system, which influences the acceptor
Josephson current, since the latter depends on the electron
spectrum and critical parameters of the S2 and F1 layers.
Although the energy gap and critical temperature of the
F1;2 layers are equal to zero due to the absence of Cooper
coupling inside a ferromagnetic layer, the proximity-
induced pair amplitude ΦiðxÞ in the F1;2 layers remains
finite and dependent on the coordinate x. The Josephson
current through the S1I1S2 interface associated with the
acceptor and positioned at x ¼ x1, is

CONTROL OF SUPERCONDUCTIVITY IN A HYBRID … PHYS. REV. APPLIED 6, 024018 (2016)

024018-3



Ica ¼
σ2
2e

1

ξ2γB
Re
Z∞
−∞

GR
1G

R
2Φ1Φ∗

2

ε2
ð1 − fð1Þε − fð2Þε Þdε: ð4Þ

Here, σ2 is the conductivity of S2, f
ð1;2Þ
ε are the non-

equilibrium electron distribution functions in S1;2;

γB ¼ 2

3

l2
ξ2

�
ϒBðθBÞ cos θB
1 −ϒBðθBÞ

�−1

θ2

≈
2

3

l2
ξ2

1 −ϒB

ϒB
ð5Þ

is the parameter of the S1I1S2 interface with transparency
ϒB [whose dependence on the electron incidence angle θB
is sharp and here taken as ϒBðθBÞ ¼ ϒBδðθBÞ]; h…iθ2
implies averaging over θ2 on the S2 side in the vicinity of
the S2F1 interface; jx − x2j < ξF; ξF ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
DF

i =h
p

is the
characteristic length of the superconducting correlation
decay in the ferromagnetic layer Fi; and h and DF

i are
the exchange field and diffusion coefficient in F.
According to the experiment, in the course of the

tunneling injection we get fð1Þε ≃ fð2Þε ≠ fFε where fFε ¼
½expðε=TÞ þ 1�−1 is the equilibrium Fermi-Dirac distribu-
tion at temperature T. At the S2F1 interface, the pair
amplitudes Φ2ðxÞ in S2 and ΦF

1 in F1 satisfy the following
boundary conditions [32,33]:

p2
1l

F
1G

2
1Φ

F0
1 ¼ p2

2l2G
2
2Φ

0
2

ξ2γBG2Φ0
2 ¼ G1ðΦF

1 − Φ2Þ; ð6Þ

here, p1;2 are electron momenta in the S2 and F1 layers, lF1
and l2 is the electron mean free path in the F1 and S2 layers,
and we have omitted index R in G for brevity.
Equations (1)–(6) allow for a simplified analytical

description of superconducting correlations in the acceptor
in terms of the pair-breaking rate γ0, which adequately
describes transport properties of the S2F1 interface [27] by
taking into account the influence of the magnetic F1 layer
on the superconducting properties of the S2 layer. On one
hand, one can see that the Josephson supercurrent (4)

depends on the nonequilibrium electron distribution fð1;2Þε

in the S1;2 layers, controlled by the injector. On the other
hand, the superconducting correlations in the S2 layer are
influenced by the proximity effect between S2 and F1

layers. According to our experiment, in the absence of
quasiparticle injection there is a finite energy gap Δ2 ≠ 0
(specifically, Δ2 ¼ 0.75Δ1, where Δ1 ¼ 1.2 meV) in the
electron excitation spectrum of the S2 layer. The gap in the
S2 layer is only slightly suppressed (by about 25%
compared to the S1 value) mainly due to interaction with
the adjacent magnetic F1 layer. In addition, our experiment
suggests that the transparency ϒB of the S1IS2 interface
positioned at x ¼ x1 is quite low, whereas the other S2F1

interface (located at x ¼ x2) is relatively transparent.
Therefore, for the sake of simplicity, we assume that Δ1

is coordinate independent, whereas the coordinate depend-
ence of Δ2ðxÞ in the region x1 < x < x2 is relatively weak
(except the vicinity of the S2F1 interface) and is considered
below. Furthermore, an almost perfect linearity of the
injector I − V curve indicates that despite the fact that
the ferromagnetic layers F1;2 are quite thin (dF ≪ ξ2), the
superconducting correlations in F vanish completely due to
the presence of an exchange field h ≠ 0. A natural
explanation to these experimental facts is that the coor-
dinate dependence of Δ2ðxÞ is smooth in S2, while at the
S2F1 interface Δ2ðxÞ is sharply reduced, and vanishes
inside F1, because the Cooper coupling does not exist in the
F layers.
It is convenient to take into account the influence of the

proximity effect in the S2F1 sandwich on the Josephson
critical current of the S1IS2 junction by introducing the
pair-breaking rate γ0, as suggested in Ref. [27]. In other
words, we treat the effect of the ferromagnetic layer as an
effective boundary condition. This approximation allows
for taking into account the mutual influence of the S2 and
F1 layers originating from the nonlocality of the Cooper
pairs in S2 on one hand, and the presence of spin-polarized
electrons in F2 on the other hand, thereby enabling a
simplification of the description of the Josephson effect in
the acceptor, affected by the nonequilibrium and proximity
effects. Furthermore, for the sake of simplicity, we dis-
regard the effect of the nonequilibrium spin injection into
the acceptor, i.e., we assume that in the acceptor region, the
nonequilibrium electron excitations are not spin polarized.
The latter assumption is justified by the fact that the
experimental data considered here do not manifest effects
which may be associated with the injection of spin-
polarized excitations, as is mentioned above.
First, taking into account that Δ2 ≠ 0, we approximate

the anomalous function by

FR
2 ðxÞ ¼ G2

Φ2

ε
¼ Δ2

ζð0Þε

�
1 − βε

2
ðx − x1Þ2

�
; ð7Þ

where we assume that the spatial variation parameter

βε ≪ 1, ζð0Þε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − Δ2

2

p
is the “kinetic energy” and

βε ¼ γ0
2Δ2

ðζð0Þε Þ2
1

d2S
; ð8Þ

where dS2 ¼ x2 − x1 is the thickness of S2 layer. The pair-
breaking rate γ0 is introduced via the equality

FR
2 ðx ¼ x2Þ ¼

Δ2

ζε
; ð9Þ

where ζε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − ðΔ2 þ γ0Þ2

p
.Using Eqs. (7) and (9), one

obtains
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Δ2

ζε
¼ Δ2

ζð0Þε

�
1 − βε

2
d2S2

�
; ð10Þ

thereby establishing a connection between γ0 and βε in the
form

γðþÞ
0 ≃ βε

ðζð0Þε Þ2
Δ2

d2S2
2

;

γð−Þ0 ≃− 2Δðζð0Þε Þ2
ε2 − 2Δ2

2

− γðþÞ
0 : ð11Þ

We emphasize that the definition of the pair-breaking
rate γ0 is different from that in Ref. [27], since we take into
account the finite value of Δ2 ≠ 0 in S2.
The value of γ0 is deduced from the boundary conditions

at the S2F1 interface. Taking into account that

Φ2ðxÞ ¼ Δ2

�
1 − βε

2
ðx − x1Þ2

�
;

Φ0
2ðxÞ ¼ −Δ2βεðx − x1Þ;

Φ0
2ðx2Þ

Φ2ðx2Þ
¼ −Δ2βεdS2

Δ2ð1 − βε
2
d2S2Þ

¼ − βεdS2
1 − βε

2
d2S2

≃−βεdS2; ð12Þ

we conclude that γ0 is directly related to the logarithmic
derivative of Φ2ðxÞ at the interface x ¼ x2:

Φ0
2ðx2Þ

Φ2ðx2Þ
≃−βεdS2 ¼ −γ0 2Δ

dS2ðζð0Þε Þ2
: ð13Þ

Using for the S2F1 interface the boundary conditions in
the form of Eq. (6), we obtain

Φ0
2 ¼

p2
1l

F
1G

2
1

p2
2l2G

2
2

ΦF0
1 ¼ σF1

σ2
ΦF0

1

Φ2 ¼ ΦF
1 − ξ2γ

F
B
p2
1l

F
1G1

p2
2l2G2

ΦF0
1 ¼ ΦF

1 − ξnγ
F
BΦ

F0
1 ; ð14Þ

where

γFB ¼ 2

3

lF1
ξF1

1 −ϒF
B

ϒF
B

ð15Þ

is the parameter of the S2F1 interface with transparency
S2F1; lF1 is the electron mean free path in F1; σF1 and σ2
are the electric conductivities of the ferromagnetic
layer F1 and the superconducting layer S2, respectively;
ΦF0

1 ¼ ∂ΦF
1 =∂x; and following Ref. [27], in analogy with

the superconducting coherence length ξi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di=ð2πTcÞ

p
(where Di ¼ vFili=3 is the diffusion coefficient in the
ith layer), we introduced the normal metal coherence
length ξn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF

i =ð2πTciÞ
p

, where DF
i is the diffusion

coefficient in a ferromagnetic layer. Equations (13)
and (14) also give

γ0 ¼ − dS2ðζð0Þε Þ2
2Δ2

Φ0
2ðx2Þ

Φ2ðx2Þ

¼ − dS2ðζð0Þε Þ2
2Δ2

σF1
σ2

ΦF0
1 ðx2Þ

ΦF
1 ðx2Þ − ξnγBΦF0

1 ðx2Þ
: ð16Þ

The pair-breaking rate γ0 is readily computed using the
explicit form ofΦF

1 ðxÞ andΦF0
1 ðxÞ, found as solutions of the

Usadel equation. Here, we use the established experimental
fact that the superconducting correlations vanish com-
pletely across the F1I2F2 interface, which automatically
means that ΦF

1 is small inside the F1 and F2 layers. Then,
the linearized Usadel equation represents a good approxi-
mation for this case. Therefore, for the sake of convenience,
we use the linearized Usadel equation [27] on ΦF

1 ðxÞ,
considering that, in the F layers, ΦF

1 ðxÞ is energy inde-
pendent, and FR

1;2 ¼ ΦF
1;2=ε. In the vicinity of the S2F1

interface (i.e., for jx − x2j < ξF), the linearized Usadel
equation at x > x2 takes the form

ih sngðεÞΦF
1 −DF

1

2
ΦF00

1 ¼ 0. ð17Þ

At ε > 0, the decaying solution of Eq. (17) takes the
form [27]

ΦF
1 ðxÞ ¼ A sinh

�
− iþ 1

ξF
ðx − x2Þ

�
þ B;

ΦF0
1 ðxÞ ¼ − iþ 1

ξF
A cosh

�
− iþ 1

ξF
ðx − x2Þ

�
; ð18Þ

where coefficients A and B are obtained from the boundary
conditions (6). For the highly transparent S2F1 interface,
taking into account Eq. (8), and provided that dS2=ξn ≫ 1

and γ−1B ≫ 1, we obtain the parameter of the S2F1 interface

βε ¼
1

γFB

ς

dS2ξn

σF1
σ2

; ð19Þ

where ς≃ 1. Substituting Eq. (19) into Eq. (11), we find
the sought pair-breaking rate γ0.
The above formulas are used to study the critical

parameters of the S2 layer and the Josephson current in
the acceptor junction versus the combined influence of the
proximity effect with the ferromagnetic layer F1 on one
hand, and tunneling injection of nonequilibrium excitations
on the other hand. In addition, the nonequilibrium effects
due to the reabsorption of phonons can also affect the
superconductivity of the S1 layer, where the proximity-
induced magnetization is negligible. Therefore, the present
model includes the proximity effect between the S2 and F1
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layers, whereas the change of superconductivity owing to
the nonequilibrium tunneling injection is considered in
both the S1 and S2 layers.
Depending on the intensity of the quasiparticle injection,

one can define two regimes of the nonequilibrium state,
characterized by two different instabilities [13]. These are
created by two different types of the nonequilibrium
sources, which are distinguished by a parameter ~δ ¼
ðVi − 2ΔÞ=2Δ, where Vi is the bias voltage across the
injector. One is the so-called threshold instability, realized
in the “narrow-band” source regime for which ~δ ≪ 1, while
the other is realized in the “broadband” source regime, for
which ~δ ≫ 1. Both types of instabilities will be discussed
below. In our particular experiment (see the black squares
and red circles in Fig. 4), a strong suppression of the
acceptor critical supercurrent occurs when the bias voltage
across the injector reaches Vi ¼ Vb

th ≈ 3.5 mV, which,
according to Ref. [13], corresponds to the “broad” source
of nonequilibrium injection. Therefore, in the current
experimental system, the injector represents a “broad”
source of quasiparticles, characterized by a “threshold”
voltage Vb

th (see I − V curves of the injector junction
reported in Fig. 5 of Ref. [31]). In the experiment, the
magnitude of Vb

th depends on the device parameters and
corresponds to the values of Vi at which both Δ1;2ðβεÞ and
critical current Ica are strongly suppressed, but remain
finite. In our theoretical model, for the sake of convenience,
we define Vb

th as being equal to the values of Vi at which
both Δ1;2ðβεÞ and Ica vanish. By biasing the injector
junction up to a sufficiently high voltage Vi ≥ Vb

th, one
can control the superconducting state by creating the
nonequilibrium conditions. In particular, exceeding a criti-
cal concentration of the injected quasiparticles at Vi ≥ Vb

th
results in switching of the acceptor junction into the
resistive state (in a practical situation, the acceptor could
be prebiased at some current below Ica; a current pulse
arriving at the injector junction would switch the acceptor
junction into the resistive state). The model assumptions
about the broad and narrow injection sources make the
problem solvable analytically, which is very useful for
critical analysis and modeling of the complex system under
consideration. In Secs. 5 and 6 of the Appendix we describe
the numeric procedure that allows us to compute Vb

th versus
parameters of the hybrid multilayered device.
Using the pair-breaking rate approximation, we obtain

the critical Josephson current of the acceptor in the form

Ica ¼
σ2Δ1ðViÞΔ2ðViÞ

2eξ2γB
Re
Z∞
−∞

1

ζ1ðε; ViÞ
1

ζ2ðε; ViÞ

× ð1 − fð1Þε − fð2Þε Þdε; ð20Þ
where fð1;2Þε are the nonequilibrium electron distribution
functions in the S1;2 layers, ζ1ðε; VÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − Δ2

1ðViÞ
p

,

Δ1;2ðViÞ are the superconducting energy gap in the S1;2
layers, and

ζ2ðε; ViÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −

�
Δ2ðViÞ − α2

ζ2ε
Δ2ðViÞ

�
2

s
; ð21Þ

where

α2 ¼
σF1
σ2

dS2
ξn

1

2γB
; ð22Þ

with σF1 and σ2 the electric conductivities of the ferromag-
netic layer F1 and the superconducting layer S2, respec-
tively. Equations (20) and (21) describe the nonequilibrium
proximity effect, acting between the superconducting and
ferromagnetic layers under the condition of quasiparticle
injection; its influence on the Josephson current of acceptor
junction has, to our knowledge, not been discussed pre-
viously in the literature.
In Eqs. (20) and (21), both the energy gaps Δ1ðViÞ and

Δ2ðViÞ in the S1 and S2 layers explicitly depend on the bias
voltage Vi across the injector. This dependence originates
from nonequilibrium effects caused by tunneling of quasi-
particle excitations supplied from the injector according to
Fig. 1. Under the conditions of our experiment, the injector
represents a broad source with a threshold voltage Vb

th ≈
3.5 mV supplying the nonequilibrium quasiparticles into
the S1IS2 junction (see Fig. 1). The injected quasiparticles
fill empty electron states in its electrodes, thereby weak-
ening the Cooper coupling and inhibiting the phase-
coherent correlations. This results in suppression of the
superconducting gaps Δ1ð2ÞðViÞ and the critical super-
current IcaðViÞ of the acceptor. Therefore, by creating
the nonequilibrium conditions we control the supercon-
ducting state by changing the magnitudes of Δ1ð2ÞðViÞ.
In the absence of the proximity effect between S and F,

the nonequilibrium suppression of the superconductivity in
a tunnel junction has been considered previously in the
literature [13,15–19]. In the present work, we use a similar
approach based on the Boltzmann equation for the non-

equilibrium distribution function fð1;2Þε [28–30] in the S1;2
layers, in order to describe the proximity effect in an SF
bilayer under nonequilibrium conditions.

IV. NONEQUILIBRIUM SUPPRESSION OF THE
SUPERCONDUCTING CORRELATIONS IN

HYBRID MULTILAYERS

The calculated results for Δ2ðViÞ are shown in Fig. 2(a),
where we assume that the nonequilibrium source is “broad”
[i.e., considerable suppression of Δ2 occurs when the
injector junction is biased at a voltage considerably larger
than Vi ¼ ðΔ2 þ Δ3Þ=e; this case is realized in our experi-
ment]. The dependence of Δ1ðViÞ is similar to Δ2ðViÞ, but
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the magnitude of Δ1 is larger, Δ1 > Δ2. One can conclude
from the Δ2ðViÞ plot that the superconducting energy gap
in the S2 layer of acceptor region is abruptly suppressed
after the bias voltage Vi exceeds a threshold value
Vb
th ≈ 3–4 mV. Furthermore, from Eq. (20) one can

immediately see that the Josephson current of the acceptor
junction is sensitive not only to the Δ2ðViÞ dependence, but
also explicitly depends on the shape of fð1;2Þε obtained by
solving the Boltzmann equation discussed in Secs. 4–6 of
the Appendix. Similar Boltzmann equations had been
derived and solved in a number of studies (see, e.g.,
Refs. [13,17,18,20], and references therein). The S1I1S2
interface transparency ϒB (i.e., the acceptor junction trans-
parency), enters via γB [see Eq. (5)]. For the particular
conditions of our experiment, the nonequilibrium distribu-

tion function fð1;2Þε allows us to write the critical Josephson
current in a tractable form

Ica ¼
σ2

2eξ2γB

2Δ1ðViÞΔ2ðViÞ
iðα2 − iÞχV

× F

�
csc−1

�
Δ1

χV

�
j
				 ð2iα2 þ 1Þ
ðα2 − iÞ2

Δ2
1

χ2V

				
�
; ð23Þ

where χV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1ðViÞ − Δ2
2ðViÞ

p
, csc−1ðzÞ involves the

complex number z, FðφjmÞ is the elliptic integral of the
first kind, and α2 is defined by Eq. (22). Equation (23)
has been obtained by approximating the electron

distribution functions as fð1;2Þε ¼ fFε þ δfε with δfε ¼
f0Γe=½ðε − ΔÞ2 þ Γ2

e�; the magnitude f0 and width Γe
are computed by solving the Boltzmann equation as
described in Appendix (see Secs. 4–6).
The IcaðViÞ dependence calculated according to Eq. (20)

is shown in Fig. 2(b). Here, Ica is the critical Josephson
current through the S1I1S2F1 acceptor junction, and Vi is
the bias voltage applied across the S2F1IF2S3 injector

junction. For the calculations we use experimental param-
eters for one of our devices as follows: the normal-state
specific tunnel resistance of the injector RTðiÞ ¼ 1.7 μΩcm2;
injector area Ai ¼ 8 × 6 μm2; and the corresponding
parameters for the acceptor RTðaÞ ¼ 0.15 μΩ cm2 and
Ai ¼ 8 × 8.5 μm2. The device has a 42-nm-thick S2 (Nb)
layer, a 2.7-nm-thick F1 (Ni) layer, and a 6.7-nm-thick F2

(Ni) layer. One can see from Fig. 2(b) that IcaðViÞ sharply
drops to zero after the bias voltage on the injector exceeds
the threshold value Vb

th ≈ 3.5 mV. Such a sudden drop of
the acceptor critical current is caused by two factors: (i) the
immediate suppression of Ica due to excessive population
of the electron states by the nonequilibrium quasiparticles
that tunnel from the injector, and (ii) the suppression of the
superconductivity in the whole acceptor region, represent-
ing a dominant effect. Figure 2(c) shows the “small-signal”
gain δIca=δIi versus the bias voltage Vi for different phonon
escape rates γph, characterizing the loss of phonons from
the film into the substrate. The nonequilibrium part δNω of

the phonon distribution function Nω ¼ Nð0Þ
ω þ δNω [where

Nð0Þ
ω ¼ 1=(expðω=TÞ − 1)] has a narrow maximum at

ω ¼ 2Δ (see Refs. [13,28,30]), and is analytically approxi-
mated as δNω ¼ N0γeff=½ðω − 2ΔÞ2 þ γ2eff �, where γeff ¼
γPE þ γPX is an effective width of δNω, γPE ¼ ℏ=τPE ≃
0.2 meV is the phonon-electron relaxation rate, τPE is the
phonon-electron relaxation time, γPX ¼ ℏ=τPX, where for
our setup the phonon escape time is about τPX ¼ 10−11 s,

and we use N0 ¼ 0.3Nð0Þ
ω .

The numerically computed dependence of the threshold
voltage V th versus RTðiÞ=RTðaÞ is shown in Fig. 3. The
influence of the nonequilibrium injection on the critical
current of the acceptor, which is determined by the
magnitude of the energy gap Δ1;2 of the S1;2 layers, is
described by the self-consistency equation (A36). The
dependence of the threshold voltage V th versus the ratio
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FIG. 2. (a) The dependence of the superconducting energy gap Δ2 versus the bias voltage Vi applied across the S2F1IF2S3 injector
junction for different magnitudes of the threshold voltage Vb

th. Curves 1 to 3 correspond to V
b
th ¼ 3 mV, 3.5 mV, and 4 mV, respectively.

(b) Suppression of the critical current of the S1I1S2F1 acceptor junction versus Vi for different values of the pair-breaking parameter
αV ¼ 0.025, 0.8, and 1.2 (curves from top to bottom, respectively). The critical current IcaðViÞ drops abruptly when the bias voltage
across the injector reaches its threshold value Vi ¼ Vb

th ≈ 3.5 mV. (c) The small-signal gain δIca=δIi versus the bias voltage Vi for
different phonon escape rates γph. Curves from 1 to 3 correspond to γph ¼ 0.05Δ, 0.15Δ, and 0.3Δ, respectively. Junction parameters are
given in the text.
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of the injector and acceptor resistances V thðRTðiÞ=RTðaÞÞ is
computed solving the self-consistency equation (A36). To
deduce the dependence V thðRTðiÞ=RTðaÞÞ for arbitrary
RTðiÞ=RTðaÞ, which encompasses both the narrow and broad
sources, we have used the nonequilibrium electron distri-
bution function fε obtained by solving the Boltzmann
equation (A19) numerically as described in Secs. 5 and 6 of
the Appendix. As a zero-order input for the iterative
scheme we use the relaxation time approximation (RTA)
expression (A35). The numeric solutions obtained of
Eq. (A36) determine the threshold instability, occurring
at certain values of Vi, corresponding to V th at which Δ1;2

vanish; the magnitude of Vi depends on the resistance of
the injector RTðiÞ, and the thicknesses of the S1;2 layers,
provided that all the other parameters of the device
are fixed.
The model described is used for fitting the experimental

IcaðIiÞ dependence measured at 4.2 K for the hybrid

multilayered Nbð1Þ=Al=AlOx=Nbð2Þ=Nið1Þ=Al=AlOx=Nið2Þ=
Nbð3Þ three-terminal SFT devices [31] (see Fig. 4).
The Josephson critical current density of the acceptor
junction in the particular experimental device is
8.9 kA=cm2, and the ratio of the specific tunneling
resistances for the injector and acceptor junctions
RTðiÞ=RTðaÞ ¼ 11.6. The experimental Ica versus Ii depend-
ence is deduced from the IcaðHÞ dependences taken at
different levels of the injection current Ii; the squares in
Fig. 4 correspond to maximum values of Ica in the IcaðHÞ
dependences (such Ica values do not necessarily correspond
to Ica at H ¼ 0). The maximum small-signal current gain,
δIca=δIi, observed for this device, is 4. These experimental
data are used to compute the theoretical dependences. Black
squares and the black line in Fig. 4 show, respectively,
experimental and theoretical dependences of the critical
current of the acceptor Ica versus injection current Ii. The
red dashed line and the red circles show corresponding
dependence of the gain δIca=δIi. Note the relatively good
agreement between the experimental data and the theory.

V. STRATEGIES FOR IMPROVING THE GAIN

There are several possible strategies to improve the gain
of the SFT devices. Two of these involve the nonequili-
brium effects caused by quasiparticle injection, and the
influence of the proximity effect in the S2F1 sandwich. In
addressing these it is important to maintain a high value of
the steady-state critical supercurrent Ica of the acceptor,
which is diminished owing to the inverse proximity effect
between the S2 and F2 layers.
Along with a straightforward increase of the magnitude

of Ica, which is accomplished by increasing the acceptor
transparency ϒB (in the experiment we can increase ϒB by
a factor of 2.5, or even more), the gain can also be improved
by a proper tuning of the balance between the nonequili-
brium effects on one hand, and the proximity effect in the
S2F1 bilayer on the other. According to the plots in Fig. 4,
the slope of the IcaðViÞ curve at the injector bias voltage
Vi ¼ Vb

th determines the gain of the hybrid multilayer.
Physically, the slope of the IcaðViÞ curve for the hybrid
multilayered device [see Figs. 2(b) and 4] is mostly
governed by the excess population of the nonequilibrium
quasiparticles which are injected into the S2 layer (see
Fig. 1). This excess population causes a drastic suppression
of the superconducting correlations in the acceptor region,
which in turn suppresses the critical current Ica of the
acceptor. Therefore, in order to achieve the highest gain,
the current-induced suppression of the superconductivity in
the S1 and S2 layers must be made as sharp as possible.
It follows from some theoretical estimates [15] and from

the experiment [31] that the gain of the double-barrier
quasiparticle-injection devices is higher if the transparency
of the acceptor junction ϒB is higher than that of the
injector junction ϒinj. This is illustrated in Fig. 5, where we
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FIG. 3. Dependence of the threshold voltage V th versus
RTðiÞ=RTðaÞ for kBT ¼ 0.7Δ.
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compare the experimental dependence of maximum gain
jδIca=δIij versus RTðiÞ=RTðaÞ obtained for four devices
(squares) with the theoretically calculated dependence
using the model developed here (shown as the line). The
experimental data are obtained by averaging the gain
values for two opposite directions of the injector current
Ii. The theoretical curve is obtained using a fixed
normal-state specific tunnel resistance of the injector of
RTðiÞ ¼ 1.7 μΩ cm2, an injector area of Ai ¼ 8 × 6 μm2,
and an acceptor area of Ai ¼ 8 × 8.5 μm2. The acceptor
specific tunnel resistance RTðaÞ is varied between 0.085
and 1.7 μΩ cm2.
The nonequilibrium effects in the acceptor region are

enhanced when the quasiparticle-injection rate from an
external source (i.e., the injector junction in our device) is
increased, and simultaneously, the energy drain from the S2
layer into the outside environment is decreased. A narrow-
band source injects quasiparticles in a narrow energy
interval Vi − 2Δ ≪ 2Δ, so that the quasiparticles appear
localized near ε ∼ Δ. The localized nature of the electron
distribution function fε allows for defining a universal
relation between Δ and the concentration of nonequili-
brium quasiparticles f̄ε ¼

R∞
0 gðεÞfεdε, where gðεÞ is the

electron density of states. Low energies ε ∼ Δ1;2 of electron
excitations cause the main contribution to Eq. (3), thereby
determining steepness of the Δ1;2ðViÞ dependence. In the
stability of the then on equilibrium state, created by a
“narrow source” of quasiparticle excitations with energies
ε ∼ Δ1;2, is described using the Boltzmann equation [13].
The model of a narrow-band source is simplified by taking
into account the fact that the relaxation processes due to
the inelastic electron-phonon collisions are strongly sup-
pressed in comparison with recombination processes. For
sufficiently low temperatures T ≪ Δ=kB, the solution of

the Boltzmann equation can be obtained analytically [13].
Here, we use an analytical expression [13] for the electron
distribution function:

fz ¼ AV

ffiffiffi
z

p
θðzÞθð1 − zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zð1 − zÞp þ AVð
ffiffiffi
z

p þ ffiffiffiffiffiffiffiffiffiffiffi
1 − z

p Þ ; ð24Þ

where θðzÞ is the Heaviside step function. The coefficient
AV in Eq. (24) satisfies the following normalization
condition:

A2
V

Z
1

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp þ AVð

ffiffiffi
z

p þ ffiffiffiffiffiffiffiffiffiffiffi
1 − z

p Þ ¼
αV

4
ffiffiffi
~δ

p ; ð25Þ

where

z ¼ ε − Δ
Δ~δ

¼ 2
ε − Δ

Vi − 2Δ
; ~δ ¼ Vi − 2Δ

2Δ
;

fz ¼ fðzÞ; αV ¼ 2σinjτEP
dS2e2gð0Þ

; ð26Þ

τEP is the electron-phonon relaxation time (see Sec. 4 of
the Appendix), dS2 is the thickness of the S2 layer, and gð0Þ
is the electron density of states at the Fermi level; the layer
indices are omitted in Eq. (26). The injector conductivity
σinj, which enters Eq. (26), is

σinj ¼ σ0ϒinj; ð27Þ

where σ0 ¼ 2e2g2ð0ÞvF2, and the effective transparency of
the injector ϒinj is computed in Sec. 4 of the Appendix.
Knowledge of the nonequilibrium electron distribution
function fz given by Eq. (24) allows us to compute the
gain δIca=δIi of the hybrid SFT device for a narrow-source
operation mode.
In our experimental device, the injector works as a broad

nonequilibrium quasiparticle source (for which Vb
th >

2Δ1;2=e), which is not optimal for achieving the maximal
gain. According to our calculations, considerably higher
gains can be achieved in the narrow-source mode of
operation, which requires the threshold voltage Vn

th to be
close to the gap-sum voltage. The nonequilibrium insta-
bility mechanisms for the broad and narrow sources are
different from each other, and are described using different
models [13]. Therefore, the voltage dependences of the
energy gaps Δ1;2ðViÞ versus the bias voltage Vi across the
injector are different for the two cases, and generally
Vn
th ≠ Vb

th, Vn
th ≪ Vb

th. A straightforward way to make
Vn
th lower is to increase the injector transparency ϒinj,

computed in Secs. 4–6 of the Appendix. This is illustrated
in Fig 6. Figure 6(a) shows the calculated energy gap Δ2 of
the S2 layer (normalized to its value at Ii ¼ 0) versus the
injector current Ii, and the corresponding current gain,
jδIca=δIij(Ii). The parameters of the device used to
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FIG. 5. Dependence of the gain jδIca=δIij versus the ratio of
specific tunneling resistances of the injector RTðiÞ and acceptor
RTðaÞ junctions in units of RTðiÞ=Rmax

TðaÞ with Rmax
TðaÞ ¼ 1.7 μΩ cm2.

Squares, experimental data for four different devices; blue line,
theoretical fit. See text for details.
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calculate these dependences are taken from the experiment
(cf. Fig. 4). One obtains a maximum gain of about 4.
For a projected device working in the narrow-source

regime, a much higher current gain can be obtained [see
Fig. 6(b)]. In this figure, we plot the energy gap Δ2 and the
corresponding gain jδIca=δIij versus the normalized bias
voltage Vi. The gain rapidly grows when Vi approaches the
back-bending point of the Δ2ðViÞ dependence.
The Δ2ðViÞ dependence is analytically deduced using

the self-consistency equation (3) for the energy gap, from
which one obtains [13]

Δð0;�Þ
2 ¼

"
0;

φ

2α

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4αδ

φ2

s !#
: ð28Þ

In Eq. (28), α≃ 1, δ ¼ ða − acÞ=ac,

a ¼
Z

∞

Δ2

fð0Þε
ε

ε2 − Δ2
2

dε; ac ¼
Z

∞

0

fð0Þε
dε
ε
; ð29Þ

and φ is a measure of nonequilibrium effect

φ ¼ π

a

Z
∞

Δ2

½fεfΔ2
− NεþΔ2

ð1 − fε − fΔ2
Þ� dεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 − Δ2
2

p ;

ð30Þ

whereNω is the phonon distribution function, which should
be obtained from a corresponding Boltzmann equation
for phonons; however, here we use an approximation

Nω ≈ Nð0Þ
ω , where Nð0Þ

ω ¼ 1=ðeω=kBT − 1Þ. In the limiting
case ε − Δ2 ≪ Δ2 and NεþΔ ≃ 0, one finds φ≃
ðπ=2Δð0Þ

2 Þ lnðΔð0Þ
2 =Δ2Þ, where Δð0Þ

2 is the steady-state
energy gap in the absence of injection. Mathematically,
Eq. (28) is a nonlinear equation in Δ2ðViÞ provided that the
above conditions are observed. The � signs in Eq. (28)
correspond to an increase or decrease of Δ2ðViÞ near the
threshold bias voltage Vi ¼ Vn

th matching the threshold

value of the pumped power Wn
th achieved when ΔðViÞ

sharply decreases. From Fig. 6(a) one can see that the
broad-source case corresponds to a fairly gradual change
of Δ2ðViÞ.
For the narrow source, when the bias voltage on the

injector is in the range 1.4Δ=e < Vi < Vn
th, multiple values

of the energy gap Δ0;� occur in the S2 layer [see Fig. 6(b)]
(28). The lower Δ− branch of ΔðViÞ [see the blue dash-
doted line in Fig. 6(b)] is unstable, while the upper Δ0 and
Δþ branches are metastable. According to general proper-
ties of the Boltzmann equation for fε, the whole system
experiences a transition from an initial state with Δþ into
the another state with Δ0 ≡ 0. In the absence of large
fluctuations, the switching to the resistive state takes place
when Vi reaches Vn

th.
The gain δIca=δIi is determined by the coupling energy δ

between the acceptor and injector [34,35], which is defined
as a difference between the Josephson energy Eia [36] of
the whole multilayered structure (involving the injector and
acceptor) and the sum of Josephson energies Ei þ Ea of the
noninteracting injector (i) and acceptor (a) junctions. In this
case, the maximum gain magnitude is obtained when δ is
minimized. By decreasing the thickness of the S2 layer
from 30–45 nm (in the present experimental devices) down
to 8–10 nm, and simultaneously increasing the acceptor
transparencyϒB by a factor of 3 or so (i.e., from the present
junction transparency ϒB ¼ 8.5 × 10−6 to a higher trans-
parency ϒB ¼ 2.5 × 10−5), one can obtain the coupling
δ ∼ 10−2Δ, which yields δIca=δIi ≃ Δ=δ ∼ 102.
A qualitative picture of the threshold instability taking

place in the narrow-source regime is as follows. Assume
that initially ΔðViÞ ¼ Δþ [upper branch; solid black curve
in Fig. 6(a)], and Vi ≪ 2Δþ. Then, fluctuations of the
nonequilibrium quasiparticle concentration f̄ ¼ R gðεÞfεdε
[here gðεÞ is the tunneling density of electron states] lead to
a decrease in ΔðViÞ and, therefore, to an increase in the
width of the source, proportional to Vi − 2ΔðViÞ, which in
turn increases f̄, and so on.
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FIG. 6. (a) The dependence of the normalized energy gap Δ2 in the S2 layer and the corresponding gain jδIca=δIij, versus the bias
current through the injector for the broad source. (b) The same gap versus the bias voltage across the injector for the narrow source.
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Another way to improve the gain follows from our
theoretical model, which suggests that the gain of the
SFT device can be improved from ∼6 [see blue curve 3 in
Fig. 2(c) corresponding to γph ¼ 0.3Δ] to ∼11 [black curve
1 in the same Fig. 2(c) corresponding to γph ¼ 0.05Δ]; this
can be accomplished, e.g., by inserting a thin metal film
with a different acoustic impedance [37] beneath the hybrid
multilayer.
Further enhancement of the nonequilibrium effects and

reduction of the threshold voltage can be realized by
decreasing the thickness dS2 of the S2 layer, thereby
increasing the energy density pumped by the injector
into the S2 layer. Assuming that the nonequilibrium
distribution function remains homogeneous inside the S2
film, we represent the absorbed power threshold Wth as
Wth ∝ βthðTÞdS2, which suggests thatWth can be decreased
by using thinner films with smaller dS2. For instance, a
threefold reduction of the thickness dS2 of the S2 layer gives
a threefold reduction in the threshold power, which enables
the injector to work in the narrow nonequilibrium source
regime.

VI. CONCLUSIONS

We have formulated a tractable analytical model
of a multilayered superconductor-ferromagnetic structure
which functions as a superconducting-ferromagnetic tran-
sistor, whose superconducting properties and phase-
coherent transport are controlled by the tunneling injection
of nonequilibrium quasiparticles. In addition to the tunnel-
ing injection, the proximity effect between the supercon-
ducting and magnetic layer is also responsible for
suppression of the superconductivity in themiddle electrode
shared by the injector and acceptor junctions. The second
factor depends on the interface transparencies, which are
closely related to the magnitude of the pair-breaking rate.
The combined influence of the inverse proximity effect

between the superconducting and ferromagnetic layers, on
one hand, and nonequilibrium quasiparticle injection on the
other, may result in a high amplification factor δIca=δIi.
The proposed theoretical model establishes a physical
framework for optimization of the device performance.
Detailed comparison of the calculated values for the

suppression of the superconducting correlations in the
acceptor with the corresponding experimental data
obtained for our SFT devices shows good agreement
between the experiment and the model. A remarkable
result for the narrow-source regime is that the dependence
of the energy gap in the S2 layer versus the bias voltage
across the S2F1I2F2S3 injector becomes much steeper
when approaching the threshold voltage V th. We expect
that in this case the current gain δIca=δIi can be improved
by approximately 2 orders of magnitude as compared to the
value obtained for the broad nonequilibrium source regime.
Therefore, we conclude that multilayered superconductor-
ferromagnetic devices have great potential for applications

in the next-generation energy-efficient digital and memory
circuits.
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APPENDIX SUPPLEMENTAL INFORMATION

1. Basic equations

The Usadel equation for the pair amplitude versus
coordinate x perpendicular to layers is derived using the
Keldysh technique. The basic equations are obtained for the
quasiclassical functions integrated over the electron kinetic
energy. Since we consider a nonequilibrium system, we use
a Keldysh framework of the quasiclassical theory, where
the fundamental quantity is the momentum average of the
quasiclassical Green’s function Gðx; εÞ ¼ hGðpF; x; εÞipF

.
Here, x is the coordinate normal to the S=F interfaces and ε
is a quasiparticle energy, and h…ipF

means averaging over
directions of the electron momentum. The reduction to the
“dirty” limit is performed for the Keldysh Green’s func-
tions. The Usadel equation in the 4×4 Keldysh-Nambu
space reads

D∂̆xfĞðε; xÞ½∂̆xĞðε; xÞ�g ¼ ½−iετ̆3 þ Δ̆þ Σ̆; Ğðε; xÞ�;
ðA1Þ

where ½A; B� ¼ AB − BA and the product means a con-
volution in the nonstationary case, which is reduced to a
conventional product in the stationary nonequilibrium case
and the self-energy Σ̆ takes into account the electron-
phonon and electron-electron interactions. The matrix
structure is as follows:

Ğ ¼
�
ĜR ĜK

0 ĜA

�
; Ĝ ¼

�
G F

F† G†

�
;

Σ̆ ¼
�
Σ̂R Σ̂K

0 Σ̂A

�
; ðA2Þ

τ3 ¼
�
τ̂3 0

0 τ̂3

�
; Δ̆ ¼

�
Δ̂ 0

0 Δ̂

�
; Δ̂ ¼

�
0 Δ
Δ∗ 0

�
:

ðA3Þ

Although the Keldysh technique also works for time-
dependent systems, we consider the simplest case of a
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stationary nonequilibrium problem. The normalization
condition takes the form Ğ Ğ ¼ 1; in terms of the compo-
nents it implies ĜRĜR¼ĜAĜA¼1, and ĜRĜKþĜKĜA¼0.
The second relation means that ĜK can be parametrized
using the matrix “distribution function” f̂ as

ĜK ¼ ĜRf̂ − f̂ĜA: ðA4Þ

From the retarded (i.e., upper left) component of the
Keldysh-Usadel equation (A1) we obtain the Usadel
equation in the form

D∂̂x½ĜRð∂̂xĜ
RÞ� ¼ ½−iετ̂3 þ Δ̂þ Σ̂R; ĜRðε; xÞ�: ðA5Þ

Instead of using the anomalous Green’s function FR, it is
convenient to introduce the pair amplitude Φ using the
relation FR ¼ GRΦ=ε. Then, from Eq. (A5) one arrives to
Eq. (1) used to describe the proximity effect between the
superconducting S2 and ferromagnet F1 layers in the S2F1

sandwich.
From the Keldysh component (i.e., upper right) of

the Keldysh-Usadel equation (26), one obtains the
Boltzmann equation for the distribution function in the
matrix form f̂

Df∇2f̂ þ ðĜR∇ĜRÞ∇f̂ − ∇f̂ðĜA∇ĜAÞ − ∇½ĜRð∇f̂ÞĜA�g
− ðĜR½Δ̂; f̂� − ½Δ̂; f̂�ĜAÞ þ iεðĜR½f̂; τ̂3� − ½f̂; τ̂3�ĜAÞ

¼ 0. ðA6Þ

We have used the property that ĜRðAÞ satisfies the corre-
sponding components of the Usadel equation. The
Boltzmann equation has only two independent entries.
Furthermore, since it is a linear equation, we can assume
that f̂ is diagonal

f̂ ¼
�
1 − 2fε 0

0 1 − 2f̄ε

�
; ðA7Þ

where fε and f̄ε ¼ 1 − fε are the distribution functions
for electrons and holes and the energy ε is measured from
the chemical potential of the superconductor. For our
nonequilibrium hybrid multilayer system, the solution of
the Boltzmann equation is considered in Secs. IV–VI
below.

2. Josephson current

The boundary conditions (6) allow for computing
the Josephson current in the junctions of arbitrary trans-
parency. Multiplying the second equation of Eqs. (6) by
GR

2Φ
∗
2 gives

ξ2γBGR
2Φ

0
2 ¼ GR

1 ðΦ1 − Φ2Þ

½GR
2 �2Φ∗

2Φ
0
2 ¼

1

ξ2γB
ðGR

1G
R
2Φ1Φ∗

2 −GR
1G

R
2Φ2Φ∗

2Þ ðA8Þ

and using the expression for the Josephson current (4) we
get

I ¼ 2σ2π

e
Im
Z∞
−∞

i
½GR

2 �2Φ∗
2Φ

0
2

ε2
dε
4π

¼ 2σ2π

e
1

ξ2γB
Re
Z∞
−∞

ðGR
1G

R
2Φ1Φ∗

2 −GR
1G

R
2Φ2Φ∗

2Þ
1

ε2
dε
4π

¼ 2σ2π

e
1

ξ2γB
Re
Z∞
−∞

GR
1G

R
2Φ1Φ∗

2

ε2
dε
4π

; ðA9Þ

where the second term ∝ImΦ2Φ∗
2 in the parentheses

vanishes. For the anomalous retarded Green’s function
we use

FR
2 ¼ GR

2

Φ2

ε
¼ Δ2

ζε
¼ Δ2

ζ2
¼ Δ2

ζð0Þ2 ðεÞ

�
1 − βε

2
x2
�
; ðA10Þ

where ζð0Þ1;2ðεÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − Δ2

1;2

q
and

ζ1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − ½Δ1;2 þ iγ0�2

q
; ðA11Þ

here [see Eqs. (8), (11), (16), and (19)] γ0 ¼ α2ðζ2Þ2=Δ2

and βε ¼ 2α2=d2F, where we assume that thicknesses of
both the F1;2 layers are the same and equal to dF. We then
find

I ¼ 2σ2π

eξ2γB
Im
Z∞
−∞

i
Δ1

ζð0Þ1 ðεÞ
Δ2

ζ2ðεÞ
ð1 − fε − fFε Þ

dε
4π

¼ σ2Δ1Δ2

2eξ2γB
Re
Z∞
−∞

1

ζð0Þ1 ðεÞ
1

ζ2ðεÞ
ð1 − fε − fFε Þdε; ðA12Þ

where Δ2 ¼ Δ2ðV iÞ depends on the injector bias voltage
Vi, and fε is the nonequilibrium electron distribution
function fFε ¼ ½expðε=TÞ þ 1�−1. The suppression of the
superconducting energy gap Δ2 due to the inverse prox-
imity effect between the superconducting S and ferromag-
netic layers F is controlled by the parameter

α2 ¼ βω
d2F
2

¼ 1

2γB

σ1
σ2

dS2
ξn

; ðA13Þ

where dS2 is the thickness of the S2 layer, γB is defined by
Eq. (5), and σ1;2 is the normal-state conductivity of the S1;2
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layer. For a symmetric Josephson junction (i.e., in the
absence of nonequilibrium injection), at T ¼ 0 one com-
putes the integral explicitly

Z
∞

−∞
Δ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2 þ x2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔþ α2
ðΔ2þx2Þ

Δ Þ2 þ x2
q dx

¼ 2Δα2
α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 þ 1

p cot−1
�

α2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2 þ 1

p
�
: ðA14Þ

The dependence ΔðViÞ versus the bias voltage Vi is
determined by the nonequilibrium injection from the
SFIFS junction.

3. Nonsymmetric junction

The corresponding expression for a nonsymmetric case
contains the integral

INS ¼ Δ2Δ1

Z
∞

−∞
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
1 þ x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ



Δ2 þ α2

ðΔ2
2
þx2Þ
Δ2

�
2

r

¼

2

ffiffiffiffiffiffiffiffiffiffiffi
α2
2

ðα2−iÞ2
q

F

0
B@csc−1



Δ1ffiffiffiffiffiffiffiffiffi
Δ2
1
−Δ2

2

p
� ffiffiffiffiffiffiffiffi

1−Δ2
2

Δ2
1

r
Δ1ffiffiffiffiffiffiffiffiffiffiffi

Δ2
1
−Δ2

2

p
						 ð2iα2þ1ÞΔ2

1

ðα2−iÞ2ðΔ2
2
−Δ2

1
Þ

1
CA

Δ2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

2
ðΔ2

1
−Δ2

2
Þ

Δ4
1

r ffiffiffiffiffiffiffiffiffi
− α2

2

Δ2
2

r

¼ 2Δ2Δ1

iðα2 − iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − Δ2
2

p
× F

�
csc−1

�
Δ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
1 − Δ2

2

p �				
				 ð2iα2 þ 1Þ
ðα2 − iÞ2

Δ2
1

Δ2
2 − Δ2

1

				
�
;

ðA15Þ

where csc−1ðzÞ (or arccsc) gives the arc cosecant of the
complex number z and FðfjmÞ is the elliptic integral of the
first kind. If pair breaking is energy independent, one can
use a simpler formula

Δ1Δ2

Z
∞

−∞
dωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω2 þ Δ2
1Þðω2 þ Δ2

2Þ
p

¼ 2Δ1Δ2

Δ1 þ Δ2

K
�jΔ1 − Δ2j
Δ1 þ Δ2

�
: ðA16Þ

The equilibrium critical Josephson current through the
S1I1S2F1 junction is

Ið0Þc ¼ ηM
Δ1Δ2

2πeRNa

Z
∞

maxfΔ1;Δ2g

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − Δ2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − Δ2

2

p
× tanh

ε

2T
dε; ðA17Þ

where ηM takes into account the nonequilibrium effects.
The last formula suggests that the Josephson critical current
is affected by the change of Δ2 due to a combined influence
of the proximity with the F layer on one hand, and
nonequilibrium change of Δ2 on the other. In addition,
there is a direct influence of the nonequilibrium tunneling
injection on the value of Ic via the change of the electron
distribution function, as discussed below. Under equilib-
rium conditions the Josephson current flowing between the
two bulk superconductors at zero temperature is given by

Ið0Þc ¼ Δ1Δ2

eRN

Z
∞

−∞
dωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω2 þ Δ2
1Þðω2 þ Δ2

2Þ
p

¼ 2Δ1Δ2

eRNaðΔ1 þ Δ2Þ
K

�jΔ1 − Δ2j
Δ1 þ Δ2

�
; ðA18Þ

where KðkÞ is the full elliptic integral of the first kind.

4. Tunneling injection of quasiparticles

The Boltzmann equation for the electron distribution
function under the condition of the quasiparticle injection
[13,15–19] is written as

∂fε
∂t ¼ I0fHþðfFεþ − fεÞ þH−ðfFε− − fεÞ

þ ~Hð1 − fF~ε − fεÞg þ Lεffεg; ðA19Þ

where

H� ¼ ε�θðε� − ΔÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2� − Δ2

p ; ~H ¼ ~εθð~ε − ΔÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ε2 − Δ2

p : ðA20Þ

Here, ε� ¼ ε� eVi, ~ε ¼ eVi − ε, fFε ¼ ½expðε=TÞ þ 1�−1,
Δ and Vi are the gap and bias voltage of injector, and
Lεffεg is the electron-phonon collision integral, which in
the simplest case is taken in the relaxation time approxi-
mation as

Lε ¼ − fε − fFε
τEP

; ðA21Þ

where τEP is the electron-phonon collision time [13,28–30].
A more general form of Lε is considered in the next section.
In Eq. (A19) the electron distribution function in the
injector can be taken as the equilibrium one, but with
shifted energy arguments. In this model, we disregarded the
influence of the proximity effect on the electron-phonon
collision time τEP, which is small when τEPδΔ2 ≪ 1, where
the change δΔ2 of the energy gap Δ2 in the S2 layer due to
the proximity with the F1 layer; δΔ2 is estimated using
Eqs. (21) and (22) as δΔ2 ¼ α2ζ

2
ε=Δ2 ≃ 0.25Δ2 ≪ Δ2. In

the last formula, α2 ¼ σF1 dS2=ð2γBσ2ξnÞ ≪ 1 since γB ¼
2l2ð1 −ϒ2Þ=ð3ξ2ϒ2Þ ≫ 1 and the transparency of the
S2F1 interface is ϒ2 ≪ 1. The corrections to the energy
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relaxation time due to the proximity effect are minor, since
they change the energy dependence of it only slightly,
which, nevertheless, remains slow on the energy scale of
the superconducting gap. Therefore, the nonequilibrium
and magnetization effects are nearly “decoupled” from
each other and they have different impacts on the hybrid
system. The Josephson current of the acceptor junction
changes mostly due to deviation of fε from its equilibrium
value fFε . The role of the ferromagnetic layers is reduced to
one of suppressing the superconducting correlations across
the injector junction, whereas suppression of the super-
conductivity in the S2 layer due to the inverse proximity
effect with F1 is minor and leads to a 25% reduction of Δ2

in comparison with Δ1. The time derivative on the left in
Eq. (A19) is a generally accepted notation. It denotes
collision terms, which are not given in explicit form, but
which can appear in the Boltzmann equation in addition to
the electron-phonon term. These include the electron-
electron collisions, the diffusion of electrons along layers,
etc. Typically those additional terms are much smaller than
the terms describing the electron-phonon collision and
tunneling injection. The tunneling injection parameter is

I0 ¼
2ϒinjvF2

dS2
; ðA22Þ

where vF2 is the Fermi velocity, dS2 is the thickness of the
S2 layer, and ϒinj is the effective transparency of injector.
The parameter αV in Eq. (26) is then αV ¼ I0τEP. The exact
expression for ϒinj depends on details of the injector
geometry and on the interface barriers. Practically, ϒinj

is deduced from the experimental I − V curve of the
injector, while its microscopic calculation is conducted,
e.g., using the S-matrix approach [38]. From Fig. 1 the
injector has a multilayered F1I2F2I3S3 geometry, where
the ferromagnetic F1 and F2 layers are separated by the
dielectric barrier I2, while the F2 and S3 layers are
separated by another interface barrier I3, which is not
shown in Fig. 1. Nevertheless, we introduce this additional
barrier I3 in the calculation below to take into account the
finite transparency of the F2S3 interface, owing to differ-
ence of Fermi velocities in the F2 and S3 layers, and the
imperfections of the interface. Therefore, the net trans-
parency ϒinj of the whole F1I2F2I3S3 multilayer is
composed of partial transparencies of the component
barriers and layers. We compute the transmission coeffi-
cient of the whole F1I2F2I3S3 multilayer using the
coherent approximation. For this we consider the whole
injector setup shown in Fig. 1 as a composition
F1I2F2I3S3→F1I2F2⊙I2F2I3⊙F2I3S3 of three conse-
quent sections (each section of the whole setup is sketched
in Fig. 1). The whole three-step composition ŜLR ¼
ŜL⊙ŜT⊙ŜR yields the net S matrix SLR of the whole
injector. Here, ŜL, ŜT , and ŜR are the S matrices of
the fractional F1I2F2; I2F2I3, and F2I3S3 junctions,

respectively, while L and T refer to the corresponding
adjacent sections of the F1I2F2I3S3 multilayer. The com-
position operator ⊙ acts, e.g., as [38]

ŜLT ¼ ŜL⊙ŜT ¼
�
rL tL
tcL rcL

�
⊙
�
rT tT
tcT rcT

�

¼ 1

1 − rTrcL

�
ζ1 tLtT
tcLt

c
T ζ2

�
; ðA23Þ

where ζ1 ¼ ðrTrcL − 1ÞrL − rTtLtcL, ζ2 ¼ ðrTrcL − 1ÞrcL −
rcLtTt

c
L. The partial transmission tL;T;R and reflection

rL;T;R coefficients of the fractional junctions are computed
microscopically using solutions of the Bogolyubov equa-
tion [27,30]. Within the above assumptions and using the
rule (A23), one obtains the net transmission coefficient tLR
through the whole F1I2F2I3S3 multilayer as

tLRðεÞ ¼ ½ŜLR�12 ¼
tLtTtR
ZLR

; ðA24Þ

where

ZLR ¼ ð1 − rLrTÞð1 − rRrTÞ − rLrRt2T ðA25Þ

and rRðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2RðLÞ

q
. In practice, the partial transmis-

sion tL; tT , tL; tT and reflection rL; rT , rR coefficients are
not well known, thereforeϒinj ¼ jtLRðεÞj2 value is deduced
directly from the injector’s I − V curve measured in the
experiment. By setting

FR
2 ðεÞ ¼

Δ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − Δ2

2

p ðA26Þ

one obtains an equation determining the nonequilibrium
gap Δ2 in the form [13]

ln
T0
c

T
¼ 7ζð3Þ

8π2
Δ2

2

T2
þ 2

Z
ℏωD

Δ
Re

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 − Δ2
2

p 

δfεdε;

ðA27Þ

where δfε ¼ fε − fFε is the deviation of the electron
distribution function fε from its equilibrium value fFε .
Equation (A27) is solved to obtain the dependence Δ2ðViÞ
of the superconducting energy gap in the S2 layer of the
S2F1 sandwich situated in the middle of the multilayered
structure versus the injector bias voltage Vi. The resulting
dependence Δ2ðViÞ [see Fig. 2(a)] serves as an input in
Eq. (23) when computing the critical current of the
S1I1S2F1 acceptor junction versus the bias voltage Vi
applied across the S2F1I2F2S3 injector.
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5. Solution of the Boltzmann equation

In this section we consider stationary (i.e., ∂fε=∂t ¼ 0) solutions of Eq. (A19) when the electron-phonon collision term
Lεffg has a more general form

Lεffg ¼ Lð1Þ
ε þ Lð2Þ

ε þ Lð3Þ
ε ; ðA28Þ

where

Lð1Þ
ε ¼ ηEP

Z
ωDþξ

ξ

dξ0

Δkþ2
ðε0 − εÞkþ1

�
1 − Δ2

εε0

�
½ð1 − fÞf0ð1þ Nε0−εÞ − fð1 − f0ÞNε0−ε�;

Lð2Þ
ε ¼ ηEP

Z
ξ

0

dξ0

Δkþ2
ðε − ε0Þkþ1

�
1 − Δ2

εε0

�
½fð1 − f0Þð1þ Nε−ε0 Þ − ð1 − fÞf0Nε−ε0 �;

Lð3Þ
ε ¼ ηEP

Z
ξ

0

dξ0

Δkþ2
ðεþ ε0Þkþ1

�
1þ Δ2

εε0

�
½ff0ð1þ Nεþε0 Þ − ð1 − fÞð1 − f0ÞNε−ε0 �; ðA29Þ

where Δ is the energy gap of acceptor (we have omitted
indices 1,2 for brevity) and ηEP ¼ πjλj=2. The above
integrals (A28), (A29) also are rewritten in a slightly
different form

Lεffg ¼ Lð1;0Þ
ε −Lð2;0Þ

ε −Lð3;0Þ
ε − fðLð1;1Þ

ε −Lð2;1Þ
ε −Lð3;1Þ

ε Þ;
ðA30Þ

where

Lð1;0Þ
ε ¼

Z
ωDþξ

ξ
dξ0G−ε;ε0f0ð1þ Nε0−εÞ;

Lð1;1Þ
ε ¼

Z
ωDþξ

ξ
dξ0G−ε;ε0 ðf0 þ Nε0−εÞ;

Lð2;0Þ
ε ¼

Z
ξ

0

dξ0Gε;−ε0f0Nε−ε0 ;

Lð2;1Þ
ε ¼

Z
ξ

0

dξ0Gε;−ε0 ð1 − f0 þ Nε−ε0 Þ;

Lð3;0Þ
ε ¼

Z
ωD−ξ

0

dξ0Gε;ε0 ð1 − f0ÞNε−ε0 ;

Lð3;1Þ
ε ¼

Z
ωD−ξ

0

dξ0Gε;ε0 ½f0ð1þ Nεþε0 Þ þ ð1 − f0ÞNε−ε0 �;

ðA31Þ

here, we have introduced the factor

Gk
ε;ε0 ¼

πjλj
2

�
ε0 þ ε

ωD

�
kþ1
�
1þ Δ2

εε0

�
: ðA32Þ

The solution of the Boltzmann equation (A19) is obtained
as follows. The zeroth-order iteration corresponds to the
relaxation time approximation (RTA). The Boltzmann
equation is rewritten as

I0τEPf½fFεþ − fε�Hþ þ ½fFε− − fε�H− þ ½1 − fF~ε − fε� ~Hg
þ fFε − fε ¼ 0 ðA33Þ

or

fFεþHþI0τEP þ fFε−H−I0τEP þ ~HI0τEP − fF~ε ~HI0τEP þ fFε

− fε − fεHþI0τEP − fεH−I0τEP − fε ~HI0τEP ¼ 0.

ðA34Þ

Solving Eq. (A36) with respect to fε we obtain

fε ¼
fFε þ I0τEPð ~H þ fFεþHþ þ fFε−H− − fF~ε ~HÞ

1þ I0τEPðHþ þH− þ ~HÞ : ðA35Þ

The above solution (A35) serves as a zero-order input into
the iterative scheme described below. More accurate
solutions of the Boltzmann equation (A19) are obtained
using iterations. There are two possible strategies for
solving the Boltzmann equation more accurately. In either
case, we consider Eq. (A35) as a zero-order approximation

assuming fε → fð0Þε . A technical complication arises due to
presence of nonlinear terms in Lε, originating from the
products ∝fεfε0 . The difficulty is fixed as follows. The
electron-phonon collision integral Lε is approximated by
replacing the nonlinear terms containing products ∝fεfε0
with linear terms faεfε0 or fεfaε0, where faε0 is an explicit
approximate form of fε or fε0. A simple approach is to
reduce the Boltzmann equation to an algebraic equation by
replacing fεfε0 → fεfaε0 . As an initial guess (zero-order

input) for faε0, we use the RTA function fε → fð0Þε defined
by Eq. (A35). Then Eq. (A19) is easily solved analytically

giving a better approximation fð1Þε for fε. In the next
step, we improve the approximation of Lε by replacing
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fεfε0 → fεf
ð1Þ
ε0 and solve the Boltzmann equation with the

newly approximated Lε, which gives another improvement

in the precision of fð2Þε . The procedure is repeated several
times, until the desired accuracy is accomplished.
Another path is to consider Eq. (A19) with the electron-

phonon collision integral in explicit form, as the Fredholm
integral equation of third or final kind using the following
approximation to handle the products like fεfε0 , entering
the election-phonon integral. In the first iteration we use the

RTA expression (A35) to replace the products fεfε0 ji¼1 →

ðfð1Þε Þfε0 entering the electron-phonon collision integral.
Then the Boltzmann equation takes the form of the
Fredholm integral equation of third or final kind,
which is subject to iterative procedure. For the successive
iterations i > 1, the products fεfε0 are replaced as

fεfε0 ji → ðfði−1Þε Þfε0 , where fði−1Þε represents the solution
obtained in the previous iteration. If the iteration scheme
converges, i.e., when at some i0 we get jfi0ε − fi0−1ε j → 0,
we arrive at an accurate solution fε ¼ fi0ε of the Boltzmann
equation. In this work we use the methods described above.
Although the second method based on solving the
Fredholm integral equation is technically complicated, it
gives a better convergence. The nonequilibrium electron
distribution function obtained by solving the Boltzmann
equation (A19) numerically is shown in Fig. 7 for the bias
voltage Vi ¼ 2.2Δ across the injector and for the succes-
sive iterations i ¼ 1, 2, 3 (see curves from bottom to top,
respectively).

6. The gap equation

The acceptor energy gap Δ1;2 dependence Δ1;2ðViÞ
versus the injector bias voltage Vi is derived by solving
the self-consistency equation

1

λ
¼
Z

ωD

Δ1;2

Re

(
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 − Δ2
1;2

q
)
ð1 − 2fð1;2Þε Þdε: ðA36Þ

In a nonequilibrium superconductor we use the RTA
expression (A35) serving as a zero-order input for the
iterative schemes described above. Accurate solutions of
the self-consistency equation (A36) describing the influ-
ence of the nonequilibrium effects on the energy gapΔ1;2 of
the S1;2 layers are obtained using the corresponding

electron distribution function fð1;2Þε that, in turn, is found
by solving the Boltzmann equation (A19) numerically as
described above. The threshold voltage V th is defined as a
value of Vi at which Δ2 vanishes. The numeric solution of
Eq. (A36) obtained allows one to deduce the threshold
instability that occurs at certain values of Vi, corresponding
to V th. The magnitude of V th depends on the resistance of
the injector and the thicknesses of the S1;2 layers, provided
that all the other device parameters are fixed. The depend-
ence of the threshold voltage V thðRTðiÞ=RTðaÞÞ is shown in
Fig. 3 in the main text.
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