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Efficient thermoelectric (TE) energy conversion requires materials with low thermal conductivity and
good electronic properties. Si-Ge alloys, and their nanostructures such as thin films and nanowires,
have been extensively studied for TE applications; other group-IV alloys, including those containing Sn,
have not been given as much attention as TEs, despite their increasing applications in other areas including
optoelectronics. We study the lattice thermal conductivity of binary (Si-Sn and Ge-Sn) and ternary
(Si-Ge-Sn) alloys and their thin films in the Boltzmann transport formalisms, including a full phonon
dispersion and momentum-dependent boundary-roughness scattering. We show that Si-Sn alloys have the
lowest conductivity (3 W=mK) of all the bulk alloys, more than 2 times lower than Si-Ge, attributed to the
larger difference in mass between the two constituents. In addition, we demonstrate that thin films offer an
additional reduction in thermal conductivity, reaching around 1 W=mK in 20-nm-thick Si-Sn, Ge-Sn, and
ternary Si-Ge-Sn films, which is near the conductivity of amorphous SiO2. We conclude that group-IV
alloys containing Sn have the potential for high-efficiency TE energy conversion.
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I. INTRODUCTION

The current high demand for sustainable and renewable
energy sources has instigated tremendous research into
alternative sources of energy. Thermoelectric devices, based
on the coupling processes between heat and charge transport
in many materials, have an increasing potential for practical
application in solid-state refrigeration and power generation
[1]. Today, high-efficiency thermoelectric conversion devi-
ces are used to recover waste heat that is dissipated in
industrial processes, engines, and tandem solar cells [2]. The
figure of merit which strongly governs thermoelectric
efficiency is defined by the dimensionless expression [3]

ZT ¼ S2σT
κl þ κe

; ð1Þ

where S is the Seebeck coefficient, σ is the electrical
conductivity, T is the absolute temperature, and κ is the
total thermal conductivity including both the carrier and
phonon counterparts. Typically, the lattice (phonon) contri-
bution dominates over the electronic counterpart, which
means that heat conduction in semiconductors is dominated
by phonon transport [4]. Hence, our goal is to optimize ZT
by reducing the lattice part of the denominator without
having a negative effect on the power factor S2σ, which is
then expected to result in higher thermoelectric efficiency.
Silicon is considered to be the basis of modern elec-

tronics, which makes it a relatively inexpensive and

abundant semiconductor, especially by comparison to
certain other popular room-temperature thermoelectric
(TE) materials that have low thermal conductivity, such
as bismuth telluride (Bi2Te3) [5]. In contrast, Si, as a bulk
material, is not a very efficient thermoelectric due to its
low conversion efficiency [6], which is limited primarily by
a large lattice contribution to the thermal conductivity of
146 W=mK [7,8] at room temperature, and therefore limits
the ZT to approximately 0.05 [9]. Similar arguments apply
to other bulk group-IV materials including Ge and Sn.
The interdependence of material properties in bulk limits

our ability to increase ZT. Hence, approaches have been
developed in order to further improve ZT. Alloying and
nanostructuring play critical roles in the reduction of
thermal conductivity, which results in further increases
of ZT over what can be achieved with bulk materials.
Alloying two or more bulk materials is among the standard
approaches to improve thermoelectric conversion effi-
ciency. The reduction of thermal conductivity is observed
in alloying and is used in Si-Ge alloys to achieve ZT > 1 at
high temperatures (approximately 900 K) [10]. Random
mass variation in the alloy results in a significant increase
in phonon scattering and a corresponding reduction in
thermal conductivity.
However, the thermal conductivity of Si1−xGex reaches a

broad plateau in the composition range of 0.2 < x < 0.8
[11], which limits the degree of reduction in lattice thermal
conductivity possible in Si-Ge alloys. Within this plateau,
changing the thickness has a much greater effect on thermal
conductivity than does the variation in Ge composition,
while outside of the plateau, compositional variation*zlatana@engin.umass.edu
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dominates. The low-dimensional approach that was pro-
posed by Hicks and Dresselhaus [12,13] is used widely
to improve TE conversion efficiency by reducing lattice
thermal conductivity. As a result of numerous studies on
Si1−xGex alloy nanostructures, thermal conductivity 3–5
times lower than the bulk form has been obtained [1]. The
reduction of thermal conductivity with respect to the bulk is
attributed to the enhancement of boundary scattering [4].
While Si1−xGex alloys [14] and their nanostructures

(including thin films [15], nanowires [16–18], superlattices
[6,19–21], and nanocomposites [22–24]) have been studied
widely for TE applications in the past two decades, other
group-IV alloys have been given less consideration for TE
conversion. Recent interest in Sn-based group-IV alloys is
sparked largely by its widely tunable band gap [25], which
has opened the possibility to reach direct band gaps [26,27]
with potential application in optoelectronics [28,29].
Ternary group-IV alloys Si1−x−yGexSny and their hetero-
structures are also the subject of research as candidates for
IR devices and quantum-well photodiodes [30]. However,
the growth of Si-Sn alloys (and to a lesser extent Ge-Sn)
with a high Sn concentration remains challenging due to
the large lattice mismatch (19.5% between Si and α-Sn)
and the low solubility of Sn in Si (approximately
5 × 1019 cm−3) [31].
In this paper, we study binary and ternary alloys of

silicon, germanium, and tin in order to determine the lowest
possible thermal conductivity achievable in these diamond-
structure group-IV alloys. We focus on Si1−x−yGexSny
alloys as the underlying material and demonstrate ways
of utilizing nanostructuring to reduce the lattice contribu-
tion to thermal conductivity, with the ultimate goal of
improving the TE figure of merit. Our model is based on
solving the phonon Boltzmann transport equation in the
relaxation time approximation, including all the relevant
intrinsic (three-phonon anharmonic umklapp and normal,
isotope, impurity, and alloy mass difference) and extrinsic
(due to boundary roughness) scattering mechanisms. We
use the full phonon dispersion calculated from the adiabatic
bond charge model, and we describe roughness scattering
at the boundaries of the nanostructures through a momen-
tum-dependent specularity parameter. This paper is organ-
ized as follows: The computational model is presented in
Sec. II, and Sec. III presents our results on binary and
ternary bulk group-IV alloys and their thin films, while
Sec. IV summarizes our findings.

II. LATTICE THERMAL CONDUCTIVITY IN
BULK ALLOYS AND THIN FILMS

Most theories of transport in solids employ the
Boltzmann transport equation (BTE). The distribution
function of phonons under a temperature gradient can be
obtained by solving the BTE and subsequently used to
determine the lattice contribution to thermal conductivity.
The steady-state distribution function can be obtained by

solving the time-independent phonon Boltzmann transport
equation (PBTE) in the relaxation time approximation,
which is well justified in cases where elastic scattering is
dominant, such as in our case of alloys and their nano-
structures. In the steady state, the time-independent PBTE
is given by [32]

~υb;~q · ~∇Nb;~qðx; y; zÞ ¼ −
Nb;~qðx; y; zÞ − N0

b;~qðTÞ
τintb ð~qÞ : ð2Þ

As indicated in the PBTE, the steady-state phonon dis-
tribution function Nb;qðx; y; zÞ is a function of the phonon
branch b, wave vector q, and position in 3D space ðx; y; zÞ.
τintq is the relaxation time due to all the intrinsic scattering
mechanisms including both resistive umklapp and non-
resistive normal anharmonic phonon-phonon, isotope,
impurity, and alloy mass difference interactions. τintq can
be obtained using the standard single-mode relaxation time
approximation [33]. The equations hold for each branch,
and interbranch scattering is included in τintb ð~qÞ. In the
calculation of relaxation time τintb ð~qÞ for a phonon in mode
b and with wave vector ~q, we consider normal τb;nð~qÞ and
umklapp τb;uð~qÞ three-phonon scattering, impurity τb;Ið~qÞ,
and mass-disorder τb;massð~qÞ scattering. The total intrinsic
relaxation time is given by

1

τintb ð~qÞ ¼
1

τb;nðqÞ
þ 1

τb;uðqÞ
þ 1

τb;IðqÞ
þ 1

τb;massðqÞ
: ð3Þ

Si1−x−yGexSny with three materials combined results in a
variation in the local atomic mass that leads to a strong
mass-difference scattering of phonons. In alloys, mass
disorder has three components: alloying, isotopic mass
variation, and the small local strain field induced by
variations in the atomic species (Si, Ge, or Sn). The
scattering strength is proportional to the total of mass-
disordered constituents [32]:

ΓmassðxÞ ¼ ΓalloyðxÞ þ ΓisoðxÞ þ ΓstrainðxÞ: ð4Þ

The alloy mass-difference constant is defined as [34]

Γalloy ¼
X
i

fið1 −Mi=M̄Þ2; ð5Þ

where fi is the proportion of material i with mass Mi,
while the average mass is M̄ ¼ P

ifiMi [33]. Thermal
conductivity in the alloys is dramatically reduced by the
scattering of phonons from the mass difference between the
constituent atoms. The strength of the alloy mass-difference
scattering has a quadratic dependence on the ratio between
the masses of constituent atoms (Mi) and the average alloy
mass (M̄) in Eq. (5).
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The energy dependence of the alloy-scattering rate
follows a Rayleigh-like (τ−1 ∝ ω4) trend and is calculated
from the vibrational density of states as [35,36]

τ−1massðωÞ ¼
π

6
V0Γmassω

2DðωÞ; ð6Þ

where V0 is the volume per atom and DðωÞ is the vibra-
tional density of states per unit volume [14]. The total
energy-dependent vibrational density of states is given by a
sum over all phonon branches b:

DðωÞ ¼
X
b

Z
d~q

ð2πÞ3 δ½ω − ωbð~qÞ�

¼ 1

ð2πÞ3
X
b;i

Sðω; ~qiÞ
j∇~qωbð~qiÞj

: ð7Þ

The volume integral of the energy-conserving delta
function over the whole first Brillouin zone (FBZ) is
calculated from the full phonon dispersion using the
method of Gilat and Raubenheimer [37]. At a given
vibrational frequency ω, the Gilat-Raubenheimer method
is used to compute the size of the intersection between the
constant energy surface, defined as the continuous surface
containing all the points in the FBZ such that their
dispersion equals a given frequency ω, and the ith dis-
cretization cube centered at ~qi. Finally, the intersection
surface area Sðω; ~qiÞ is divided by the norm of the gradient
of the dispersion and summed across all the discretization
cubes indexed by i to obtain the density of states at a given
frequency. Formulas for the constant energy surface area
Sðω; ~qiÞ are given in Ref. [37].
The contribution due to the isotopic variation in each of

the constituent materials can be obtained by combining the
isotope constants for each pure material as

Γisoðx; yÞ ¼
ð1 − x − yÞΓSiM2

Si þ xΓGeM2
Ge þ yΓSnM2

Sn

½xMGe þ ð1 − x − yÞMSi þ yMSn�2
;

ð8Þ

where the pure silicon and germanium isotope-scattering
constants ΓSi and ΓGe are taken from Ref. [33]. The tin
isotope-scattering constant ΓSn is calculated from the
known isotope composition of naturally occurring tin to
be ΓSn ¼ 3.64 × 10−4 based on a similar expression to
Eq. (5) which holds for isotope scattering within each
material in the alloy [38]. An additional component to alloy
scattering arising from the strain field due to the difference
in lattice constants of pure Si and Ge and their alloys
is proposed. The contribution due to strain is then given
by [34]

Γstrain ¼ ϵ
X
i

fið1 − ai=āÞ2; ð9Þ

where fi is the proportion of material i with lattice constant
ai (in this case Si, Ge, and Sn), while the average lattice is
given by ā ¼ P

ifiai. Here aSi-Ge-SnðxÞ is the composition-
dependent alloy lattice constant, taken in the virtual
crystal approximation (VCA), including bowing [39].
The empirical strain parameter is taken to be ϵ ¼ 39 [40].
For most values of germanium concentration x, the strain
contribution ΓstrainðxÞ is found to be much smaller than the
mass-difference component Γalloy.
The resistive umklapp phonon-phonon scattering rate

is calculated in the standard general approximation for
dielectric crystals [33]:

τ−1b;uð~qÞ ¼
ℏγ2b

M̄Θbῡ
2
b

ω2
bð~qÞTe−Θb=3T; ð10Þ

where the speed of sound ῡb of each branch b is determined
from the average slope of its dispersion curve near the Γ
point and M̄ is the average atomic mass. The Grüneissen
parameter γb is obtained for each branch from the phonon
dispersion and has the value of 1.1 for the longitudinal
acoustic branch and −0.6 for the transverse acoustic
branches. The expression in Eq. (10) contains the expo-
nential term e−Θb=3T in the temperature dependence, which
controls the onset of resistive umklapp scattering for each
phonon branch through the branch-specific Debye temper-
atures Θλ, which are obtained from Ref. [41]:

Θ2
b ¼

5ℏ2

3k2B

R
ω2gbðωÞdωR
gbðωÞdω

; ð11Þ

where the vibrational density of states function gbðωÞ ¼P
b;~qδ½ω − ωbð~qÞ� is calculated for each phonon branch b

from the full dispersion. This way, the temperature depend-
ence of the contribution from each phonon branch to the
total thermal conductivity is correctly represented.
In the bulk case, the crystal is assumed infinite and

uniform. The distribution is only a function of temperature,
and, in the absence of boundaries and interfaces, the
solution of the PBTE is simply given by

n~q ¼ τintð~qÞ~υ~q ·∇~rT
∂N0

~qðTÞ
∂T : ð12Þ

In contrast, boundaries and interfaces play an important
role in the solution of the PBTE in nanostructures. Hence,
in nanostructures, we have to add an extrinsic relaxation
rate τ−1b;Bð~qÞ due to boundary-roughness (B) scattering.
Each time a phonon reaches the boundary, we capture
the probability of it not being scattered by the roughness
through the momentum-dependent specularity parameter
0 < pð~qÞ < 1 given by

pð~qÞ ¼ exp ð−4Δ2q2cos2ΘÞ ð13Þ
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with Δ being the rms boundary roughness (typically
0.1 < Δ < 1 nm, depending on the sample quality and
processing) and Θ being the angle between the direction of
propagation of the phonon wave and the boundary normal.
The specularity parameter allows us to capture both the
magnitude and angle dependence of the boundary scatter-
ing and distinguish between the contribution to the heat
flux from phonons traveling into the boundary [small Θ
and, hence, smaller pð~qÞ and more scattering] and phonons
traveling parallel to the boundary [large Θ and larger pð~qÞ,
leading to less scattering].
The specularity parameter is used in solving the PBTE

as a boundary condition, with ½1 − pð~qÞ� giving the fraction
of the incoming phonons which are scattered randomly.
As boundary scattering is a momentum-randomizing elastic
process, the scattered phonons will carry zero heat flux, so
they can be represented by the equilibrium Bose-Einstein
distribution, leading to a boundary condition of the form

Nbð~qÞþ ¼ pð~qÞNbð~qÞ− þ ½1 − pð~qÞ�N0
b;Tð~qÞ; ð14Þ

withþ and − representing the solution before reaching and
after leaving the boundary, respectively, and N0ð~qÞ is the
equilibrium Bose-Einstein phonon distribution of phonon
mode ~q in branch b. The boundary-scattering rate for a film
of thickness H is then obtained as [6]

τ−1b;Bð~qÞ ¼
υb;⊥ð~qÞ

H

Fpð~q;HÞ
1 − τintb ð~qÞυb;⊥ð~qÞ

H Fpð~q;HÞ
; ð15Þ

where a mode-dependent scaling factor Fpð~q;HÞ is given
by

Fpð~q;HÞ ¼ ½1 − pð~qÞ�f1 − exp ½−H=τintb ð~qÞυb;⊥ð~qÞ�g
1 − pð~qÞ exp ½−H=τintb ð~qÞυb;⊥ð~qÞ�

:

ð16Þ

This formulation of interface scattering allows for the
rates of internal (intrinsic) and boundary-roughness scatter-
ing to be added together, despite their interdependence
[42]. The factor given by Eq. (16) encapsulates the
competition between the boundary and internal scattering:
The effective strength of boundary scattering depends on
the relative strength of the competing internal scattering
mechanisms [43].
Our approach describes supported thin films with flat,

partially diffuse boundaries having uncorrelated atomic-
scale roughness [4]; however, it does not take into account
the modification of phonon dispersion in ultrathin films,
which is found to lower group velocity further in pure
suspended Si thin films below approximately 30 nm [44],
resulting in reductions of thermal conductivity below
those predicted by the diffuse model. Thin films or other
nanostructures that are nanoporous [45] or have surface

modification [46] can lead to even further reduction of the
thermal conductivity, reaching in some nanocrystalline
cases below the so-called amorphous limit [47], which
we discuss in more detail in the next section. In contrast,
alloy nanostructures such as Si-Ge nanowires [18] are
found to have a significantly shorter phonon mean free path
(MFP) due to strong alloy scattering, which leads to heat
being carried mostly by long-wavelength phonons having a
dominant phonon wavelength of around 10 nm; hence, we
expect our model to be quantitative in thin films having a
thickness down to around 20 nm, as well as a qualitative
upper bound on what may be achievable in sub-20-nm
films that are further modified by nanoporosity, surface
modification, or having a nanocrystalline internal structure.
The full thermal conductivity tensor καβ is obtained as a

sum over all phonon momenta and branches [48]:

καβ ¼
X
b;~q

τbð~qÞCb;Tð~qÞυαbð~qÞυβbð~qÞ; ð17Þ

where τbð~qÞ is the total phonon relaxation time [for a bulk
sample, τbð~qÞ ¼ τb;internalð~qÞ from Eq. (3)] and the phonon
heat capacity per mode Cb;Tð~qÞ is given by

Cb;Tð~qÞ ¼
½ℏωbð~qÞ�2
kBT2

e½ℏωbð~qÞ=kBT�

½e½ℏωbð~qÞ=kBT� − 1�2 ; ð18Þ

where υαbð~qÞ is a component of the phonon velocity vector
calculated from the full phonon dispersion based on Weber’s
adiabatic bond charge (ABC) model [49]. The ABC model
includes interactions between ions, bond charges, bond
bending, and long-range electrostatic interactions and has
been shown to reproduce measured phonon vibrational
frequencies in virtually all group-IV [4,49–51], -III–V
[51,52], and -II–VI [53] semiconductors with excellent
accuracy. The ABC phonon dispersions for Si can be found
in Refs. [4,49] and for Ge in Refs. [49,51]. The vibrational
properties of Si1−xGexSny alloys, including phonon disper-
sion and velocity, are calculated here in the VCA [40]. The
VCA is shown to capture the acoustic phonon modes and
thermal conductivities of silicon and its alloys [54] as well
as PbTe1−xSex alloys [55] with good accuracy.
We calculate the dispersion of each bulk alloy at a dense

grid of 64 000 points throughout the whole FBZ. We also
compute phonon group velocities from the gradient of
dispersion ~υbð~qÞ ¼ dωb=d~q using the finite difference
and store the three components (x, y, and z) of group
velocity at each discretization point. The calculated phonon
dispersion of pure α-Sn (solid curve), as well as binary
alloys Ge0.5Sn0.5 (dotted curve) and Si0.5Sn0.5 (dashed
curve) along the crystallographic symmetry directions, is
shown in Fig. 1. The experimental data taken from soft
neutron-scattering measurements reported in Ref. [56]
match with the numerical simulation results we obtain.
α-Sn with the atomic mass of 118.71 amu has a higher
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atomic mass and, therefore, a larger density in comparison
with silicon and germanium with the atomic mass of
28.0855 and 72.640 amu, respectively. This results in a
lower vibrational frequency in the dispersion curves of
α-Sn compared to Ge0.5Sn0.5 and even more so in com-
parison to Si0.5Sn0.5, as seen in Fig. 1. The general trend we
observe is that a heavier average atomic mass leads to
flatter dispersion curves. Consequently, alloys containing
Sn have a lower phonon group velocity, and we expect a
decrease in the thermal conductivity of Sn-based group-IV
alloys.

III. RESULTS

The lattice thermal conductivity of bulk ternary alloy
Si-Ge-Sn is calculated from our full-dispersion PBTE
model. The top plot in Fig. 2 depicts the thermal conduc-
tivity of bulk Si-Ge-Sn alloys against their contributed
composition. The thermal conductivity of binary alloys
Si-Ge, Si-Sn, and Ge-Sn can also be seen along the edges
where germanium, silicon, and tin compositions are equal
to zero for Si-Sn, Ge-Sn, and Si-Ge, respectively. We note
here the broad plateau that the thermal conductivity reaches
in the alloy composition range of 0.2 < x < 0.8 for
germanium composition in Si1−xGex and 0.2 < y < 0.8
for tin composition in Si1−ySny and a similar plateau for
Ge-Sn; the amount of reduction in the lattice thermal
conductivity which can be achieved through alloying alone
is somewhat limited.
The reason for this broad plateau is related to the

dominant mass-disorder scattering in alloys which depends
quadratically on the difference in atomic mass between
the constituent materials and the average mass. In this
wide middle plateau region, scattering from the alloy mass
disorder is strongly dominant over all other intrinsic

mechanisms, including both umklapp and normal phonon-
phonon scattering aswell as theweak isotopicmass disorder.
In addition, our results shown in the bottom plot in Fig. 2
demonstrate that adding the heavier Sn into the alloy results
in a further reduction of the thermal conductivity below the
minimum value achievable in Si-Ge. The lowest thermal
conductivity for bulk binary alloys Si-Sn is 3 W=mK,
reached at a Sn composition of 0.5, and 5.86 W=mK in
Ge-Sn at a Sn composition of 0.61, in agreement with
the range of values (5–9 W=mK) measured in annealed
poly-Ge-Sn [57]. These values are significantly lower than
the lowest thermal conductivity of bulk Si-Ge, which is
6.67 W=mK at a Ge composition of 0.38. Among these
alloys, the binary Si-Sn alloy is found to have the lowest
bulk thermal conductivity, in good agreement with reverse
non-equilibriummolecular dynamics simulations at themass
ratio of 4.2 between Si and Sn [58]. The reduction is
explained by the larger mass difference between Si and Sn
which results in a higher mass-disorder scattering rate and,
hence, a lower lattice thermal conductivity [59].
Bulk Si-Sn alloys at such a high Sn concentration have

not been demonstrated due to the low solid solubility of Sn

FIG. 1. Phonon dispersion curves [the vibrational frequencies
(THz)] for α-Sn, Ge0.5Sn0.5, and Si0.5Sn0.5 showing vs the phonon
wave vector. The symbols represent the experimental measure-
ment of α-Sn from Ref. [56], and solid lines are the numerical
simulation of α-Sn. Dotted lines represent the dispersion of
Ge0.5Sn0.5, and dashed lines depict the dispersion of Si0.5Sn0.5.
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in Si; nonetheless, the thermal conductivity at 18% Sn
concentration, the highest Sn fraction demonstrated so far
[60], is 3.73 W=mK, which is nearly a 44% reduction from
the lowest bulk Si-Ge value. Therefore, we expect this
reduction in lattice thermal conductivity to translate to a
corresponding 44% increase in the thermoelectric figure of
merit ZT. A ZT value of 1 is reported in n-type Si-Ge alloys
at approximately 900 °C [61] and subsequently increased
to 1.3 through nanostructuring [23]; although there are no
reports on the Seebeck coefficient of Si-Sn, the weak
dependence of the thermoelectric properties on the alloy
composition in Si-Ge leads us to estimate that the reduction
in thermal conductivity resulting from the introduction of
Sn can lead to a figure of merit ZT of up to 1.35 in bulk
alloys at 18% Sn concentration and up to 2.1 if a Si0.5Sn0.5
alloy could be achieved. However, further investigation on
the electronic transport and power factor of group-IValloys
containing Sn, as well as further work on the synthesis of
alloys with a large Sn concentration, is needed.
We contrast the bulk-alloy results to their corresponding

theoretical minimum values, often called the amorphous
limit, which would be achieved in a crystal having
maximum disorder while retaining bulk vibrational modes.

This model, while only approximate and not necessarily a
general lower bound [47], provides us with some indication
of what conductivity might be achievable through disorder
(a combination of mass or alloy and boundary roughness)
in a crystalline material. In order to calculate the
amorphous-limit values of thermal conductivity, we rely
on Cahill’s minimum thermal conductivity model [62] and
calculate the maximum scattering rate directly as one-half
period of the vibrational frequency ω=π. The calculated
amorphous (disordered) thermal conductivity of ternary
alloys of Si-Ge-Sn are shown in the surface (top) and
ternary (bottom) plots in Fig. 3. Unlike the bulk results,
there is no plateau, and pure Sn has the lowest achievable
thermal conductivity in comparison with all other alloy
compositions due to its lowest vibrational frequencies of
the three materials. We find that the amorphous-limit values
are all below 1 W=mK; consequently, there is room to
reduce the thermal conductivity further through size effects
caused by boundary-roughness scattering in nanostruc-
tures. Next, we study the lattice thermal conductivity of
alloy thin films in order to further decrease the thermal
conductivity towards the amorphous limit. The results of
our calculations for thin Si-Ge alloy films are depicted in
the top plot in Fig. 4; these results are validated through a
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FIG. 4. (Top) Lattice thermal conductivity of binary alloy Si-Ge
vs Ge composition for bulk, 500-, 100-, and 20-nm thickness at
room temperature. The sample thickness is 1 μm for nanostruc-
tures with 0.45-nm roughness. The bottom line shows the lowest
achievable thermal conductivity amorphous limit of Si-Ge vs Ge
composition. (Bottom) Cumulative thermal conductivity of pure Si
(dashed lines) and Si-Ge alloy (solid lines) for acoustic branches.
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comparison with experimental data from Cheaito et al. [15]
in a previous publication [1]. Overall, the trends follow
the expected reduction due to extrinsic boundary scattering
in thin films. We include Si-Ge results here mainly for
comparison with our results in Figs. 5 and 6 for Si-Sn and
Ge-Sn, respectively.
Comparing the results across compositions at a fixed

film thickness, we find that the thermal conductivity
of Si-Ge thin alloy films reaches the lowest value of
1.71 W=mK at 20-nm thickness for a Ge composition of
0.48. In contrast, the lowest thermal conductivity for Si-Sn
at 20-nm thickness is 0.91 W=mK, achieved at a Sn
composition of 0.59 Sn. This value is below that of a
high-performance thermoelectric Bi-Sb-Te alloy nanocom-
posite (κph ¼ 1.1 W=mK at room temperature) having a
comparable (20-nm average) grain size [63]. Such high Sn
compositions exceeding 18% may be achievable only in
very thin films; however, we note here that at a 0.18 Sn
composition and 20-nm thickness, the thermal conductivity
increases only to 1.22 W=mK because of the broad plateau
in thermal conductivity vs composition, which can be seen
in Fig. 5. This value still represents nearly a 30% reduction

from the lowest value achievable in Si-Ge thin films of
equal 20-nm thickness. A room-temperature thermal con-
ductivity of 2.5 W=mK, of which 1.8 W=mK is the lattice
contribution due to phonons, is reported in a Si0.8Ge0.2
nanocomposite having an average nanoparticle size of
about 20 nm. This nanocomposite reaches a ZT of about
1.3 at 900 °C [23,64]; our calculated thermal conductivity
value is 50% smaller, leading us to estimate the potential
ZT that could be reached in a Si0.82Sn0.18 nanocomposite
with the same 20-nm nanoparticle size to be around 1.7,
assuming the same electron contribution to thermal condu-
ctivity κe ¼ 0.7 W=mK. In p-type Si-Ge nanocomposites,
the peak ZT value is around 30% smaller than n-type,
likely due to lower hole mobility [65], reaching 0.95 at
850 °C [22,66]. However, recent reports indicate that hole
mobility in Si-Sn alloys is 13% higher than in silicon [67];
therefore, we expect that the combination of increased
mobility and reduced thermal conductivity could bring
p-type Si-Sn alloys closer in line with their n-type
counterparts.
In alloy thin films, we plot and analyze the cumulative

mean-free-path distributions which are commonly used to

FIG. 5. (Top) Lattice thermal conductivity of binary alloy Si-Sn
vs Sn composition for bulk, 500-, 100-, and 20-nm thickness. The
simulation is done at room temperature with a roughness of
0.45 nm and a sample thickness of 1 μm for nanostructures. The
bottom line depicts the amorphous-limit thermal conductivity of
the alloy against Sn composition, while the top line shows the
thermal conductivity of bulk Si-Sn. (Bottom) Cumulative thermal
conductivity vs mean free path of pure Si (dashed lines) and Si-Sn
alloy (solid lines).

FIG. 6. (Top) Lattice thermal conductivity of binary Ge-Sn vs
Sn composition for bulk, 500-, 100-, and 20-nm thickness. The
simulation is done at room temperature with a roughness of
0.45 nm and 1-μm in-plane sample length. The bottom line
depicts the amorphous-limit thermal conductivity of the alloy
against Sn composition, while the top line shows the thermal
conductivity of bulk Si-Sn. (Bottom) Cumulative thermal con-
ductivity vs mean free path of pure Si (dashed lines) and Si-Sn
alloy (solid lines).
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study the impact of size effects on thermal conductivity.
The bottom plots in Figs. 4, 5, and 6 show the cumulative
thermal conductivity vs mean free path for the pure and
alloy bulk of Si-Ge, Si-Sn, and Ge-Sn, respectively. The
cumulative thermal conductivity is scaled by the total
thermal conductivity so that it shows how lattice thermal
conductivity is accumulated against the phonon mean free
path, thus allowing us to visualize and compare the extent
to which restricting the phonon mean free paths via
nanostructuring can result in a thermal conductivity reduc-
tion [68]. In the diffuse case, boundary scattering limits the
phonon MFP to be smaller than or equal to the thickness of
the film; hence, only phonons having a mean free path
smaller than or equal to the film thickness will maintain
their contribution to the thermal conductivity in the thin
film. The resulting thermal conductivity can be seen in the
cumulative distribution by taking the MFP equal to the
thickness and reading off the corresponding thermal con-
ductivity (the resulting value indicates the fraction of
conductivity which persists in the thin film). Because the
density of states peaks near van Hove singularities, there
are sharp bends in the slope of the cumulative thermal
conductivity plot corresponding to these peaks. Throughout
these plots, we focus on the longitudinal and transverse
acoustic modes and omit the optical ones due to their
low contribution to thermal conductivity, caused by their
very flat dispersion and consequently low-phonon group
velocities.
The bottom plot in Fig. 4 shows the cumulative thermal

conductivity against MFP for Si-Ge alloy (solid lines) and
pure Si (dashed lines). Phonons with MFPs of 1 μm or
more contribute around 50% of the thermal conductivity in
pure Si; in contrast, phonons with such long MFPs in
Si0.5Ge0.5 alloy have a significantly lower contribution.
However, the alloy curves show a broader and more gradual
distribution, with a larger contribution from MFPs below
100 nm. Consequently, the range of phonon MFPs which
can be used to reduce thermal conductivity extends further
into the nanoscale regime, requiring thinner films or wires
to reach a substantial reduction. Hence, the combination of
alloying and nanostructuring provides a broader range
of tunable mean free paths that can be used to reduce
the thermal conductivity and ultimately improve the TE
efficiency. In Si-Sn (Fig. 5), phonons having MFPs below
20 nm still contribute around 40% of the thermal conduc-
tivity, significantly more than they contribute in Si-Ge,
thereby leaving more opportunity to further reduce the
thermal conductivity and improve the TE figure of merit
through a combination of alloying and nanostructuring.
For Ge-Sn thin films, shown in Fig. 6, the lowest thermal

conductivity value achieved in a 20-nm thin film is
1.53 W=mK, obtained at a Sn composition of y ¼ 0.55.
Epitaxial Ge-Sn and ternary Si-Ge-Sn alloy layers on Si are
demonstrated and employed in the literature [69,70] with a
larger Sn concentration than their Si-Sn counterparts. The

cumulative thermal conductivity against MFP of Ge-Sn
(Fig. 6, bottom) follows a trend similar to its Si-Sn
counterpart, shown in Fig. 5 (bottom) but with even more
conductivity persisting down to 20-nm MFPs; conse-
quently, even in 20-nm thin films, the thermal conductivity
in Ge-Sn alloys is well above the corresponding amorphous
limit (0.30 W=mK at 0.59 Sn). Ge-Sn alloys are theoreti-
cally predicted to have a higher mobility than Si, especially
under strain [71]. In addition, relaxed Ge-Sn becomes a
direct band-gap semiconductor at Sn concentrations
exceeding 7.3%, and the band gap scales towards zero
in proportion to the concentration of tin [26]. For thermo-
electric applications, the figure of merit ZT typically peaks
at a temperature where the band gap is approximately 10
times the thermal energy EG ¼ 10kBTpeak [72]. The com-
position-tunable band gap implies that the ZT peak can be
shifted to lower temperatures by increasing the proportion
of Sn. Doing so also has the added benefit of obtaining a
lower lattice thermal conductivity.
In Fig. 7, we depict the ternary alloy thermal conduc-

tivity vs Ge and Sn composition. We keep the germanium
and tin compositions, x and y, respectively, equal (x ¼ y)
and vary them from 0 to 0.5, while the silicon composition
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FIG. 7. (Top) Lattice thermal conductivity of ternary alloy
Si-Ge-Sn vs Ge or Sn composition for bulk, 500-, 100-, and
20-nm thickness at room temperature with 0.45-nm roughness
and 1-μm in-plane film length. The bottom black line shows the
lowest achievable thermal conductivity of the alloy against Ge
or Sn composition. (Bottom) Cumulative thermal conductivity
vs mean free path of pure Sn (dashed lines) and Si0.3Ge0.3Sn0.3
alloy (solid lines).
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(1 − x − y) is reduced from 1 to 0. At germanium and tin
compositions of x ¼ y ¼ 0.32 and a film thickness of
20 nm, the thermal conductivity reaches its lowest value
of 1.11 W=mK, which is lower than the Si-Ge thermal
conductivity at the same thickness but slightly higher than
the lowest value achieved in Si-Sn at that same thickness.
However, this is the closest value to the lowest achievable
thermal conductivity given by the corresponding amor-
phous limit. Cumulative contributions to thermal conduc-
tivity vs phonon mean free path are also depicted in the
bottom plot in Fig. 7, which shows that alloying leads to a
broader range and a more gradual dependence on mean free
paths, allowing us to further decrease the thermal conduc-
tivity and possibly improve the TE figure of merit ZT
through nanostructuring. Ternary alloys allow the decou-
pling of the band gap from the lattice constant [30], so
that the band-gap value can potentially be reduced while
reducing the large lattice mismatch between α-Sn and
either Si or Ge.

IV. CONCLUSIONS AND DISCUSSION

We calculate the lattice contribution to thermal conduc-
tivity in binary and ternary group-IV alloys by solving the
phonon Boltzmann transport equation in the relaxation time
approximation. Our model includes phonon scattering with
all intrinsic scattering mechanisms (three-phonon umklapp
and normal, isotope, impurity, and mass-difference alloy
scattering) as well as interactions with partially diffuse
boundaries of the nanostructures described by a momen-
tum-dependent model for phonon scattering with boundary
roughness. We use the full phonon dispersion computed
from the adiabatic bond charge model and combine the
phonon dispersions for alloys in the virtual crystal approxi-
mation. We find that thermal conductivity is tunable by
both thickness and alloying over a wide range of values.
A significant reduction in the thermal conductivity in
Sn-based alloys is observed in both bulk and thin-film
form in comparison with Si-Ge alloys at the same compo-
sition and thickness. Si and Sn have the largest mass
difference, leading to the highest mass-difference scattering
in the Si-Sn alloy of all the binary combinations and, hence,
the lowest thermal conductivity. In nanostructures, we find
a further reduction in the thermal conductivity due to size
effects, to values far below their bulk counterparts and
nearly reaching the amorphous limit. The 20-nm-thick
films of Si-Sn and Si-Ge-Sn all have conductivities
approaching 1 W=mK, which is the thermal conductivity
of amorphous SiO2.
Our results demonstrate that binary and ternary group-IV

alloys involving Sn have a low lattice thermal conductivity
and, therefore, may have potential as high-efficiency
Si-compatible TE materials, especially in nanostructured
form. In addition to the low lattice thermal conductivity
well below their Si-Ge counterparts, group-IV alloys
containing Sn have tunable band gaps which may expand

the range of temperatures where they are competitive with
existing materials. For example, bulk Bi2Te3 is commonly
used at room temperature because of the combination of its
smaller band gap (150 meV at room temperature [73]) and
low thermal conductivity (1.4 W=mK measured in a 1-μm
film [74]); both of these are achievable with Si-Ge-Sn
alloys, alongside being compatible with current Si-based
nanoelectronics. While it is too early to fully evaluate the
potential for Si-Ge-Sn to replace or improve on existing
TE materials, we expect that these findings will spur
further research into the growth of bulk and nanostructured
group-IV alloys containing Sn and their optimization for
TE applications.
The lattice thermal conductivity in the alloys we study

shows a broad plateau for alloy concentrations between 0.2
and 0.8; in addition, alloy and boundary-roughness scatter-
ing largely suppress the temperature dependence of the
lattice thermal conductivity. Hence, we believe our results
are applicable to a wide range of compositions and sizes
and can be used as a guide in the future design, selection,
and further optimization of group-IV alloys and their
nanostructures such as multilayers [59] for high-ZT TE
applications, with possible ZT values increasing up to 1.7
in Si0.82Sn0.18 nanocomposites; however, further work on
the composition dependence of the thermoelectric power
factor is needed to realize these possibilities. In addition,
the synthesis of group-IV alloys having a large concen-
tration of Sn remains a challenge. Finally, we believe our
results will also inform applications of Si-Ge-Sn alloys in
optoelectronics, enabled by the transition from indirect to
direct band gap, where thermal dissipation may hamper
some applications due to inefficient heat removal through
the alloys having a lower thermal conductivity.
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