
Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers
in an Integrated GaP-on-Diamond Platform

Michael Gould,1,* Emma R. Schmidgall,2 Shabnam Dadgostar,3 Fariba Hatami,3 and Kai-Mei C. Fu1,2
1Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA

2Department of Physics, University of Washington, Seattle, Washington 98195, USA
3Department of Physics, Humboldt-Universitat zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany

(Received 13 June 2016; published 29 July 2016)

Scaling beyond two-node quantum networks using nitrogen-vacancy (NV) centers in diamond is limited
by the low probability of collecting zero-phonon-line (ZPL) photons from single centers. Here, we
demonstrate GaP-on-diamond disk resonators which resonantly couple ZPL photons from single NV
centers to single-mode waveguides. In these devices, the probability of a single NV center emitting a ZPL
photon into the waveguide mode after optical excitation can reach 9%, due to a combination of resonant
enhancement of the ZPL emission and efficient coupling between the resonator and waveguide. We verify
the single-photon nature of the emission and experimentally demonstrate both high in-waveguide photon
numbers and substantial Purcell enhancement for a set of devices. These devices may enable scalable
integrated quantum networks based on NV centers.
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The negatively charged nitrogen-vacancy (NV) center in
diamond shows significant promise as a solid-state qubit
register [1–3] for measurement-based quantum-information
processing (MBQIP) [4–6]. The computational resource in
MBQIP is a network of entangled qubit registers. For NV
centers, this network can be grown via single-photon
measurement of the NV zero-phonon line (ZPL) emission
[7,8]. Two-qubit networks of NV centers have been
heralded in this manner using free-space collection optics
[9,10]. However, the demonstrated entanglement genera-
tion rate was significantly slower than the electron spin
decoherence rate, and thus far too slow to allow multiqubit
entanglement. The limiting factor in reported entanglement
rates is the low probability of detecting a ZPL photon upon
excitation of an NV center. We will call this probability the
total quantum efficiency η. Successful entanglement is
heralded by two independent ZPL photon detection events
[11], and thus the entanglement generation rate scales as η2.
Low achieved η values are primarily the result of two
effects inherent to NV centers in diamond. First, the high
refractive index of diamond limits free-space collection
efficiency through total internal reflection. Second, phonon
interactions result in only ∼3% of radiative emission
occurring via the ZPL transition [12–14]. Photonic device
integration can mitigate both effects, providing a scalable
photonics platform for building quantum networks.
In this Letter, we demonstrate a key step toward realizing

such a network in a GaP-on-diamond integrated photonics
platform: the efficient optical coupling of single NV centers
to single-mode waveguides. We show that the probability

of emitting a ZPL photon into the guided mode after optical
excitation can reach 9%. This high probability is achieved
through a combination of resonant enhancement of ZPL
emission via the Purcell effect [15], as well as efficient
coupling between the resonant devices and waveguides.
Resonantly enhanced waveguide collection rates which
exceed the theoretical limit for nonresonant collection were
exhibited by 10 out of 80 tested devices. The limiting factor
for yield is the NV-cavity coupling which can be readily
improved with NV-cavity registration. Furthermore, the
devices were fabricated on the same chip as passive
integrated photonic components [16] necessary for on-chip
entanglement generation networks. Combined, these
results indicate the promise of the GaP-on-diamond pho-
tonics platform for scalable quantum networks.
Our platform utilizes a 125-nm-thick GaP membrane to

guide optical modes at the surface of a diamond chip
[12,16], taking advantage of the high refractive index of
GaP (n ¼ 3.3) compared with that of diamond (n ¼ 2.4).
This is in contrast to the more common approach utilizing
the diamond itself as the waveguiding material [17]. A key
advantage of the hybrid platform is fabrication scalability.
Specifically, diamond waveguides require either under-
cutting of the diamond [18,19] or working with thin
diamond membranes on a low index substrate [20,21].
Undercutting requires a three-dimensional dry etch, sig-
nificantly constraining the device layout. Thin diamond
membranes with large area and uniformity have yet to be
demonstrated, resulting in poor device uniformity across a
chip. On the other hand, large-area (cm-scale) highly
uniform GaP membranes can be grown epitaxially and
transferred to bulk single-crystal diamond chips, enabling
the fabrication of large numbers of photonic devices with*gouldm2@uw.edu
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good cross-chip uniformity. For complex photonic circuits,
additional features of the GaP-on-diamond platform
include the introduction of a second-order optical non-
linearity [22], which should enable active photonic routing,
and sub-nm top-surface roughness suitable for the develop-
ment of on-chip superconducting nanowire single-photon
detectors [23–25]. The primary disadvantage associated
with the hybrid-material platform is the inherently weaker
coupling between the emitters located in the diamond and
the guided optical modes primarily localized in the GaP.
However, as we demonstrate below, this effect is mitigated
with resonant devices of sufficiently high quality factor.
The photon-collection devices consist of near-surface

NV centers evanescently coupled to the fundamental TE-
polarized whispering-gallery mode of 1.3-μm-diameter
disk resonators. The resonators are coupled to 150-nm-
wide single-mode ridge waveguides [Figs. 1(a) and 1(b)].
Prior to device fabrication, near-surface NV centers were
created in the single-crystal electronic-grade diamond chip
by nitrogen ion implantation and annealing. A 125-nm
GaP membrane was then transferred onto the diamond via
epitaxial lift-off and van der Waals bonding [26]. Devices
were fabricated on the resulting GaP-on-diamond chip by
electron-beam lithography and reactive ion etching [27].
The resulting device cross section is a 125-nm GaP
waveguiding layer on a 600-nm diamond pedestal, with
a sparse layer of NV centers (∼2 × 109 cm−2) in the top
10–20 nm of the diamond. Further fabrication details are
given in the Supplemental Material [28,29].

Measurements are performed with the fabricated devices
cooled to 8 K. For each device, the resonator mode is first
tuned to the ZPL resonance. Tuning is accomplished via
xenon gas deposition, which causes the cavity modes to
redshift and provides a wavelength tuning range of ∼2 nm.
For cavity tuning measurements, the sample is excited at
normal incidence and fluorescence spectra are collected
from the output grating coupler as illustrated in Fig. 1(a).
An example tuning curve which shows clear NV-cavity
coupling as the cavity is tuned to the NV ZPL resonance is
shown in Fig. 2(a). This initial tuning measurement is
performed on approximately 80 devices expected to lie
within the cavity tuning range of the ZPL wavelength, for
four different excitation locations around the perimeter of
each disk. In this way, a subset of devices showing coupled
ZPL emission is identified for further study. Three addi-
tional types of measurements are performed on devices in
this subset: photon autocorrelation (gð2Þ) on the grating-
coupled ZPL emission to confirm the single-photon nature
of the collected fluorescence, power dependence to deter-
mine saturated collection rates, and lifetime measurements
to quantify the resonant enhancement of the ZPL emission.

FIG. 1. (a) Illustration of device measurement showing grating
collection. (b) Scanning-electron-microscope image of fabricated
devices.

FIG. 2. (a) Measured tuning curve showing two cavity modes
as one is tuned onto resonance with a coupled NV center’s ZPL.
(b) Grating-collected spectra with cavity tuned onto selected ZPL
(blue curve) and detuned from ZPL (orange curve), with the
wavelength integration range used for count-rate calculation
indicated by shaded rectangles. Inset: photon autocorrelation
measured with cavity tuned onto ZPL, with the biexponential fit
shown in red.
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As we show below, the last two measurements enable two
separate estimates of η for each device.
With a cavity mode tuned onto resonance with a selected

ZPL, we first perform a gð2Þ measurement to verify the
single-emitter nature of the source [see inset Fig. 2(b)].
The grating-collected light is spectrally filtered around the
selected ZPL wavelength before detection as depicted in
Fig. 2(b). The gð2Þ measurement is performed on four of the
brightest devices, all showing autocorrelation dips with
gð2Þð0Þ < 0.4, indicating that in each device a majority of
the collected photons are from a single emitter. Nonzero
coincidence rates are the result of background fluorescence
at the ZPL wavelength. This background fluorescence
can be observed in the detuned-cavity spectrum (orange)
in Fig. 2(b).
We next measure the excitation power dependence of

the waveguide-coupled ZPL photon rate to determine
saturated collection rates. This measurement is performed
by sweeping the excitation power and measuring the
grating-coupled detection rate, again spectrally filtered
around the selected ZPL. After removal of the background
fluorescence, measured with the cavity mode detuned from
the ZPL, the data are fit to a saturation model: γðPÞ ¼
γsat=ð1þ P=PsatÞ, where γðPÞ is the detection rate, γsat is
the saturated detection rate, P is the excitation power, and
Psat is the saturation power.
Power dependence data for four devices are shown in

Fig. 3 (inset). Disk 1 shows a detected ZPL count rate of
1.2 × 104 s−1 after background subtraction. The fit indi-
cates a saturated NV ZPL detection rate of 2.0 × 104 s−1,
and a saturation power of 3.4 mW. Using the measured
collection path efficiency for each device [28] and the
known detector efficiency, we can estimate the saturated
collection rate into the bus waveguide. In the case of disk 1,
the estimated on-chip collection rate is 2.5 × 106 s−1 from a
single saturated NV center. Figure 3 shows a histogram of
saturated on-chip collection rates for 10 devices with values

exceeding 5 × 105 s−1. We note that the estimated count
rates for the three brightest devices are comparable to the
best reported collection rates of NV ZPL photons into
guided modes for all-diamond devices [20]. All 10 devices
exhibit on-chip ZPL count rates exceeding the theoretical
limit of approximately 3 × 105 s−1 in the absence of Purcell
enhancement, calculated as 3% of a total saturated emission
rate of 1 × 107 s−1 [30].
In order to quantify the achieved Purcell enhancement,

the excited-state lifetimes of individual NV centers are
measured using a directly modulated laser diode [31] with a
measured fall time of 1 ns. Time-resolved measurements
are taken on disks 1-4, with the cavity on resonance with a
selected ZPL, as well as off resonance. After careful
subtraction of the background fluorescence waveform
[28,32,33], the data are fit to exponential decay curves
to obtain the lifetimes. Figure 4 depicts measured on- and
off-resonance time-resolved photoluminescence curves for
disks 1 and 2. Measured lifetimes under both resonance
conditions are compared in order to determine the Purcell
enhancement factor FP of a given device. In the nonreso-
nant case, the lifetime τ0 is determined by 1=τ0 ¼ Γ0 ¼
ΓZPL þ ΓPSB, in which ΓZPL (ΓPSB) is the emission rate
into the ZPL (phonon sidebands). In the resonant case,
the lifetime τres is determined by 1=τres ¼ Γres ¼
ð1þ FPÞΓZPL þ ΓPSB. For disk 1, the measured on-reso-
nance lifetime of 4.7� 0.4 ns is significantly shorter than
the off-resonance lifetime of 8.7� 0.8 ns, with the ratio
corresponding to a resonant Purcell factor of FP ¼ 26. This
is close to the maximum possible FP;max ≈ 30 for this
device geometry, given a measured quality factor of
Q ¼ 8200 [27]. We note that the off-resonance lifetimes
in all four measured devices are significantly shorter than
the NV lifetime in bulk diamond (∼12 ns) [34,35]. The
shorter lifetimes are consistent with a broadband enhance-
ment effect caused by the NV centers’ proximity to the
diamond-GaP interface [28,36].
The total quantum efficiency η is estimated for disks 1–4

by two different methods. In the first method, the measured
on-resonance lifetime is used to estimate the total saturated

FIG. 3. Histogram of estimated saturated collection rates into
bus waveguides for ten devices. Inset: power dependence of on-
resonance NV ZPL detection rate for four selected devices, with
background removed. Solid lines are fits to the saturation model.

FIG. 4. Fluorescence lifetime measurements for disks 1 and 2,
in both the resonant (orange) and off-resonant (blue) conditions.
Thick lines represent exponential fits. The dashed black line is the
measured system response for reflected excitation light.
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emission rate γtot of a selected NV center [28,37,38]. For a
saturated on-chip collection rate of γwg, η1 is given by

η1 ¼
γwg
γtot

: ð1Þ

In the case of disk 1, η1 ≈ 9%. The second method uses the
total quantum efficiency into the disk resonator mode ηdisk,
calculated from the measured Purcell enhancement factor,
and the disk-to-waveguide out-coupling efficiency, deter-
mined from grating-coupled transmission measurements
[28]. In this case,

η2 ¼ ηoutηdisk ¼
ηoutFP

FP þ Γ0=ΓZPL
; ð2Þ

where ηout is the disk-to-waveguide out-coupling efficiency
and Γ0=ΓZPL ≈ 30. For disk 1, η2 ≈ 9%. Table I summarizes
the estimated total quantum efficiency obtained using both
methods for four devices, showing reasonable agreement
between the two.
We have shown that large η values are achievable in a

GaP-on-diamond platform, using devices that can be
readily integrated into larger on-chip photonic networks.
A reasonable excitation repetition rate for NV-NV entan-
glement is 100 kHz, limited by the NV initialization time
[10]. The demonstrated collection efficiency of 9% would
thus limit NV-NV entanglement generation to a rate of
400 Hz, which significantly exceeds the ∼1-s electron spin
decoherence rate [39]. Achieving this efficiency-limited
entanglement rate will require that all waveguide-coupled
ZPL photons be detected and indistinguishable. We
note that the GaP-on-diamond system is compatible with
waveguide-coupled superconducting detectors, a technol-
ogy which has already demonstrated detection efficiencies
exceeding 90% for waveguide-coupled photons [24,25].
The demonstrated Purcell factors, as high as 26, exceed

what has been achieved in all-diamond waveguide-
integrated platforms [20,40]. This suggests that the primary
disadvantage of the hybrid-material system for MBQIP,
namely that the emitter cannot be placed at the guided-
mode maximum, can be largely overcome with continued
improvements in resonator quality factor. A greater chal-
lenge for all integrated platforms is the production of
indistinguishable photons. Specifically, it will be necessary
to improve the spectral stability of near-surface NV centers,

which currently exhibit spectral diffusion up to 10 GHz
[29]. We are encouraged by recent work in improving NV
spectral stability via high-temperature annealing [41] and
longer-wavelength excitation [10]. Moreover, even if
device-integrated NV centers do not exhibit the spectral
stability observed for bulk NV centers incorporated during
diamond growth, the platform is compatible with Stark
tuning for both active ZPL frequency stabilization [42] and
tuning to a single platform resonance [9,43].
We conclude with an outlook for scalability. Our yield

for simple photonic circuits which couple the ZPL emission
from a single NV center to a single-mode waveguide, and
which outperform the theoretical limit for free-space
collection, exceeds 10%. This yield is predominantly
limited by the yield in NV-resonator coupling, which in
the short term can be improved by increasing the density of
near-surface NV centers. Longer-term, aligned implanta-
tion [44], combined with on-chip switching for device
postselection, should enable deterministic coupling of
high-performing devices. For the latter approach, the
second-order optical nonlinearity associated with GaP
can be leveraged to implement integrated electro-optic
switching. Thus, we believe the high total quantum
efficiency η, combined with large-scale integration dem-
onstrated in this work, is a promising step toward quantum
photonic networks in the hybrid GaP-on-diamond platform.
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