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Magnesium-aluminum (Mg-Al) alloys are important metal alloys with a wide range of engineering
applications. We investigate the elastic and thermodynamic properties of Mg, Al, and four stoichiometric
Mg-Al compounds including Mg17Al12, Mg13Al14, and Mg23Al30, and MgAl2 with orbital-free density-
functional theory (OFDFT). We first calculate the lattice constants, zero-temperature formation energy, and
independent elastic constants of these six materials and compare the results to those computed via Kohn-
Sham DFT (KSDFT) benchmarks. We obtain excellent agreement between these two methods. Our
calculated elastic constants of hexagonal close-packed Mg and face-centered-cubic Al are also consistent
with available experimental data. We next compute their phonon spectra using the force constants extracted
from the very fast OFDFT calculations, because such calculations are computationally challenging using
KSDFT. This is especially the case for the Mg23Al30 compound, whose 3 × 3 × 3 supercell consists of
1431 atoms. We finally employ the quasiharmonic approximation to investigate temperature-dependent
thermodynamic properties, including formation energies, heat capacities, and thermal expansion of the four
Mg-Al intermetallic compounds. The calculated heat capacity and thermal expansion of both Mg and Al
agree well with experimental data. We additionally find that Mg13Al14 and MgAl2 are both unstable,
consistent with their absence from the equilibrium Mg-Al phase diagram. Our work demonstrates that
OFDFT is an efficient and accurate quantum-mechanical computational tool for predicting elastic and
thermodynamic properties of complicated Mg-Al alloys and also should be applicable to many other
engineering alloys.
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I. INTRODUCTION

Magnesium (Mg) and aluminum (Al) are two of the most
abundant metal elements on Earth. Alloys based on these
two elements exhibit a wealth of excellent properties such
as low density and high strength-to-weight ratio, which
lead to a variety of applications including lightweight
automobile components and portable electronic devices
[1]. An abundance of these elements combined with their
potential to enhance energy efficiency of vehicles via
weight reduction encourages the use of Mg-Al alloys far
into the future.
The properties of Mg-Al alloys, particularly, the

mechanical properties of primary engineering interest,
strongly depend on diverse stoichiometric and nonstoichio-
metric intermetallic phases [2] that are commonly observed
due to the chemically active nature of Mg. One represen-
tative example is that of the precipitated intermetallic
compound Mg17Al12 that is responsible for creep defor-
mation at high temperature, which subsequently deterio-
rates the performance of Mg-Al alloys [3]. Studies of

Mg-Al intermetallics are therefore critical to improving
Mg-Al alloy properties and ultimately widening the range
of their applications.
Computational tools based on Kohn-Sham density-

functional theory (KSDFT) [4,5] play an important role
in understanding Mg-Al intermetallic compounds.
Numerous KSDFT calculations have characterized various
properties of Mg-Al intermetallic compounds [6–9]. Elastic
and thermodynamic properties are two of the most critical
properties and of the greatest interest for engineering
Mg-Al alloys. The former property indicates the stiffness
of a material, while the latter property affects its phase
stability at high temperatures. Both properties are meas-
urable in experiment and computable in theory. Methods
based on atomic models to calculate elastic properties
typically require a large number of energy calculations for
an optimized cell that is subjected to different strain
patterns. These calculations are time consuming within
KSDFT, especially for cells with low symmetries and
consisting of many atoms. Similarly, phonon calculations
usually involve supercells with a number of atomic dis-
placements to determine thermodynamic properties [6].
Phonon calculations at the KSDFT level are limited to*eac@princeton.edu
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supercells with a small number of atoms because of the
large number of operations needed that involve the KS
orbitals at sufficiently sampled k points in reciprocal space.
However, Mg-Al alloys contain complicated stoichiomet-
ric, e.g., Mg23Al30 [10], and nonstoichiometric, e.g., the
Samson phase of Mg2Al3 [11], compounds with large unit
cells that make KSDFT-derived phonon computations
prohibitively expensive.
Orbital-free DFT (OFDFT), on the other hand, scales

quasilinearly with system size with a small prefactor and,
hence, is significantly faster than the typical cubic scaling
of KSDFT [12]. The OFDFTand KSDFT methods differ in
two fundamental respects. First, OFDFT describes the
kinetic energy of electrons using a kinetic-energy density
functional (KEDF) [13], while KSDFT adopts KS orbitals
to exactly evaluate the noninteracting electron kinetic
energy. By eschewing orbitals, the electron density
becomes the sole variable in OFDFT. This enormous
simplification significantly increases the number of atoms
that can be treated with DFT. Second, although nonlocal
pseudopotentials (NLPSs) [14] are widely used in KSDFT
to accurately describe electron-ion interactions, pure
OFDFT utilizes local pseudopotentials (LPSs) because
no orbitals are available to use with the orbital-based
nonlocal projectors present in NLPSs. A LPS must be
carefully constructed and tested. Here, we choose the bulk-
derived LPSs (BLPSs) [15,16] for both Al and Mg [17].
OFDFT with suitable nonlocal KEDFs [18–24] and

LPSs yields accurate properties of light metals and their
compounds [25]. Examples include the motion of edge and
screw dislocations in pure face-centered-cubic (fcc) Al
[26–28] and hexagonal-closest-packed (hcp) Mg [29,30],
ductile crack propagation in fcc Al [31], diffusion of silicon
along an edge dislocation of fcc Al [32], vacancy formation
and aggregation in Al [33], melting behavior of sodium
clusters [34], as well as plasticity properties of body-
centered-cubic Mg-Li alloys [35]. Bulk and vacancy
formation energies of four Mg-Al intermetallic compounds
Mg17Al12, Mg13Al14, Mg23Al30, and MgAl3 [36] were
recently studied with a real-space implementation of
OFDFT [37].
In the present work, we focus on four stoichiometric

compounds, i.e., Mg17Al12, Mg13Al14, Mg23Al30, and
MgAl2, which have been experimentally observed and
archived in the inorganic crystal structure database (ICSD)
[38]. We first compare lattice constants calculated via
OFDFT and KSDFT with those obtained from experiment.
This comparison serves as a benchmark of the reliability of
OFDFTand the chosen KEDF for simulating Mg-Al alloys.
We next assess the stability of these four Mg-Al interme-
tallic structures by means of three common criteria:
formation energies, elastic constants, and phonon
dispersion. Our calculated elastic constants and Pugh’s
ratios suggest that Mg23Al30 and MgAl2 should exhibit
better ductility than Mg17Al12, and precipitates of the

former intermetallic compound can be used to improve
the ductility of magnesium. We then use the phonon
frequencies dispersed over the reciprocal lattice to obtain
thermodynamic properties, including the temperature-de-
pendent formation energy, constant-pressure heat capacity,
and linear thermal-expansion coefficients of the four
intermetallic compounds. Our work offers predicted pho-
non spectra of Mg23Al30, Mg13Al14, and MgAl2. It also
provides another set of tests of the transferability of the Mg
and Al BLPSs [16,17] and of the accuracy of the Wang-
Teter (WT) KEDF [18] used in this study (vide infra). We
demonstrate that OFDFT can be used as an independent
(nonempirical) simulation tool for characterizing properties
of and perhaps ultimately facilitating the optimal design of
Mg-Al alloys. In addition to light metal compounds with
simple crystal structures [26–35], this simulation tool can
be used to characterize the behavior of numerous other
complicated alloys for which experimental elastic and
thermodynamic properties do not exist and for which
theoretical data are too computationally expensive to obtain
with, e.g., KSDFT. Making these data available is critical
for expediting development of new engineering alloys, e.g.,
to pinpoint alloy compositions with desirable target proper-
ties. This objective is in line with the Materials Genome
Initiative [39]. Tremendous effort has been expended
collecting such large data sets of materials properties.
For example, Asta and coworkers calculated the elastic
properties of about 1200 inorganic compounds using
KSDFT [40]. In this context, we demonstrate that using
our OFDFT method to compute elastic and thermodynamic
properties is an extremely efficient technique to analyze,
augment, and predict such properties, which will continue
to expand currently available databases.

II. METHODS

We use the Vienna ab initio simulation package [41] to
perform all KSDFT calculations. The projector-augmented-
wave (PAW) method [42,43] is employed with the standard
PAW projectors for Mg and Al that, respectively, treat the
outer two- and three-valence electrons self-consistently in
the presence of all-electron frozen-core atomic densities.
We employ the Perdew-Burke-Ernzerhof (PBE) functional
for electron-exchange correlation (XC) [44].
Figure 1 displays the crystal structures of Mg17Al12,

Mg13Al14, Mg23Al30, and MgAl2. The crystal-structure
data for these intermetallic phases with their respective
identification (ID) numbers in the ICSD and space groups
are listed in Table I (vide infra). We use primitive cells for
geometry relaxations and energy calculations of Mg,
Mg17Al12, Mg13Al14, Mg23Al30, MgAl2, and Al, consisting
of 2, 29, 27, 53, 12, and 1 atoms, respectively. The
Monkhorst-Pack k-point grids [51] used for these primi-
tive cells are, correspondingly, 18 × 18 × 12, 8 × 8 × 8,
10 × 10 × 10, 8 × 8 × 8, 8 × 8 × 12, and 18 × 18 × 18. A
500-eV kinetic-energy cutoff for the plane-wave basis set is
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used. The selected plane-wave kinetic-energy cutoff and
k-point meshes ensure that the accuracy of the total energy
is converged to within 1.0 meV=atom. Integration over the
Brillouin zone is performed using the Methfessel-Paxton
[52] method with a smearing width of 0.2 eV. All lattice
parameters and atomic coordinates are fully relaxed until a
force tolerance of 0.01 eV=Å is reached.
All OFDFT calculations are performed using the

PROFESS 3.0 package [53]. The total energy functional
within the OFDFT scheme is an electron-density-only
functional, and, thus, no explicit orbitals are needed:

Etot½ρðrÞ�¼Ts½ρðrÞ�þ
1

2

Z Z
ρðrÞρðr0Þ
jr−r0j drdr0

þ
Z

φIEðrÞρðrÞdrþEXC½ρðrÞ�þEII; ð1Þ

where the first term is the KEDF of a real-space electron
density ρðrÞ. We adopt the WT KEDF [18], which is based
on the Lindhard response function for the perturbed uni-
form electron gas, as this response function contains the
physics appropriate for studying nearly-free-electron-like
metals such as Mg and Al and their alloys. Our group has
previously shown that the WT KEDF and the more recent

Wang-Govind-Carter (WGC) [22,24] KEDF yield nearly
the same lattice constants, elastic moduli, and total energies
for hcp Mg and fcc Al [36]. In Ref. [54], we further
compare the phonon spectra calculated with these two
nonlocal KEDFs. The two phonon spectra are reasonably
independent of the choice of KEDF. However, when
applied to the Mg-Al alloys, the WGC KEDF suffers from
a numerical instability problem originating from the sec-
ond-order Taylor expansion used in the WGC expression
[55]. We therefore use the WT KEDF throughout this work.
The second and third terms in Eq. (1) represent the
electron-electron Coulomb repulsion and ion-electron
interactions, respectively. The latter is evaluated using
the BLPSs mentioned earlier [17]. The final two terms
in Eq. (1), respectively, denote the XC and ion-ion
interactions, with the PBE functional used for the XC
term. We use a plane-wave-basis kinetic-energy cutoff of
1200 eV here in OFDFT in order to reach the same
convergence as for the PAW potentials employed in
KSDFT. The PAW potentials utilize a smooth electron
density on a uniform grid, which then permits a lower-
kinetic-energy cutoff, while the BLPSs are somewhat
sharper functions, requiring a higher cutoff to achieve
the same accuracy. We use the truncated Newton method
[56,57] for optimizing the electron density, with the initial
guess density being that of a uniform electron gas. All
geometries are fully relaxed with the conjugate-gradient
method until the forces reach the tolerance of
5 × 10−5 hartree-bohr−1, i.e., 2.6 meV=Å.
We use the strain-energy method to obtain the indepen-

dent elastic constants of hcp Mg, fcc Al, and the four
Mg-Al intermetallic compounds [58,59]. We apply a series
of strains to an optimized unit cell, and the atomic positions
are fully relaxed until the force tolerance is reached. A
general applied strain ε is written as

ε ¼ ðε11; ε22; ε33; 2ε23; 2ε31; 2ε12Þ; ð2Þ

with the elements εij (i, j ¼ 1, 2, 3) defined as

εij ¼
1

2

�∂ui
∂xj þ

∂uj
∂xi

�
; ð3Þ

where u is the displacement at point x.
Under this strain, the resulting strain energy is

ΔE ¼ E − E0 ¼ UV; ð4Þ

where E and E0 are the energies of the deformed and strain-
free cells, respectively, and V is the volume of the deformed
cell. U is the strain energy density under each strain:

U ¼ 1

2
εCε; ð5Þ

(a) Mg
17

Al
12

(c) Mg
23

Al
30

(b) Mg
13

Al
14Mg Al

(d) MgAl
2

FIG. 1. Schematic representation of (a) Mg17Al12,
(b) Mg13Al14, (c) Mg23Al30, and (d) MgAl2 crystal structures.
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where C is the stiffness tensor in the Voigt notation [60].
The calculated strain-energy density as a function of the
applied strain is quadratically fitted to obtain the above
individual elastic constants. We use energy data corre-
sponding to 20 strains δ ranging from −1.0% to 1.0% with
an increment of 0.1% in the present work. The number of
independent elastic constants in the stiffness tensor for
hexagonal, cubic, trigonal, and tetragonal crystal systems is
different depending on the crystal symmetry. We provide
the details of strain patterns applied to each crystal system
in Ref. [54].
We implement a Python-based interface to calculate the

phonon spectra by coupling PROFESS 3.0 with PHONOPY

[61,62]. We first use this interface to generate supercells of
various Mg-Al alloys based on their symmetries. We utilize
6 × 6 × 6 supercells for hcp Mg and fcc Al, where the
numbers multiply the primitive unit cells discussed earlier
to create the supercell. We build 3 × 3 × 3 supercells for

Mg17Al12, Mg13Al14, Mg23Al30, and MgAl2. This notably
results in 53 Mg23Al30 supercells, each of which corre-
sponds to an inequivalent pattern of atomic displacement
(determined by the symmetry of Mg23Al30) and consists of
1431 atoms. We employ PROFESS 3.0 to perform static-
energy calculations for each supercell that yields atomic
forces that are collected by the PROFESS 3.0-PHONOPY
interface. The interface postprocesses the atomic forces
and transforms them to force constants using the PHONOPY

package [61,62] with 53 inequivalent displacements. The
large number of phonon bands obscures observation, so we
also calculate the corresponding phonon densities of states
with the same k-point density as used in the KSDFT
calculations and with a broadening parameter of 2 cm−1.
We adopt the quasiharmonic approximation (QHA) [63]

for the thermodynamic properties calculations, including
temperature- (T−) dependent formation energies EfðTÞ,
heat capacities at constant pressure CP (T), and linear

TABLE I. Crystal-structure information including ICSD ID, structure, space group, and lattice constants a and c=a of hcp Mg,
Mg17Al12, Mg13Al14, Mg23Al30, MgAl2, and fcc Al. Zero-Kelvin formation energies Ef of Mg17Al12, Mg13Al14, Mg23Al30, and MgAl2.
Experimental and theoretical data from the literature are also shown for comparison. Results calculated in this work are shown in bold,
while experimental data are italicized. Literature KSDFT data are shown in regular font.

ICSD ID Structure Space group a (Å) c=a Ef (meV=atom)

hcp Mg 76 748 Hexagonal No. 194, P63=mmc 3.195a 1.632a

3.192b 1.623b

3.209c 1.624c

Mg17Al12 158 247 Cubic No. 217, I4̄3m 10.649a −35.5a
10.523b −24.3b
10.549d −11.0e
10.55f −48f
10.53g −27g
10.571h −21h

Mg13Al14 150 647 Cubic No. 229, Im3̄m 10.314a 42.7a

10.183b 61.6b

10.437i 52e

Mg23Al30 57 965 Trigonal No. 148, R3̄ 12.966a 1.670a −34.6a
12.790b 1.692b −18.7b
12.825j 1.696j −34e

MgAl2 608 412 Tetragonal No. 141, I41=amd 4.236a 5.979a 18.7a

4.195b 5.955b 11.9b

4.132k 6.438k

fcc Al 43 423 Cubic No. 225, Fm3̄m 4.063a

4.039b

4.050l

aOFDFT; this work.
bKSDFT; this work.
cExperiment; Ref. [45].
dExperiment; Ref. [46].
eOFDFT; Ref. [37].
fKSDFT; Ref. [47].
gKSDFT; Ref. [6].
hKSDFT; Ref. [9].
iExperiment; Ref. [48].
jExperiment; Ref. [10].
kExperiment; Ref. [49].
lExperiment; Ref. [50].
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thermal-expansion coefficients αL (T), where quasihar-
monic effects are taken into account by computing volume-
(V-) dependent phonon frequencies ωð~q; VÞ with ~q being
the phonon wave vector. The contributions of lattice
vibrations AðV; TÞ to the Helmholtz free energy FðV; TÞ
within the QHA are given by [63]

AðV; TÞ ¼ 1

2

X
~q

ℏωð~q; VÞ

þ kBT
X
~q

ln

�
1 − exp

�
−ℏωð~q; VÞ

kBT

��
: ð6Þ

Therefore,

FðV; TÞ ¼ E0ðVÞ þ AðV; TÞ; ð7Þ

where E0 (V) is the quantum-mechanical total energy of a
system with volume V. Minimizing FðV; TÞwith respect to
V at a specified T gives the Helmholtz free energy at that
temperature. Then,

EfðTÞ ¼ ΔFðV; TÞ ¼ ½FMgxAlyðTÞ − xFMgðTÞ
− yFAlðTÞ�=ðxþ yÞ; ð8Þ

where FMgxAlyðTÞ, FMgðTÞ, and FAlðTÞ refer to the
Helmholtz free energies of an MgxAly intermetallic com-
pound, hcp Mg, and fcc Al, respectively. x and y,
respectively, denote the number of Mg and Al atoms in
MgxAly.
To calculate CPðTÞ and αLðTÞ at zero pressure (P ¼ 0),

we employ the relation [63,64]

CPðTÞ ¼ CVðTÞ þ α2VðTÞBðV; TÞVT; ð9Þ

where CVðTÞ is the constant-volume heat capacity

CVðTÞ ¼ −T
�∂2FðV; TÞ

∂T2

�
V
; ð10Þ

BðV; TÞ is the bulk modulus

BðV; TÞ ¼ V

�∂2FðV; TÞ
∂V2

�
T
; ð11Þ

and αVðTÞ is the volume thermal-expansion coefficient

αVðTÞ ¼
1

V

�∂V
∂T

�
P
: ð12Þ

The linear thermal-expansion coefficient αLðTÞ depends
on αVðTÞ as

αLðTÞ ¼
1

3
αVðTÞ: ð13Þ

To obtain ωð~q; VÞ, we calculate the phonon frequencies
for each intermetallic compound at 17 different volumes
ranging from 0.94 to 1.06V0, where V0 is the equilibrium
volume of a ground-state structure. The volume-dependent
phonon spectra require, e.g., 901 static energy calculations
for the 1431-atom Mg23Al30 supercell, not feasible for
KSDFT but easily done within OFDFT. A grid of 24 ×
24 × 24 q points on the reciprocal lattice is utilized for the
summation in Eq. (6).

III. RESULTS AND DISCUSSION

Table I lists the predicted equilibrium lattice constants of
hcp Mg, Mg17Al12, Mg13Al14, Mg23Al30, MgAl2, and fcc
Al using both OFDFT and KSDFT. Experimental and
theoretical data from the literature are also given for
comparison. We observe satisfactory agreement between
our simulation results and those from the literature. Our
OFDFT and KSDFT lattice constants compare well; in
some cases, the results from OFDFT are fortuitously
slightly closer to experimental values; e.g., the lattice
constant of Mg13Al14 (10.314 Å) obtained from OFDFT
is closer to the experimental value (10.437 Å) than the
KSDFT result (10.183 Å).
We next consider the formation energy Ef of a MgxAly

compound at zero Kelvin according to

Ef ¼ ðEMgxAly − xEMg − yEAlÞ=ðxþ yÞ; ð14Þ
where EMgxAly , EMg, and EAl refer to the ground-state total
energies per formula unit of MgxAly, hcp Mg, and fcc Al
cells, respectively. This definition is analogous to that of the
temperature-dependent formation energy given in the
previous section [Eq. (8)]. Negative Ef’s correspond to
stable Mg-Al intermetallic compounds and vice versa for
positive Ef’s. Table I lists the Ef’s derived from OFDFT
and KSDFT, along with previous theoretical and exper-
imental data for comparison. Our OFDFT and KSDFT
formation energies once again agree reasonably well with
each other, to within 20 meV=atom. These energies are also
consistent with other theoretical reference values, e.g., the
Ef of Mg17Al12 calculated with both OFDFT and KSDFT
lies within a wide span of literature results ranging from
−48 to −11 meV=atom.
Among the four Mg-Al intermetallic compounds,

Mg17Al12 and Mg23Al30 are the only ones that exhibit
negative Ef’s, which shows that these two structures are
stable at zero Kelvin. The magnitudes of Ef for these two
compounds are also close. In contrast, the predicted Ef’s of
Mg13Al14 and MgAl2 are positive, suggesting that they are
unstable at zero Kelvin; i.e., the decomposition of these two
compounds to hcp Mg and fcc Al is exothermic. We also
observe that the Ef of Mg13Al14 is much larger than that of
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MgAl2, indicating Mg13Al14 is much less stable than
MgAl2 at zero Kelvin. As we see later, the contrasting
Ef’s of Mg13Al14 and MgAl2 are consistent with their
phonon spectra: Mg13Al14 has imaginary frequencies,
while MgAl2 has only real ones.
The formation energy is only the first basic criterion of

structural stability. We proceed to evaluate another impor-
tant criterion, the mechanical stability [65], that can be
directly determined from the calculated elastic constants
(Table II). As shown in the table, our calculated elastic
constants of hcp Mg and fcc Al are in fair agreement with
available experimental data. Additionally, the OFDFT
elastic constants of Mg, Mg17Al12, and Al generally are
very close to KSDFT results from the current and previous
work, with the lone exception being C12 of Mg17Al12,
which has a larger discrepancy.
Notably, we find that C14 and C15 of Mg23Al30 are

significantly smaller than the other components of the
stiffness tensor. In the four-index notation, these two elastic
constants can be written as

C14 ¼ C1123 ¼
σ11
2ε23

ð15Þ

and

C15 ¼ C1131 ¼
σ11
2ε31

: ð16Þ

We conclude that a small stress σ11 along the x direction for
Mg23Al30 will cause significant shear strains ε23 and ε31 on
the y-z and z-x planes, respectively.
We employ Born’s [69] stability criteria to examine the

mechanical stability of these materials, which exploits the
idea that any applied strain should increase the energy of a
stable, ground-state solid. Numerically, the stiffness tensor
must be positive definite [70]; namely, the eigenvalues of
this matrix are all positive. The elastic constants of crystals
should fulfill certain conditions based on their different
symmetries as a result [71]. More precisely, the following
four criteria have to be satisfied for hcp Mg and tetragonal
MgAl2 [71]:

C11 > jC12j; ð17Þ

2C2
13 < C33ðC11 þ C12Þ; ð18Þ

C44 > 0; ð19Þ

and

C66 > 0. ð20Þ

Substitution of OFDFTand KSDFTelastic constants into
the above relations confirms that hcp Mg and MgAl2 are
mechanically stable. For cubic Mg17Al12, Mg13Al14, and
fcc Al, three criteria need to be met:

C11 − C12 > 0; ð21Þ

C11 þ 2C12 > 0; ð22Þ

and

C44 > 0. ð23Þ

We find that C11 and C12 of Mg13Al14 calculated from
both KSDFT and OFDFT do not satisfy the above criteria,
whereas those of Mg17Al12 and fcc Al do. This finding is
consistent with the large positive formation energy of
Mg13Al14. Finally, the elastic constants should be com-
mensurate with the following conditions for trigonal
Mg23Al30 [71]:

C11 > jC12j; ð24Þ

TABLE II. Elastic constants (in GPa) and Pugh’s ratio B∶G of
hcp Mg, Mg17Al12, Mg13Al14, Mg23Al30, MgAl2, and fcc Al.
Experimental and theoretical data from the literature are also
shown for comparison. Results calculated in this work are shown
in bold, while experimental data are italicized. Literature KSDFT
data are shown in regular font. The B∶G of Mg13Al14 is not
shown because Mg13Al14 is mechanically unstable.

C11 C12 C13 C14 C15 C33 C44 C66 B∶G

hcp Mg 63a 28a 21a 67a 15a 2.118a

66b 25b 19b 70b 20b 1.714b

64c 26c 22c 66c 18c 1.932c

Mg17Al12 94a 18a 20a 1.671a

96b 27b 22b 1.897b

87d 29d 20d 2.081d

98e 28e 31e 1.577e

88f 24f 27f 1.569f

91g 27g 30g 1.570g

Mg13Al14 37a 46a 24a

45b 51b 38b

Mg23Al30 79a 38a 38a 2a 0a 78a 26a 2.300a

78b 46b 45b 3b 2b 79b 18b 3.380b

MgAl2 73a 45a 44a 71a 23a 25a 2.800a

82b 50b 48b 84b 19b 27b 3.077b

fcc Al 100a 69a 30a 3.447a

103b 66b 33b 2.994b

106h 57h 28h 2.763h

107i 61i 28i 2.950i

aOFDFT; this work.
bKSDFT; this work.
cExperiment; Ref. [66].
dKSDFT; Ref. [61].
eKSDFT; Ref. [6].
fKSDFT; Ref. [7].
gKSDFT; Ref. [9].
hKSDFT; Ref. [67].
iExperiment; Ref. [68].
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C44 > 0; ð25Þ
2C2

13 < C33ðC11 þ C12Þ; ð26Þ
and

2

�
C2
14 þ C2

15

�
< C44ðC11 − C12Þ: ð27Þ

It is straightforward to verify that all OFDFTand KFDFT
elastic constants of Mg23Al30 comply with the above four
conditions, confirming that Mg23Al30 is mechanically
stable, although it may easily deform via shear, as
mentioned earlier.
The elastic constants calculated above are useful not only

for assessing the fundamental stability of the Mg-Al
intermetallic compounds but also for evaluating mechanical
properties of key interest for engineering applications. For
instance, the elastic constants can be transformed to bulk
moduli B and shear moduli G according to the Voigt-
Reuss-Hill approximation (see Refs. [54,68]). Pugh found
that the ratio B∶G is strongly correlated to the ductility of a
material, i.e., a larger B∶G indicates a better ductility [72].
The OFDFT B∶G values for hcp Mg and fcc Al are in good
agreement with available experimental values (Table II).
Furthermore, the OFDFT Pugh’s ratios in Table II suggest
that both Mg23Al30 and MgAl2 should be more ductile than
Mg17Al12, consistent with the brittle nature of the latter
intermetallic compound [73], and that precipitates of
Mg23Al30 or MgAl2 in Mg can improve its ductility.
Thus, efficient screening of simple mechanical properties
of complex Mg-Al intermetallic compounds is possible
with OFDFT.
In addition to mechanical stability, we further assess

another crucial criterion of stability, namely, phonon or
dynamical stability [74]. The absence of imaginary phonon
modes implies that a system is dynamically stable. We first
benchmark our computed phonon spectra of hcp Mg and
fcc Al obtained from OFDFTwith those from KSDFT and
measurements. Figure 2 displays the phonon spectra of hcp
Mg and fcc Al from all three methods. We observe good
agreement at most q points in the first Brillouin zone, when
comparing phonon spectra from OFDFTwith the ones from
KSDFT and with experiment. However, we also observe
that at other q points, e.g., the X point for fcc Al, the
OFDFToptical phonon frequency is around 30 cm−1 lower
than the KSDFT one and the experimental data. This
deviation shows the accuracy limits of the WT KEDF
and/or the BLPSs used in OFDFT.
Phonon spectra for the four Mg-Al compounds consid-

ered here are not yet measured. Figure 3 provides predicted
phonon spectra of Mg17Al12, Mg13Al14, Mg23Al30, and
MgAl2. We emphasize that our calculated phonon spectra
of Mg13Al14, Mg23Al30, and MgAl2 are calculated at the
DFT level. These calculations are only possible because of

the speed and accuracy of OFDFT. Figure 3 also displays
the corresponding phonon density of states (PDOS) in
order to better visualize the distribution of phonon modes.
We observe many flat phonon bands, which give rise to
sharp peaks in the PDOS plots. The phonon modes for
Mg17Al12 and Mg23Al30 in the first Brillouin zone are all
real, consistent with their negative formation energies and
their elastic constants that satisfy Born’s criteria. In con-
trast, Mg13Al14 exhibits imaginary phonon modes, sug-
gesting that it is dynamically unstable, consistent with its
positive formation energy and elastic constants failing to
obey Born’s criteria. Interestingly, although the zero-Kelvin
formation energy of MgAl2 is positive, the calculated
phonon spectrum suggests that MgAl2 is dynamically
stable. The latter finding is also consistent with the elastic
constants that we show satisfy the Born criteria.
With the phonon dispersion relations now determined,

we are able to explore how temperature affects the
formation energy and other thermodynamic properties of
the four Mg-Al intermetallic compounds. Figure 4(a)
displays the formation energies of Mg17Al12, Mg13Al14,
Mg23Al30, and MgAl2 as a function of temperature. The
formation energies decrease as the temperature increases
because of increasing phonon entropy as the temperature
rises. The formation energies of Mg17Al12 and Mg23Al30
are negative over the entire temperature range considered
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(0 K < T < 700 K, with the latter temperature close to the
melting temperature of Mg17Al12) [2], showing that they
are thermally stable. This stability explains why both
phases appear in the Mg-Al phase diagram [77]. In contrast,
the formation energies of Mg13Al14 and MgAl2 are much
higher. The formation energy of Mg13Al14 remains com-
pletely positive (and dynamically unstable) at high temper-
atures, while MgAl2 is also unstable up to nearly 700 K.
This instability correlates with the fact that both MgAl2 and
Mg13Al14 are absent from the equilibrium phase diagram.
Indeed, the MgAl2 phase has been prepared only by the
liquisol quenching method [49], a common technique for
obtaining nonequilibrium phases through rapid quenching
of an alloy from the liquid to the solid state [78].
Finally, we use OFDFT to calculate thermodynamic

properties of hcp Mg, Mg17Al12, Mg13Al14, Mg23Al30,
MgAl2, and fcc Al. In particular, we evaluate the constant-
pressure heat capacity CP and the linear thermal-expansion
coefficient αL, both of which are measureable quantities
that can be directly compared to our predictions. OFDFT-
derived CP curves [Fig. 4(b)] capture the typical variation
of CP with temperature, i.e., strong and weak temperature
dependence at low and high temperatures, respectively,
resembling the Debye model [79]. The CP’s of the six
materials are predicted to have very similar values over a
wide temperature range, reflecting the insensitivity of CP in
Mg, Al, and their respective alloys. Figure 4(c) displays the
OFDFT-derived αL values of the six materials. The calcu-
lated αL’s of Mg and Al are nearly identical and in good
agreement with experimental values. For example, at room
temperature (T ¼ 298 K), the calculated αL’s of Mg and Al
are 22.8 and 22.6 × 10−6=K, respectively, quite close to the
corresponding experimental values of 24.8 and 23.1 ×
10−6=K [80]. The four Mg-Al intermetallic compounds
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are predicted to exhibit larger αL’s especially at high temper-
atures. These differences potentially may affect interface
properties, e.g., misfit strain, when such a Mg-Al interme-
tallic phase precipitates from Mg at high temperatures.

IV. CONCLUSIONS

We computationally characterize various properties of
four complex Mg-Al intermetallic compounds, including
lattice constants, formation energies, and elastic constants.
Benchmark computations performed on hcp Mg and fcc Al
demonstrate that OFDFTwith the nonlocal WT KEDF is as
accurate as KSDFT for Mg-Al intermetallics. The extraor-
dinary computational efficiency of OFDFT permitted
phonon spectra and thermodynamic properties of the four
Mg-Al intermetallic compounds to be obtained. In particu-
lar, the phonon spectra and thermodynamic properties of
Mg23Al30, Mg13Al14, and MgAl2 are predicted, offering
explanations of prior and guidance to future experiments.
For example, Mg13Al14 and MgAl2 are predicted to have
positive formation energies, consistent with their absence
from the experimental phase diagram of Mg-Al alloys.
Second, the predicted differences in thermal-expansion
coefficients of the intermetallic compounds suggest that
possible interfacial strains may emerge during high-
temperature metallurgical processing of Mg-Al alloys.
From the theoretical perspective, our work shows that
the WT KEDF combined with the BLPS within the OFDFT
framework is quantitatively reliable and very efficient
for computing different properties of Mg-Al intermetallic
compounds.
From a broader perspective, our procedure for character-

izing the elastic and thermodynamic properties of Mg-Al
intermetallic compounds via OFDFT can be straightfor-
wardly generalized to study the properties and behavior of
other complicated Mg-Al intermetallic compounds and
many other lightweight alloys. We plan to link our method
to the ICSD so that complex intermetallic structures
documented in the database can be used as starting points
for automatic OFDFT calculations. This high-throughput
strategy will establish a database of elastic constants and
thermodynamic properties of complicated intermetallic
compounds. Such an OFDFT-based database will extend
existing ones such as the KSDFT-based Materials Project
[81]. The resulting database will serve as a map of alloy
selection and ultimately accelerate discovery of lightweight
alloys for applications in the automotive and portable
electronic device industries.
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