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Recent advances in micro- and nanotechnology have enabled the development of ultrasensitive sensors
capable of detecting small numbers of species. In general, however, the response induced by the random
adsorption of a small number of objects onto the surface of such sensors results in significant fluctuations
due to the heterogeneous sensitivity inherent to many such sensors coupled to statistical fluctuations in
the particle number. At present, this issue is addressed by considering either the limit of very large numbers
of analytes, where fluctuations vanish, or the converse limit, where the sensor response is governed by
individual analytes. Many cases of practical interest, however, fall between these two limits and remain
challenging to analyze. Here, we address this limitation by deriving a general theoretical framework
for quantifying measurement variations on mechanical resonators resulting from statistical-number
fluctuations of analyte species. Our results provide insights into the stochastic processes in the sensing
environment and offer opportunities to improve the performance of mechanical-resonator-based sensors.
This metric can be used, among others, to aid in the design of robust sensor platforms to reach ultrahigh-
resolution measurements using an array of sensors. These concepts, illustrated here in the context of
biosensing, are general and can therefore be adapted and extended to other sensors with heterogeneous
sensitivity.
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I. INTRODUCTION

Micro- and nanotechnologies have experienced dramatic
development in the past decades leading to the fabrication
of sensors capable of reaching the high sensitivities and
resolutions required for the detection of small numbers
[1–5] or single molecules [6]. Such developments have
resulted in many applications ranging from the early diag-
nosis of diseases [7,8] to food safety [9].Whilemeasurements
of a large number of objects are accurately described by the
average response of the sensor, the significant measurement
variations associated with the adsorption of far smaller
numbers of molecules onto the surface of the sensor have
represented a limitation in the practical applicability of high-
resolution sensing. Such measurement variations arise from
the heterogeneous sensitivity across the surface of many
nano- and microfabricated sensors as well as from the
statistical variation in the number and mass of the species
bound to the sensor. For instance, inmechanical resonators—
where the response function arises from the spatial variation
of their vibrationalmode shapes—the samenumber of objects
of identicalmass can induce different responses dependingon

their location on the sensor surface. Figure 1(b) shows the
frequency shifts induced by four identical polystyrene par-
ticles of 10-μm diameter positioned at different locations
[Fig. 1(a)] on a micromechanical resonator excited in the
Lamé mode (see Supplemental Material [10] for details). In
this case, a measurement variation of approximately 30% is
observed between measurements i and iii [Fig. 1(b)]. This
fundamental issue has also been identified for localized
plasmon sensing [11] and impedance measurements [12]
as well as for field-effect transistors, where a sensitivity
dependence based on the number ofmolecules [13] as well as
their position [14] is reported. This problem is particularly
relevant to nanofabricated sensors, as the dimensions of such
sensors are comparable to the size of the objects to be
detected. Thus, in order to exploit the full potential offered
by micro- and nanofabricated sensors for detecting small
numbers of analytes, it is of fundamental importance to
understand and quantify the nature of stochastic processes in
the sensing environment.
At present, the issue of heterogeneous sensitivity is

usually dealt with by considering two operational regimes
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that depend on the number of objects located on the surface
of the sensor [see Fig. 1(d)]. In the first regime, when the
number of objects to be detected is very large, or in the case
of uniformly distributed mass [15,16], the measurement is
accurately resolved by using the averaged sensor response.
However, due to the lack of a generally applicable metric, it
was unclear until now how many objects are needed to
operate in this regime without introducing large measure-
ment variations. In the second regime, if only a small
number of objects are randomly positioned on the sensor,
complementary methods have been developed to describe
the measured response. In the case of mechanical reso-
nators, these alternative methods include multimodal
approaches, which have enabled the detection of single
proteins [20] and microparticles [17], transfer-function
methods, used to detect single microbeads [19], and
physicochemical methods that precisely position the
objects on areas of high sensitivity and have enabled the
detection of single DNA molecules [6]. However, while
these methods are well suited for the detection of one or a
few objects, they are not easily scalable to tens of objects.
For example, the use of multimodal approaches is limited
by the number of modes studied [5,18], which currently
sets a practical transduction limit for this approach.
Notable exceptions include sensors operating in the
flow-through regime [3] and sensors that rely on real-time
sensing strategies [20]. However, in both cases, the small

dimensions of these types of sensors, necessary to meet the
sensitivity conditions to detect small amounts of molecules,
can seriously limit their performance. In the case of sensors
operating in the flow-through regime, the size of the
channels restricts the volume that can be probed over a
reasonable time (see, for example, Ref. [3]). In the case of
real-time sensing, even though nanomechanical resonators
have been used in the gas phase [20], their operation in
liquid media for affinity-based sensing, for example, is
limited by the small area available to bind the analytes of
interest [21].
Despite these recent developments, many cases of

practical interest, including the early detection of diseases
as illustrated later, fall in between the two regimes
mentioned above [Fig. 1(d)]. In this paper, we address
this limitation by deriving a general theoretical framework
that describes the measurement variations induced by any
number of objects randomly positioned on a sensor with
heterogeneous sensitivity. This metric can be used to define
the limit between the above regimes of operation and,
importantly, offers opportunities to design robust sensor
platforms to reach ultrahigh-resolution measurements, as
we illustrate in the context of biosensing using an array of
microresonators. In addition, our metric provides further
insights into stochastic processes in the sensing environ-
ment, a problem which has recently been identified as one
of the major challenges in micro- and nanomechanical

FIG. 1. Effect of the position-dependent sensitivity of mechanical resonators operating as gravimetric sensors and regimes of
operation. (a) Images of four polystyrene (PS) particles of 10-μm diameter on a square plate resonator excited in the Lamé mode for three
cases studied. (b) The amplitude response at resonance for each of the three cases presented and f0, the resonant frequency without mass
loading. (c) Scanning electron micrograph showing four PS particles on a square plate resonator and the measurement principle (inset).
(d) When the number of objects is large, the average response resolves the measurement accurately. This assumption is valid for the case
of distributed mass using thin-film deposition, for example (see Refs. [15,16]). When the number of objects is small, the fluctuations
become very large and complementary methods are necessary to resolve the measurements. Multimodal approaches (I) are used to
measure single objects [17] and up to three beads in Ref. [18]. Transfer-function methods (II) and physicochemical methods (III) are
used to detect single objects [19] and [6], respectively. However, the interpretation of results falling between these two regimes, that
represent many cases of practical interest, are not described by current models.

JÉRÔME CHARMET et al. PHYS. REV. APPLIED 5, 064016 (2016)

064016-2



biosensing [22]. Without loss of generality, the results are
presented for mechanical resonators. This sensor platform
is chosen because the response of such sensors depends on
the spatial variations of their mode shape, and, therefore,
the findings in this study apply to mechanical resonators of
all length scales. In fact, our general framework can be
extended to other sensors with heterogeneous sensitivity.
We anticipate, therefore, that our results will have a positive
impact on many micro- and nanofabricated sensors and will
find a particular relevance in the field of biosensing where
an early diagnosis relies on the measurement of a small
quantity of biomolecules [2–4,7,8].

II. MEASUREMENT VARIATIONS

A. General expression

In order to evaluate the measurement variations induced
by a random number of objects N with variable mass mj

randomly positioned on a gravimetric sensor operating in
the dynamic mode, we study the relative variance of the
total added effective mass Δ ~m reported by the sensor upon
exposure to added masses mj (see Ref. [23]):

Δ ~m ¼
XN

j¼1

mjjφðxjÞj2; ð1Þ

where φðxÞ is the mode shape scaled to the unit-generalized
mass such that 1=A

R jφðxÞj2dx ¼ 1=M, with A being the
sensor surface area and M its effective mass. The relative
variance is given by σ2=μ2 ¼ Var½Δ ~m�=E½ðΔ ~mÞ�2, where
Var½Δ ~m� ¼ E½ðΔ ~mÞ2� − E½ðΔ ~mÞ�2 and the expectation val-
ues are averages over the sensor surface, as well as the
number and mass of the placed objects. The expectation
value of the total added effective mass can be computed as

E½Δ ~m� ¼ hNihmi
M

: ð2Þ

From Eq. (1), we can calculate

ðΔ ~mÞ2 ¼
XN

i¼1

XN

j¼1

mimjφ
2ðxiÞφ2ðxjÞ

¼
XN

i¼1

m2
iφ

4ðxiÞ þ
XN

i¼1

X

j≠i
mimjφ

2ðxiÞφ2ðxjÞ ð3Þ

and hence

E½ðΔ ~mÞ2� ¼ hNihm2iE½φ4ðxiÞ� þ
hNðN − 1Þihmi2

M2
: ð4Þ

Combining Eq. (2) with Eq. (4) and using hm2i¼σ2mþμ2m,
we obtain the relative variance

σ2

μ2
¼ 1

μn

�
M2

�
1þ σ2m

μ2m

�
E½φ4ðxjÞ� − 1

�
þ σ2n
μ2n

; ð5Þ

where μm;n and σm;n are the averages and standard devia-
tions of the mass and number distribution of the loaded
objects, respectively, and E½jφðxÞj4� ¼ 1=A

R jφðxÞj4dx.
The detailed derivation can be found in Supplemental
Material [10]. Equation (5) establishes a general framework
for the quantification of measurement fluctuations
due to stochastic processes in the sensing environment.
The limiting case of a sensor with homogeneous
sensitivity can be derived from Eq. (5) and is given by
σ2=μ2 ¼ ðσ2m=μ2mÞ=μn þ σ2n=μ2n.
Figure 2(a) shows the relative variance of measurements

in the case of a square plate resonator excited in the Lamé
mode and loaded with objects of variable mass distribution,
as described by increasing coefficients of variation
(cv ¼ σm=μm). The relative variance increases, as expected,
with the coefficient of variation.

B. Special case: Fixed number of objects
N and mass m

A case of practical interest is the situation when a given
number of objects N of identical mass is measured,
corresponding to σm ¼ 0 and σn ¼ 0 in Eq. (5):

FIG. 2. Relative variance as a function of the number of objects
on the sensor [see Eq. (5)]. (a) The effect of stochastic processes
in the sensing environment. A graph showing the relative variance
as a function of the inverse of the number of objects for a square
resonator excited in the Lamé mode. The relative variance
increases with the coefficient of variation (cv ¼ σm=μm), which
represents the ratio of the width of the mass distribution to the
mean. (b) The case of a given number of objects of identical mass
(σm ¼ 0 and σn ¼ 0). Three sensors are compared: a square plate
resonator excited in the Lamé mode (i), a beam excited in its first
extensional mode (ii), and a cantilever excited in its first flexural
mode (iii). The mode shapes of each resonator (top to bottom) are
presented on the right.
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σ2

μ2
¼ 1

N
fM2E½jφðxÞj4� − 1g: ð6Þ

Because E½jφðxÞj4� ∝ M−2, it can be seen that Eq. (6)
depends solely on the number of loaded objects and the
mode shape of the sensor studied. This observation
suggests that the resulting metric σ2=μ2 can be used to
compare the performance of different types of resonators.
Figure 2(b) shows the relative variance [Eq. (6)] plotted
against the inverse of the number of objects for three
common gravimetric micro- or nanomechanical sensors: a
square plate resonator excited in the Lamé mode, a beam
excited in its first extensional mode, and a beam (canti-
lever) excited in its first flexural mode. The figure shows
that the relative variance decreases linearly with the inverse
number of objects at a rate that depends on the mode shape
of the sensor. It is observed also that a square plate
resonator excited in the Lamé mode presents lower meas-
urement variations compared to the other resonators men-
tioned above. This advantage becomes less pronounced as
the number of objects increases, N → ∞, as in this case
variations become negligible for all resonator types. This
situation represents the first regime of operation mentioned
earlier.

C. Metrics and limits of detection

One of the most widely used metrics to quantify the
performance of gravimetric sensors is their gravimetric
limit of detection. In this section, we show that the
expression can serve as a complementary metric to define
a numeral limit of detection or, in other words, the
minimum number of objects necessary to obtain a meas-
urement of a given precision.
Let us consider the case of the square resonator described

in the introduction [Fig. 1(c)]. Taking into account the
electronics and equipment noise, that can be extracted from
the frequency-noise floor, the gravimetric limit of detection
of the sensor is defined by Δf ¼ ðdϕ=dfÞ−1Δϕ, where
(dϕ=df) is the slope of the phase at resonance frequency
and the phase noiseΔϕ is taken as the standard deviation of
the zero-span phase-noise data (see Fig. S2). In our case,
the short-term frequency-noise floor is 9 × 10−4 Hz, yield-
ing a gravimetric limit of detection of approximately 2 fg,
which is much lower than individual PS particles (approx-
imately 0.52 ng) used experimentally. Using Eq. (6), one
can calculate that 100 objects, which corresponds to 52 ng
for PS particles of 10-μm diameter, are necessary to obtain
measurements with a relative standard deviation of 5%.
This observation should be put in perspective with the

fact that the gravimetric limit of detection of 1 ag, which
corresponds to 25 molecules of approximately 24 kDa,
has been reached by a variety of biosensors [3,4,24]. This
number of molecules, that falls between the two regimes of
operation described above, shows the importance of tack-
ling the issue of the heterogeneous sensitivity in parallel

with the development of more sensitive sensors. We show
in the following section how the metrics derived in this
paper can be used to address this issue.

III. APPLICATION TO BIOSENSING

A. Design rules for sensing platform

In this section, we show that Eq. (6) enables the
establishment of design rules to develop sensor platforms,
comprised of arrays of sensors, capable of reaching ultra-
high resolutions. This solution, particularly appropriate for
micro- or nanomechanical sensors that are conventionally
fabricated in arrays, is made possible by using a simple
statistical concept. In addition, unlike the complementary
methods conventionally associated with high-resolution
measurements, the method proposed here enables the
measurement of any number of objects.
Within this framework, we can estimate the mean value

of the number of analytes, within a given precision,
provided that the standard deviation of the population is
known for a given sample size. This approach is described
by the maximum error of the estimate, given by E ¼
zα=2σ=

ffiffiffi
n

p
, where zα=2 is the standard score, σ the standard

deviation, and n the sample size. In the case where the
standard deviation of the population is unknown, however,
it is necessary to obtain a large sample size to accurately
estimate the mean as illustrated by Fig. 3, that shows
the normalized normal distribution obtained using a
Monte Carlo simulation (detailed later) for different num-
bers of objects. The insets show the distributions corre-
sponding to 200 objects for sample sizes of 2000 and 200
measurements, (i) and (ii), respectively. In our case, the
standard deviation can be calculated using Eq. (6). Defining

FIG. 3. Results from Monte Carlo simulations for a square
resonator excited in the Lamé mode. The normal distributions
represent the normalized frequency shift for 20, 100, and 500
objects and a sample size of 2000. The inset (left) shows the
normal distribution associated with 200 objects for a sample size
of 200 (i) and 2000 measurements (ii). The inset (right) shows the
mode shape of the resonator.

JÉRÔME CHARMET et al. PHYS. REV. APPLIED 5, 064016 (2016)

064016-4



the maximum acceptable standard deviation of σmax for a
given application, the maximum error for one measurement
(n ¼ 1) is E1 ¼ zα=2σmax. Therefore, the minimum number
of independent measurements nmin necessary to reach the
same error E1 for a population of given standard deviation
σi becomes

nmin ¼
σ2i
σ2max

: ð7Þ

In other words, if a sensor yields measurements with large
(known) standard deviations σi, it is possible to reach a
higher level of precision (defined here by the maximum-
permitted standard deviation σmax) by repeating the mea-
surements a certain number of times nmin. It should be
noted that the application of this simple concept is possible
only with an a priori knowledge of the measurement
variation, which is now provided by Eq. (6). In the case
of biosensing, where the measurements are stochastic in
nature, an array of sensors generates independent mea-
surements that can be used to decrease the limit of detection
according to the concept described above.
The application of this principle is illustrated below

using a practical example for the detection of protein-
specific antigen (PSA), a biomarker for prostate cancer,
given a set of realistic constraints. We show how the
quantification of the measurement variations, enabled by
our theoretical platform, can contribute to the design of
robust, highly sensitive sensor platforms capable of high-
resolution measurements. Assuming that an ideal sensor
should be able to detect small mass variations on a daily
basis, for example, to monitor the efficiency of a treatment,
we require that 95% of the measurements fall within 5% of
the mean (2σ rule). For a square resonator excited in the
Lamé mode, a beam excited in the extensional mode, and a
cantilever excited in its first flexural mode, we find that the
minimum number Nmin of objects necessary to reach this
condition, as calculated using Eq. (6), is Nmin ¼ 1600,
Nmin ¼ 3200, and Nmin ¼ 8500, respectively. Among the
sensors compared, the square plate resonator excited in the
Lamé mode represents the best option. That is, it requires
fewer objects to reach the same precision. The clinical limit
of the detection of PSA is 0.1 ngml−1 [7].
Assuming that the transport of the molecules to the

biosensor has been optimized, i.e., the sensor operates in a
reaction-limited regime, one can use the Langmuir isotherm
to calculate the surface concentration of receptors (capture
molecules) bound by target molecules at equilibrium.
This assumption is valid for the sensors studied here over
a wide range of dimensions and conditions, as detailed in
Supplemental Material [10]. If we assume that the gravi-
metric limit of detection and the desired sensitivity (both
functions of the dimensions of the sensor; see, for example,
Ref. [25]) limit the lateral dimension of the sensor to 10 μm
at most, we find that a maximum of 134 molecules of PSA

are bound at equilibrium using IgG capture molecules
with an average binding density bm ¼ 6.5 × 1011 cm−2
[26] and association and dissociation constants Kon ¼
2.2 × 104 M−1 s−1 and Koff ¼ 3.2 × 10−4 s−1 [27], respec-
tively. This number of molecules is below the 1600
molecules required to reach the precision conditions
defined above. Calculating the relative variance induced
by N ¼ 134 molecules on a square resonator excited in the
Lamé mode using Eq. (6) and combining the result with
Eq. (7), we find that 12 independent measurements are
sufficient to estimate the mean of the measurement within
the defined precision condition. Therefore, an array of 12
square resonators of 10-μm side length enables the detec-
tion of PSA down to 0.1 ngml−1 for the precision,
resolution, and sensitivity constraints defined above.
We note that in practical cases it is unlikely that an exact

number N ¼ 134 of molecules will bind to the surface of
the sensor. In order to take this situation into consideration,
we come back to the general expression [Eq. (5)] and
consider the case where σN=μN ¼ 2.5% (i.e., the number of
molecules varies between 127 and 141 in 95% of the cases
on each sensor). We find that an array of 16 resonators is
necessary to reach the same resolution.

B. Other practical cases

Let us now consider the more complicated situation
where a given number of objects N of variable mass
distribution are loaded on the sensor. Figure 2(b) shows
that the relative variance increases with the coefficient of
variation. This result has direct practical implications to at
least two important biological processes. First, in the case
of the measurement of biomolecules in a liquid and sensed
using a mechanical resonator, the frequency shifts recorded
are induced by their solvated mass rather than their dry
mass; i.e., the response depends on the mass of the
molecules and that of the solvent they drag. However,
the amount of solvent dragged by the molecule of interest
depends on their packing on the surface of the sensor [28].
In this case, Eq. (5) can be used to take these variations into
consideration by adapting the coefficient of variations.
Second, the same equation can be used to study the
biological noise reported for many biosensors based on
mechanical resonators [6,29,30]. Affinity-based biosensors
rely on capture molecules such as antibodies attached to the
surface of the sensor to capture the biomolecule of interest.
However, even though appropriate passivation layers can
prevent strong and lasting interaction between unwanted
molecules and the sensors, transient interactions cannot be
completely eliminated. Such interactions result in a back-
ground measurement noise due to the spatial sensitivity of
the sensor. One can use Eq. (5) to assess the effect of a
number of unwanted molecules (of different masses) on the
sensor. Assuming a number of unwanted molecules N
whose masses are distributed with a fixed coefficient of
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variation cv, Fig. 2(a) shows the relative variance expected
for different cases.

C. Monte Carlo simulation

An independent Monte Carlo model is developed for the
purpose of the study to verify the validity of Eq. (6) and to
give further insights into stochastic processes on resonators.
The model is based on Eq. (1) and calculates the total added
effective mass for a given number of objects N positioned
at randomly generated coordinates. The model assumes no
interaction between the objects and represents measure-
ments in the linear regime where the principle of super-
position can be applied. These assumptions are valid in the
cases studied in this paper, as we are considering only a
small number of lightweight objects. The model also
assumes a purely gravimetric interaction between the object
and the resonator’s surface. Statistical data, normalized
to simplify comparisons, extracted from a population of
5000 measurement agree within 3% with Eq. (6). For 2000
measurements the variations can go up to 4%, while for 500
measurements they can reach up to 8%. Figure 3 shows the
normalized normal simulation for different numbers of
objects. The insets show the distributions corresponding to
200 objects for sample sizes of 2000 and 200 measure-
ments, (i) and (ii), respectively. Further details can be found
in Supplemental Material [10].
In this section, we examine how an adapted version of

the Monte Carlo simulations gives further insights into
nonspecific interactions on a cantilever excited in its first
flexural mode. In this case, the model is adapted to produce
a series of discrete measurements, where each measurement
is reported as a function of an arbitrary time unit, instead
of being averaged for a given measurement population.
Such a model is used here to show measurement variations
as a function of time. Consider a hypothetical experiment
where the measurement sampling time τn is shorter than
the interaction between the unwanted molecules and the
sensor, such that, every time a measurement is taken, the
same number of unwanted molecules of mass mu interact
with the resonator. This case is captured by Fig. 4, that
shows the measurement variations induced by 50 and
500 molecules, respectively. It can be seen that the figure
appears like a noisy measurement, suggesting that non-
specific interaction with unwanted molecules can contrib-
ute to the biological noise observed on many biosensors
based on mechanical resonators [6,29,30]. It should be
noted, however, that, even though the discrete Monte Carlo
model provides a visual clue to the type of measurement
variations that can be expected due to nonspecific inter-
action, the general framework presented [Eq. (5)] that
accounts for the number and mass variation gives more
insights into this complex subject. However, this study falls
outside the scope of this paper and will be addressed in
future research.

IV. CONCLUSIONS

Finally, we note that our results, which are discussed in
the context of mechanical sensors operating in the dynamic
mode, are general and can be extended to other types of
sensors when the measured output Os in response to a
variation in the input quantity y obeys the relationship
Os ¼

P
N
j¼1 yjϕðxjÞ, where ϕðxjÞ represents the location-

dependent sensitivity map. In the case studied in the paper,
Os ¼ Δ ~m [23], yj ¼ mj, and ϕðxjÞ ¼ jφðxjÞj2, where
φðxjÞ is the mode shape scaled to the unit generalized mass.
In conclusion, we have developed a general framework

to study stochastic processes on the surface of mechanical
sensors operating in the dynamic mode. We have quantified
the measurement variations induced by a variable number
of objects of varying mass randomly positioned on the
sensor. This metric can be used to compare the performance
of any gravimetric sensor based on mechanical resonators,
and importantly it enables the design of sensor platforms
with improved performance. Using an array of sensors, a
solution particularly relevant to micro- and nanosensors, it
is possible to reach an ultrahigh-resolution measurement of
any number of objects. This solution does not require the
implementation of the complementary methods normally
associated with this regime of operation and enables the
measurement of the small quantities of molecules or cells
relevant to the early detection of diseases. In addition, our
theoretical framework can be used to study other stochastic
processes in the sensing environment. It can also give
insight into biological noise due to nonspecific interaction,
and it could also be adapted to study the motility of cells or
the effect of cooperative binding, for example. Finally,
since our framework can be adapted to other sensor

FIG. 4. Results from a discretized version of the Monte Carlo
simulations model showing that nonspecific interaction (transient
binding and dissociation events) on a sensor with heterogeneous
gravimetric sensitivity, in this case a cantilever excited in its first
flexural mode, can appear as a noisy measurement (the variations
decrease with the number of objects).
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platforms, we anticipate, due in particular to great interest
in high-resolution sensing, that the metric developed in the
present paper will be relevant to researchers developing or
working with sensors across a variety of fields.
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