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We develop a theoretical formalism for the description of the interaction of microwave photons with
a thin (compared to the photon wavelength) magnetic metasurface comprised of dipolarly interacting
nanoscale magnetic elements. We derive a scattering matrix describing the processes of photon trans-
mission and reflection at the metasurface boundary. As an example of the use of the developed formalism,
we demonstrate that the introduction of a magnetic metasurface inside a microstrip electromagnetic
waveguide quantitatively changes the dispersion relation of the fundamental waveguide mode, opening a
nonpropagation frequency band gap in the waveguide spectrum. The frequency position and the width
of the band gap are dependent on the waveguide thickness and can be controlled dynamically by switching
the magnetic ground state of the metasurface. For sufficiently thin waveguides, the position of the band gap
is shifted from the resonance absorption frequency of the metasurface. In such a case, the magnetic
metasurface inside a waveguide works as an efficient reflector, as the energy absorption in the metasurface
is small, and most of the electromagnetic energy inside the nonpropagation band gap is reflected.
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I. INTRODUCTION

The traditional approach to the development of tunable
microwave devices is to use them in magnetic materials
magnetized externally by a variable bias magnetic field
created by a combination of permanent magnets and
electromagnets [1,2]. The presence of bulky and heavy
magnets, which also bring a significant dependence of the
bias magnetic field on the temperature, limits the applica-
tions of the magnetically biased and tunable devices in
modern microwave electronics.
On the other hand, the paradigm of reconfigurable

metamaterials [3] and the idea of transformation optics [4]
introduced a possibility of a precise control of electromag-
netic waves. The reconfigurable metamaterials have been
demonstrated experimentally using, for example, micro-
mechanical properties [5–8], electrostatic forces [9,10], and
temperature [11].
However, it is highly desirable to have a reconfigurable

metamaterial with ultrashort switching times capable
of working without mechanical changes in structure and
without a bias magnetic field. To address this problem, a
concept of nanostructured magnetic metamaterials based
on the dipolarly coupled arrays of single-domain magnetic
nanoelements has been introduced [12,13]. The elements

in these arrays are sufficiently small to be monodomain
and have sufficient shape or crystallographic anisotropy to
keep a definite direction of their static magnetization in the
absence of an external bias magnetic field. If the anisotropy
of the array element is uniaxial, each element is bistable and
can exist in quasistable states with two opposite directions
of its static magnetization. The collective static magneti-
zation state of an array of dipolarly coupled magnetic
elements depends on the structure of the 2D periodic lattice
of the array and, also, on the magnetization “prehistory”
and can be switched by the application of short (less than
100 ns) pulses of an external bias magnetic field [14,15].
Obviously, when the static magnetization state of an array
is changed, the microwave absorption properties of the
array are changed also, and the difference of the microwave
absorption frequencies of the same array existing in two
different static magnetization states may exceed several
linewidths of the array’s absorption line [12,14]. Between
the switches, the bias magnetic field is not necessary for the
functioning of the array as a passive microwave device.
The possibility to dynamically control the microwave

properties of the nanostructured magnetic metamaterials
and to use them without a permanent bias magnetic field
creates significant advantages for the devices based on these
metamaterials compared to the traditional devices based
on continuous magnetic films and multilayers [16,17].*ivan.lisenkov@phystech.edu
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However, the amount of magnetic material in the magnetic
nanowire arrays is so small that the microwave absorption in
them is too small for most practical applications.
Therefore, the authors propose [18] using the arrays of

coupled magnetic nanoelements as reflectors or metasur-
faces. In contrast with traditional materials (e.g., ferrites)
that resonantly absorb electromagnetic waves, the meta-
surfaces [19–25] significantly change the electrodynamic
boundary conditions for the dynamic electric and magnetic
fields [18–20,23,25] near the resonant frequency of the
metasurface, thus, creating a strong reflection of the
electromagnetic waves.
In this paper, we continue to study the interaction of

microwave electromagnetic fields with magnetic metasur-
faces and introduce a scattering-matrix formalism (similar
to the formalism described in Ref. [26]) describing the
scattering of microwave photons at magnetic metasurfaces.
In the framework of this formalism, the electromagnetic
field is represented as a superposition of photons with two
opposite circular polarizations, and the central result of this
work is the derivation of a photon-scattering matrix Ŝ
of the nanostructured magnetic metasurface. Having an
explicit expression for the photon-scattering matrix, it is
straightforward to calculate the photon transmission, reflec-
tion, and/or change of spin at the interface of a magnetic
metasurface.
To illustrate the application of our formalism to the

solution of a practical electrodynamic problem, we present
below the calculation of the dispersion equation of the main
electromagnetic waveguide mode propagating in a parallel-
plate microstrip waveguide containing an array of magnetic
nanowires oriented parallel to the conductive plates of
the waveguide. It is important to stress that the solution of
such an electrodynamic problem is highly nontrivial, as this
problem has drastically different spatial scales: the scale of
the monodomain magnetic nanoelement of the metasurface
(nanometers) and thewavelength of themain electrodynamic
mode of the waveguide (centimeters or millimeters). This
difference in spatial scales makes the problem extremely
difficult for the standard finite-difference methods. The
direct numerical modeling of such a system is prohibitively
time consuming. Also, due to the fact that the dynamics
of magnetization in magnetic nanoelements comprising the
magnetic metasurface is governed by the Landau-Lifshitz-
Gilbert (LLG) equations,we have an additional complication
related to the necessity to solve the Maxwell equations
simultaneously with the LLG equation [27,28].
The other possible approaches to this problem include the

“effective-medium” approach and the multiple-scattering
theory [29]. However, a simple Maxwell-Garnett scheme
cannot be directly applied to the ferromagnetic elements
[30] because the magnetic permeability of a ferromagnetic
element depends on the internal magnetic field, which is
created by all the other ferromagnetic elements in the
metasurface [31]. A rigorous Clausius-Mossotti model also

can be applied to the derivation of the effective-medium
constants for a magnetic metasurface [24,25], but it requires
the solution of a highly nontrivial problem of an electro-
magnetic wave scattering on a nanoscale magnetic scatterer
of an arbitrary shape. To escape these complications, below
we propose using a standard spin-wave theory to find spectra
of collective spin-wave excitations of amagneticmetasurface
comprised of interacting magnetic elements of an arbitrary
shape [12].
We demonstrate below that using the developed formal-

ism of the photon-scattering matrix, this problem can be
solved analytically. In this solution, we show that the
multiple reflections of the electromagnetic wave from the
magnetic metasurface substantially increase the efficiency
of the interaction between the propagating wave and the
metasurface. The introduction of even a very thin magnetic
metasurface (7 × 10−4 times thinner than the free-space
wavelength of the electromagnetic wave) into a waveguide
leads to the appearance of a nonpropagation band gap in
the dispersion law of the main mode of the waveguide.
The frequency position of the band gap can be changed by
switching the magnetic ground state of the magnetic dot
array comprising the metasurface. It is also important to
note that this band gap is associated with the reflection
of the propagating waveguide mode from the magnetic
metasurface rather than with the mode absorption in this
metasurface. This strong reflection is caused by the trans-
formation of the electromagnetic field inside the waveguide
caused by the necessity to fulfill the boundary conditions
for electric and magnetic fields at the upper and lower
surfaces of the magnetic metasurface. We also demonstrate
below that for a sufficiently thin waveguide, it is possible to
choose the parameters of the metasurface and the wave-
guide in such a way that the dissipation of the electro-
magnetic wave at the frequencies situated inside the band
gap is minimized, and the waveguide containing a metasur-
face acts as an almost ideal reflector of electromagnetic
waves.
The paper has the following structure. In Sec. II, we

derive a photon-scattering-matrix formalism for magnetic
metasurfaces. In Sec. III, we apply the developed formal-
ism to a problem of a wave propagation in a parallel-plate
waveguide containing a magnetic metasurface. In Sec. IV,
we present numerical (but not micromagnetic) results for
the dispersion of a fundamental mode in a waveguide
containing magnetic metasurface. The conclusions are
given in Sec. V.

II. INTERACTION OF PHOTONS WITH A
MAGNETIC METASURFACE

A. Boundary conditions

We consider a microwave electromagnetic field of the
frequency ω in a free space containing a nanostructured
magnetic metasurface; see Fig 1. The thickness d of the
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metasurface is assumed to be much smaller than the
wavelength d ≪ 2πc0=ω of the propagating waveguide
mode, where c0 is the speed of light. It is also assumed that
the profile of static magnetization is uniform along the
length of the nanowires comprising a metasurface.
For further consideration, we introduce an orthonormal

coordinate system ðx; y; zÞ. Here, z is a unit vector per-
pendicular the metasurface, x lies along the intersection of
the metasurface and the plane of incidence of the micro-
wave photons (see below), and y ¼ z × x (see Fig. 1). We
also assume that the metasurface is located at z ¼ 0.
At the metasurface, the microwave electric (e) and

magnetic (h) fields satisfy the following boundary con-
ditions [18,23–25]:

e− − eþ ¼ −iωμ0d½z × ðχ̂ · h̄Þ�; ð1aÞ

h− − hþ ¼ −dð∇ρ ⊗ zþ z ⊗ ∇ρÞ · χ̂ · h̄; ð1bÞ

where e� ¼ eðz ¼ �0Þ, h� ¼ hðz ¼ �0Þ, χ̂ is the external
susceptibility tensor of a magnetic metasurface [18],
∇ρ ¼ x∂=∂xþ y∂=∂y is the in-plane differential operator,
⊗ denotes the direct vector product, and h̄ ¼ ðhþ þ h−Þ=2
is an average magnetic field acting on the metasurface.
The electrodynamic boundary conditions at a metasur-

face that are very similar to Eq. (1) were used previously
[23–25] to calculate the transmission of electromagnetic
waves through a metasurface using a Clausius-Mossotti-
like model. The model of a metasurface presented in
Refs. [23–25] is very general and can be applied to
metasurfaces of different types.
However, the Clausius-Mossotti procedure is rather

complicated technically for the metasurfaces comprised

of strongly interacting magnetic elements that we describe
in our current work. In our approach, this procedure is not
necessary because the external susceptibility tensor χ̂,
which we use in our boundary conditions (1), is calculated
using the spectra of collective spin-wave excitations of the
nanostructured magnetic metasurface (see Sec. IV and
Ref. [18] for details). These spectra are dependent on
the shapes, magnetic parameters, and the lattice structure of
an array of magnetic nanoelements comprising the mag-
netic metasurface, thus, giving a simple but qualitatively
correct description of the collective dynamic magnetic
properties of the metasurface.

B. Photon representation

To solve electrodynamic problems involving magnetic
metasurfaces, one typically needs to find a solution of
Maxwell equations with the boundary conditions (1) and
other boundary conditions defining a particular problem.
The direct solution of such a system of equations in terms
of the components of vectors e and h describing dynamical
electric and magnetic fields is usually difficult because the
boundary conditions (1) themselves satisfy the Maxwell
equations, thus, making the system of equations over-
determined and degenerate. Of course, in each particular
case, it is possible to find a projection of the equations to
avoid the degeneracy, but this difficulty has to be dealt with
on a case-by-case basis.
Our way out of this difficulty is to use a conventional

scattering-matrix formalism [26], where we operate with
the complex amplitudes of photons, which are the elemen-
tary excitations of an electromagnetic field that satisfy the
Maxwell equations. This approach simplifies the calcula-
tions considerably and provides a general framework that
can be used to solve a variety of electrodynamic problems
involving magnetic metasurfaces based on the arrays of
interacting magnetic nanoelements.
First, we write a six-dimensional electromagnetic field

vector comprisedof the components of the three-dimensional
vectors e and h in the form

fðr; tÞ ¼
�

eðr; tÞ
μ0c0hðr; tÞ

�
: ð2Þ

This representation looks natural, but it is not convenient
since only four components of the vector f are linearly
independent because the electric and magnetic fields are
connected by the Maxwell equations. Thus, below we
make several formal steps to transfer the problem from the
six-dimensional space involving projections of the variable
electric and magnetic fields to a four-dimensional space
involving photon amplitudes, thus, removing the degeneracy
of the boundary conditions (1).
The electromagnetic field can be represented as a

superposition of photons. The photons with the frequency
ω have wave vectors k0 with jk0j ¼ k0 ¼ ω=c0. Since we

FIG. 1. Picture of a magnetic metasurface exposed to electro-
magnetic radiation. Incident photons with amplitudes as�1,
wave vector k, and the incident angle θ are scattered from the
metasurface and converted into the scattered photons with
amplitudes bs�1. The index s ¼ �1 defines the photon spin, 1
stands for −1, and d is the metasurface thickness.
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are interested in the interaction of photons with a metasur-
face lying in the ðx; yÞ plane, we consider here only the
photons having equal projections of their wave vectors onto
the ðx; yÞ plane. Of course, there is a possibility of an
alternative representation of the electromagnetic field as a
superposition of the s- and p-polarized plane waves [23].
However, in such a case the s and p waves have different
projections on the direction of the magnetic field at the
metasurface and are not completely equivalent. In contrast,
when the basis of circularly polarized waves (photons) is
used, the photons having left and right circular polar-
izations are absolutely equivalent.
There are four types of such photons distinguished by

their direction of propagation σ ¼ sgnðz · k0Þ ¼ �1,
namely, propagating along and counter the positive direc-
tion of the axis z and their chirality s ¼ �1 associated with
the photon spin. Without loss of generality, we can assume
that the wave vector k0 lies in the ðx; zÞ plane, which allows
us to define the propagation angle as

θ ¼ arcsinðx · k0=k0Þ; ð3Þ
and −π=2 < θ < π=2; see Fig. 1.
For each of the four above-introduced photon modes, we

define a six-dimensional vector of the electromagnetic field
f̌sσ. We use these six-dimensional “photon-mode” vectors
below as a four-dimensional basis in the six-dimensional
space to represent the electromagnetic fields

f̌sσ ¼ 1ffiffiffi
2

p
�

y

cσ

�
þ iσsffiffiffi

2
p

�−cσ
y

�
; ð4Þ

where cσ ¼ −σx cos θ þ z sin θ. Each of the photon modes
carries a spin of [32]

ssσ ¼ −iℏ½ðesσÞ† × esσ�; ð5Þ
where esσ ¼ 1=

ffiffiffi
2

p ðy − iσscσÞ is a component responsible
for the electric field of the f̌sσ mode. By definition, jssσj ¼ ℏ
and the direction of ssσ is collinear with k0. The projection
of spin ssσ of each of the photon modes on the axis z is

z · ssσ ¼ sℏ cos θ ð6Þ
and does not depend on the direction of propagation. From
the definition, it is seen that the sign of the projection is
connected with the photon chirality.
It is also convenient to introduce a dual vector basis ǧs

σ to
the vectors f̌sσ, the elements of which we will call projectors
and define it as

ǧs
σ ¼

�
f̌sσ − f̌−s−σsin2θ

cos2θð3 − cos 2θÞ
�†

: ð7Þ

One can easily check that the vectors forming the basis of
the photon modes (4) and the basis of “projectors” (7)
satisfy the following orthogonality relation:

ǧs
σ · f̌

s0
σ0 ¼ δss0δσσ0 ; ð8Þ

where δ is the Kronecker symbol.
Using the basis of the photon modes (4), one can

represent the dynamical electromagnetic field as a super-
position of photons traveling in the directions along and
counter to the positive direction of the z axis and having
the wave vectors k0 and k00 ¼ k0 − 2zðz · k0Þ:

fðr; tÞ ¼
X
s¼�1

qsσ f̌
s
σeik0·r−iωt þ

X
s¼�1

qs−σ f̌
s
−σe

ik0
0
·r−iωt þ c:c:;

ð9Þ

where qsσ are the complex amplitudes of the photon modes
and σ ¼ z · k0=jz · k0j. The modulus of the complex
amplitude has a physical meaning of the photon density,
while the argument of this amplitude defines the phase of a
particular mode.

C. Scattering matrix

The metasurface plane divides the space into two
subspaces. In each subspace, there are two classes of
photons: the photons traveling towards and the photons
traveling from the metasurface. We shall name the photons
of the first class incident photons, while the photon of the
second class scattered photons. Fixing some vector k0 and
using the representation (9), we can express the electro-
magnetic fields at both sides of the metasurface in the
following form:

f− ¼
�X

s¼�1

as1f̌
s
1 þ bs1f̌

s
1

�
eik0·ρ−iωt;

fþ ¼
�X

s¼�1

as1f̌
s
1 þ bs1f̌

s
1

�
eik0·ρ−iωt; ð10Þ

where 1 stands for −1, and ρ is a vector lying in the ðx; yÞ
plane. Here, asσ is the complex amplitude of the incident
photon, while bsσ is the complex amplitude of the scattered
photon. Substituting these decompositions for electromag-
netic fields in the boundary conditions (1) and regrouping
terms, we get

X
s¼�1

as1f̌
s
1 − ias1B̂ · f̌s1 − as1f̌

s
1 − ias1B̂ · f̌s1

¼
X
s¼�1

bs1f̌
s
1 þ ibs1B̂ · f̌s1 − bs1f̌

s
1 þ ibs1B̂ · f̌s1; ð11Þ

where

B̂ ¼ −
k0d
2

�
0̂ M̂

0̂ L̂

�
; ð12Þ
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M̂ ¼ ðy ⊗ x − x ⊗ yÞ · χ̂;
L̂ ¼ sin θðx ⊗ zþ z ⊗ xÞ · χ̂; ð13Þ

and 0̂ is the 3 × 3 zero matrix.
Multiplying Eq. (11) by the projectors ǧs

σ, we obtain four
scalar equations, which can be written in a matrix form as
follows:

ðÎ þ iÛÞ · ~b ¼ ðÎ − iÛÞ · ~a; ð14Þ
where

~a ¼ ð a11 a11 a11 a11 Þ;
~b ¼ ð b11 b11 b11 b11 Þ ð15Þ

are the four-dimensional vectors consisting of the ampli-
tudes of the incident and scattered photons. Î is the
four-dimensional identity matrix, and Û is the 4 × 4matrix,
the elements of which are calculated as follows:

½Û�ss0σσ0 ¼ σǧs
σ · B̂ · f̌s

0
σ0 : ð16Þ

The four-dimensional matrix Û is the projection of the
six-dimensional boundary operator B̂ into the four-
dimensional space, and the explicit expressions for the
matrix elements of Û are presented in the Appendix.
Using these matrix elements, we can finally write a

simple expression relating the amplitudes of the scattered
photons to the amplitudes of the incident photons via the
scattering matrix Ŝ:

~b ¼ Ŝ · ~a; ð17Þ
where

Ŝ ¼ ðÎ þ iÛÞ−1 · ðÎ − iÛÞ: ð18Þ

Equation (17) is the representation of the boundary
conditions (1) in the “photon basis.” It is clear that in this
four-dimensional photon basis, the boundary condition has
a simple and compact form. This representation of the
boundary conditions at the sides of a magnetic metasurface
is the central result of this paper. The developed formalism
of the “photon amplitudes” similar to the formalism of
“second quantization” in quantum mechanics is coordinate
independent, making it convenient to use this formalism in
a wide class of electrodynamic problems. When the explicit
form of the scattering matrix Ŝ is known, it is possible to
solve almost any electrodynamic problem involving a
magnetic metasurface characterized by the external sus-
ceptibility tensor χ̂ as a standard problem in a linear
scattering formalism. We note that a similar scattering
matrix Ŝ was obtained using the basis of plane linearly
polarized waves in Refs. [23,24].

Since the linearly independent basis of our problem is
four dimensional, the symmetry properties of the 4 × 4

matrix Û determine all the symmetry properties of the
scattering process of an electromagnetic wave from a
magnetic metasurface. For example, if the 3 × 3 external
susceptibility tensor of a metasurface is Hermitian χ̂ ¼ χ̂†,
the 4 × 4 scattering matrix Û of this metasurface is also
Hermitian Û ¼ Û†, and the scattering matrix Ŝ · Ŝ† ¼ Î is
unitary, meaning that there is no dissipation in the process
of transmission and reflection of electromagnetic waves
at this metasurface.

III. ELECTROMAGNETIC WAVEGUIDE
CONTAINING A MAGNETIC METASURFACE

To demonstrate an application of our theoretical formal-
ism to a particular electrodynamic problem, we consider
below the scattering of an electromagnetic wave propagat-
ing in a parallel-plate strip-line microwave waveguide of
the thickness L ¼ 2l from a magnetic metasurface placed
inside the waveguide at the distance l from the bottom
conductive plate of the waveguide, parallel to this plate
[see Fig. 2(a)]. The thickness of the metasurface is d, and it
is assumed to be small d ≪ l.
The electromagnetic field in the waveguide must satisfy

the Maxwell equations, the boundary conditions (1) on the
metasurface, and the Leontovich boundary conditions [33]
at the conductive plates. Instead, in facing this complex
system of equations, we use the developed formalism of the
scattering matrices to find the influence of the magnetic

(a)

(b)

FIG. 2. (a) Sketch of an electromagnetic waveguide with
parallel conducting plates containing a magnetic metasurface
situated between the waveguide plates. The magnetic metasurface
is represented by an array of monodomain magnetic nanowires
arranged in a periodic lattice. (b) Cross section of the electro-
magnetic waveguide. Green arrows show photon trajectories
in the waveguide. Symbols asσ , bsσ , and csσ stand for photon
amplitudes.
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metasurface on the dispersion properties of the electro-
magnetic wave propagating on a waveguide.
The electromagnetic field of any particular mode trav-

eling in the waveguide and having the wave number k can
be represented as a set of photons [34] reflecting between
the plates with some complex propagation angle θ with
respect to the axis z; see Fig. 2(b). The photons are
scattered by the metasurface, travel to the plates, then
are reflected by the conductive plates, and finally travel
back to the metasurface. Reflection from a conductive plate
reverses the photon’s propagation direction σ and changes
its amplitude, and after the reflection from the plates, the
photons return to the metasurface [see Fig. 2(b)]. The
amplitudes c of these “new” incident photons can be related
to the amplitudes b of the scattered photons by the
expression

csσ ¼ e2ik0l cos θðp1bs−σ þ p2b−s−σÞ; ð19Þ

where p1 ¼ r1 þ r2, p2 ¼ 1þ r1 − r2, and the coefficients
r1 and r2 are found from the Leontovich boundary
conditions [33]

r1 ¼
1

ζ cos θ − 1
; r2 ¼

ζ

ζ − cos θ
; ð20Þ

where ζ ¼ ð1 − iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωρ=ð2μ0c20Þ

p
is the relative impedance

of the conductive surface, and ρ is the resistivity of the
metal forming this surface. In a stationary regime, the new
incident photons must be identical to the initial photons
~a ¼ ~c. This condition leads us to the following equation:

ðÎ − Q̂ · ŜÞ · ~a ¼ D̂ðω; θÞ · ~a ¼ 0; ð21Þ

where

Q̂ ¼ e2ik0l cos θ

0
BBB@

0 0 p1 p2

0 0 p2 p1

p1 p2 0 0

p2 p1 0 0

1
CCCA: ð22Þ

The nontrivial solutions of Eq. (21) exist if and only if

det D̂ðω; θÞ ¼ 0: ð23Þ

This condition yields a secular equation for the waveguide
modes. Finding roots θj of the secular equation for a given
frequency, one can obtain a dispersion relation for the jth
mode of a waveguide:

kj ¼ k0 sin θjðωÞ: ð24Þ

Even in the case where there is no loss of energy in the
metasurface (χ̂ is Hermitian) and in the conductive plates

(ρ ¼ 0), the solution of the secular equation (23) can be
complex. The complex angle θj stands for the evanescent
waves in the waveguide, and the wave number of the
propagating wave in this case also becomes complex. For
the lossless case, all boundary conditions are conservative,
and those evanescent waves are associated not with the
damping but with the fact that propagating electromagnetic
waves cannot simultaneously satisfy all the boundary
conditions. This effect is, in a way, similar to the total
internal reflection in dielectrics [35]. If the waveguide is
sufficiently wide to support several modes [34], the secular
equation (23) has multiple real solutions.
From the computational point of view, the secular

equation (23) is an equation for a single complex variable,
and it can be solved numerically in practically all cases.
Having calculated the propagation angle θj for the jth

waveguide mode, one can substitute it back into the matrix
D̂ðω; θjÞ and calculate the vector ~akj, which is a nontrivial
solution of this homogeneous equation. Substituting the
found vector ~akj for ~a into Eq. (17), one can find the

amplitudes of the scattered photons ~bkj . Then a distribution
of the electric and magnetic fields in the waveguide can be
calculated from Eq. (9),

�
eðr; tÞ

μ0c0hðr; tÞ

�
¼

X
s¼�1

ðas−σ f̌s−σe−ik0jzj cosθj þ bsσ f̌
s
σeik0jzj cosθjÞ

× eik0x sinθj−iωt þ c:c:; ð25Þ

where σ ¼ sgn z.
Thus, we show that the developed theoretical formalism

of photon-scattering matrices allows one to solve analyti-
cally the problem of electromagnetic wave propagation in a
parallel-plate waveguide containing a magnetic metasur-
face and having plates of finite conductivity. The magnetic
metasurface can have an arbitrary susceptibility tensor χ̂,
meaning an arbitrary complex magnetic ground state and an
arbitrary direction of the static magnetization [12,13,18].
We provide a method to compute the dispersion relation
for the waveguide modes (24) and the field distribution of
each of these modes (25). It is important to note that the
developed formalism allows one to treat the electrodynamic
problem involving arbitrarily complex magnetic metasur-
faces in a way that is very similar to the solution of well-
known problems like photon scattering from a conductive
surface [33].
Below, we briefly discuss the conditions of applicability

of the proposed model. The boundary conditions (1)
are obtained in the magnetostatic approximation. In this
approximation, it is assumed that the spin waves in the
array travel much slower than the electromagnetic waves,
i.e., vSW ≪ c0. For the parameters of a typical array of
magnetic nanoelements, the spin waves are rather slow [36]
vSW ≈ 1 km=s, so this condition is fulfilled naturally.
Another important assumption is made concerning the
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array’s thickness. The external electromagnetic field acting
on the array (see Ref. [18] for details) is assumed to be
uniform across the array, meaning that all the other geo-
metric parameters of the problem should be larger than the
array’s thickness. This condition requires that the distance
between the waveguide plates is much larger than the
array’s thickness. These approximations considerably
simplify the employed mathematical formalism. A similar
problem where some of the above limitations are relaxed
can be solved using the more rigorous approach of
Clausius-Mossotti [23,25] but at the cost of much more
complicated computations.

IV. RESULTS

In our numerical example, we consider a magnetic
metasurface created by an array of magnetic nanowires
oriented perpendicularly to the plane of the array. The array
is placed in the middle of a parallel-plate waveguide. The
waveguide plates are assumed to be made of copper with
the electrical resistivity ρ ¼ 1.68 × 10−8 Ωm. The nano-
wires [37] are assumed to be made of made of permalloy,
with height d ¼ 10 μm, radius r ¼ 60 nm, and arranged
into a square lattice with the lattice constant A ¼ 220 nm.
The array can exist in two ground states, namely, the
FM state when all the magnetic moments are oriented in the
same direction and the CAFM state where the nearest
neighbors have their magnetic moments oriented in the
opposite directions [12].
For these two (FM and CAFM) ground states, we

find the external susceptibility tensors have the following
forms:

χ̂FM ¼ f
2

ωM

ωFMR − ω − iΓFM

0
B@

1 i 0

−i 1 0

0 0 0

1
CA; ð26Þ

χ̂CAFM ¼ ζ
f
2

ωM

ωAFMR − ω − iΓAFM

0
B@

1 0 0

0 1 0

0 0 0

1
CA; ð27Þ

where for our parameters of the array, ωFMR=2π ≈
4.06 GHz is the frequency of the ferromagnetic resonance
(FMR), ωAFMR=2π ≈ 12.1 GHz is the frequency of the
antiferromagnetic resonance (AFMR), f ¼ πr2=A2 ≈ 0.23
is the magnetic-material filling fraction, ωM=2π≈28GHz
for the permalloy, ΓFM ¼ αGωFMR, ΓAFM ¼ αGωAFMR,
αG ≈ 0.01 is the Gilbert constant, and ζ ≈ 1.2 is a
numerically evaluated constant that depends on the shape
of the nanowires and on the lattice symmetry [13]. The
switching between the magnetic ground states of a
metasurface based on an array of identical magnetic
nanoelements can be done, for example, by applying
short pulses of an in-plane bias magnetic field [14]. In the

case where the array contains two types of slightly
different magnetic elements, the switching can be per-
formed quasistatically by application of a perpendicular
magnetic field [38,39].
The dispersion relation for the considered parameters

of the array and the waveguide thickness L ¼ 0.5 mm is
plotted in Fig. 3 for the cases of the FM (lower part of
the curve) and CAFM (upper part of the curve) ground
states of the array. The thickness of the waveguide is chosen
to be sufficiently small to guarantee that the cutoff
frequencies for the higher modes are larger than ωAFMR.
The dispersion relation of the fundamental mode of the
waveguide is practically unaffected by the presence of
the magnetic dot array in the frequency regions that are
far from the resonance frequencies of the FM and
CAFM ground states. At the same time, near the resonance
frequencies, namely, ωFMR and ωAFMR, the dispersion
relation changes drastically. The introduction of the array
opens substantial band gaps in the spectrum of the
fundamental waveguide mode near the resonance frequen-
cies even in the case where the magnetic dot array is
extremely thin: ωd=ð2πc0Þ ≈ 7.1 × 10−4.
The band gap in the fundamental mode spectrum

arises not from the losses incurred inside the array.

FIG. 3. Dispersion relation for the fundamental mode in a flat
electromagnetic (EM) waveguide containing an array of magnetic
nanowires located in the middle between the conductive plates for
the cases of the ferromagnetic (FM, solid line) and the chessboard
antiferromagnetic (CAFM, dashed line) ground states of the
array. The band gaps are indicated by shadowed regions. The
waveguide thickness is 0.5 mm. The parameters of the magnetic
nanowire array thickness is 10 μm, the radius of the nanowire is
60 nm, and the lattice constant of the square lattice is 220 nm.
Material properties: saturation magnetization 800 kA=m, Gilbert
damping constant 0.01. Resistivity of the waveguide plates
is 1.68 × 10−8 Ωm.
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To illustrate this, we plot the dependence of the band-gap
width on the waveguide thickness L for the FM ground
state in Fig. 4(a), with the dashed lines defining the
frequency of the FMR. The band-gap width grows
with the decrease of the waveguide width, and, which
is rather remarkable, the central frequency of the band gap
deviates from the FMR frequency of the array for thinner
waveguides.
This metasurface having a large and almost totally

reactive impedance requires a propagating waveguide
mode to have an in-plane component of the electric field
at the metasurface boundary to satisfy the boundary
conditions (1). As a result of this requirement, the
propagation angle θ of the waveguide mode deviates
from its “normal” value of π=2, the wave slows down,
and the band gap in the mode spectrum is formed.
Qualitatively, the appearance of the band gap can be
understood in terms of the “method of virtual images”
[35]. Being very good mirrors, the conductive plates of the
waveguide create a virtual “photonic crystal” for the
photons of the main mode propagating inside the wave-
guide, thus, forming a band gap in its frequency spectrum
[40]. With the decrease of the waveguide thickness, the
“reactive” metasurface sheet produces a progressively
strong (“virtual” metasurfaces become closer) effect
and opens a larger frequency band gap [see Fig. 4(a)].
The shift of the band-gap central frequency away from

the FMR frequency seen at small waveguide thicknesses is
a characteristic feature of the ferromagnetic ground state
of the array and is absent for an array existing in the
AFM state. This shift is connected with the gyrotropic
properties of the tensor χ̂FM (26) and the boundary
conditions (1), which require the presence of nonzero y
components of the electric field and a nonzero z compo-
nent of the magnetic field at the location of the array. In
Fig. 4(b), we show the distribution of the z component of
the magnetic field across the waveguide for a waveguide
with thickness L ¼ 0.1 mm. Near the conductive plates,
the magnetic field component is almost zero, while
at the position of the metasurface (magnetic array), it is
increased substantially. Interestingly, the quasi-TEM
mode has no y component in the electric field and no z
component in the magnetic field, even for the propagation
angle that deviates from π=2. In terms of the waveguide
modes, the obtained mode for the waveguide with a
metasurface in the FM state can be explained as a
quasi-TEM mode coupled with one of the higher evan-
escent TM modes that have the necessary field compo-
nents. The frequencies of the TM modes are higher that
the frequency for the TEM (transverse electromagnetic)
mode, so the frequency of the coupled mode is also
increased, and the band gap deviates from the frequency
of the FMR.
For the frequencies lying inside the band gap, the

waveguide mode becomes evanescent. This means that if

one places a magnetic metasurface inside a waveguide and
excites an electromagnetic wave outside the area where the
metasurface is placed, this wave will be mostly reflected
and some of its energy will dissipate. The complete
problem of the excitation of such a composite waveguide
falls out of the scope of this paper. However, we can
estimate a quality factor Q of the waveguide containing a

(a)

(b)

(c)

FIG. 4. (a) Dependence of the position of the band gap as a
function of the thickness (L) of the waveguide for the ferromag-
netic ground state. (b) Distribution of the z component for
the magnetic field across the waveguide for waveguide thickness
L ¼ 0.1 mm and frequency ω=ð2πÞ ¼ 4.35 GHz. Gray vertical
lines define the positions of the conductive planes, while the
dashed red line defines the position of the magnetic array.
(c) Quality factor (solid line, left axis) and spatial decay
parameter of the wave along the waveguide (dashed line, right
axis) versus frequency for the waveguide having thickness
L ¼ 0.1 mm. The shaded area shows the position of the band
gap. The dash-dot-dash line indicates the frequency of the
ferromagnetic resonance in the both figures. Parameters of the
array are the same as for Fig. 3.
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magnetic metasurface in the form of a magnetic nanowire
array as follows [33,35]

QðωÞ ≈ ωWðωÞ
PmðωÞ þ PeðωÞ

; ð28Þ

where WðωÞ is the total stored electromagnetic energy

WðωÞ ¼ 1

2

Z
V
½ϵ0jeðrÞj2 þ μ0jhðrÞj2�dV; ð29Þ

PmðωÞ is the power dissipated by the magnetic metasurface
[12,31]

PmðωÞ ¼ ωμ0fd
Z
V
δðzÞIm½h̄�ðrÞ · χ̂ · h̄ðrÞ�dV; ð30Þ

and Pe is the energy dissipated by the conductive
plates [33]

PeðωÞ ¼ 2μ0c0ReðζÞ
Z
V
δðz − lÞjhðrÞj2dV: ð31Þ

In Fig. 4(c), the frequency dependence of the quality
factor is plotted for the case of the waveguide thickness
L ¼ 0.1 mm. The maximum absorption and the minimum
of Q, obviously, coincide with the frequency of the FMR.
However, for such a thin waveguide, the central frequency
of the band gap deviates from the frequency of the FMR,
and in the band-gap region, the value the magnetic losses is
much lower than at the FMR. At the same time, for the
frequencies inside the band gap, the penetration depth is
low, and the wave amplitude vanishes inside the waveguide
very quickly (maximum 15 dB=cm) on the scale of a
free-space wavelength (equal to 10 cm in our example);
see Fig. 4(c). In such a case, one can expect that the wave
mode propagating in the waveguide will be mostly reflected
with practically no dissipation caused by the magnetic
metasurface (nanowire array).
The variation of the structural parameters of a magnetic

dot array on the frequencies of the FMR and AFMR has
been studied previously [12]. In our case, this variation
shifts the position of the spectral band gap. The interaction
of the incident photons with a magnetic metasurface
leading to the photon reflection is determined by the
properties of the collective spin-wave excitations (mag-
nons) of the metasurface. The magnon damping plays a
negative role in this interaction, in a sense, that the increase
of damping (characterized by the parameter αG) leads to the
decoupling between the magnon and photon systems and,
therefore, to the increase of the penetration depth for the
photons. A disorder in the magnetic ground state of the
array (or inhomogeneity of the array’s geometrical param-
eters) can also lead to the additional effective damping
(inhomogeneous broadening) [15]. One possible way of

reducing the number of defects in the magnetic state of an
array by “programming” the element’s shape has been
recently proposed in Ref. [38].
In our calculations, we place the metasurface in the

middle of the waveguide in order to make the analytical
formalism [and, in particular, Eq. (22)] simpler. At the same
time, our numerical calculations do not demonstrate any
significant influence on the metasurface position inside the
waveguide of the dispersion of the fundamental mode
shown in Fig. 3.

V. CONCLUSIONS

In conclusion, we develop an analytical formalism
capable of describing both qualitatively and quantitatively
the interaction of electromagnetic waves (photons) with
thin magnetic metasurfaces. The formalism is based on the
scattering-matrix method and allows one to solve a wide
variety of electrodynamic problems involving magnetic
metasurfaces.
As an example of an application of our formalism, we

investigate the behavior of electromagnetic waves in a
parallel-plate waveguide with conducting plates containing
a magnetic metasurface formed by an array of magnetic
nanowires. We find that even a rather thin magnetic
metasurface introduced into the waveguide causes quali-
tative changes in the dispersion of the fundamental mode of
the waveguide, opening a band gap near the magnetic
resonance frequency of the metasurface. The position of the
band gap depends on the magnetic ground state of the array.
We show also that for sufficiently thin waveguides,
the central frequency of the band gap deviates from the
frequency of the magnetic resonance. In this case, the
waveguide can reflect electromagnetic waves with virtually
no dissipation caused by the metasurface placed inside the
waveguide.
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APPENDIX: MATRIX ELEMENTS FOR Û

We find the elements of the matrix Û by a direct
substitution of the basis vectors (4) and projectors (7) into
Eq. (16):
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Û ¼ k0d
8

0
BBB@

−ua1 − ua2 − us3 þw11; ius1 − ius2 − us3 þw11; ua1 − ius2 − iua3 þw11; −ius1 − ua2 − iua3 þw11;

−ius1 þ ius2 − us3 þw11; ua1 þ ua2 − us3 þw11; ius1 þ ua2 − iua3 þw11; −ua1 þ ius2 − iua3 þw11;

ua1 þ ius2 þ iua3 þw11; −ius1 þ ua2 þ iua3 þw11; −ua1 þ ua2 þ us3 þw11; ius1 þ ius2 þ us3 þw11;

ius1 − ua2 þ iua3 þw11; −ua1 − ius2 þ iua3 þw11; −ius1 − ius2 þ us3 þw11; ua1 − ua2 þ us3 þw11

1
CCCA; ðA1Þ

where

wkn ¼ kx · χ̂ · x cos θþ ny · χ̂ · y sec θþ z · χ̂ · z sin θ tan θ

ðA2Þ

and

us1 ¼ x · ðχ̂þ χ̂TÞ · y; ua1 ¼ ix · ðχ̂ − χ̂TÞ · y; ðA3Þ

us2 ¼ y · ðχ̂þ χ̂TÞ · z tan θ; ua2 ¼ iy · ðχ̂ − χ̂TÞ · z tan θ;
ðA4Þ

us3 ¼ z · ðχ̂þ χ̂TÞ · x sin θ; ua3 ¼ iz · ðχ̂ − χ̂TÞ · x sin θ:
ðA5Þ

Note that if χ̂ is Hermitian, the coefficients w and u are real.
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